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Abstract. This paper is concerned with uniqueness results in inverse acous-

tic and electromagnetic scattering problems with phaseless total-field data at
a fixed frequency. We use superpositions of two point sources as the incident

fields at a fixed frequency and measure the modulus of the acoustic total-field

(called phaseless acoustic near-field data) on two spheres containing the scatter-
ers generated by such incident fields on the two spheres. Based on this idea, we

prove that the impenetrable bounded obstacle or the index of refraction of an

inhomogeneous medium can be uniquely determined from the phaseless acous-
tic near-field data at a fixed frequency. Moreover, the idea is also applied to the

electromagnetic case, and it is proved that the impenetrable bounded obstacle
or the index of refraction of an inhomogeneous medium can be uniquely deter-

mined by the phaseless electric near-field data at a fixed frequency, that is, the
modulus of the tangential component with the orientations eφ and eθ, respec-
tively, of the electric total-field measured on a sphere enclosing the scatters and
generated by superpositions of two electric dipoles at a fixed frequency located

on the measurement sphere and another bigger sphere with the polarization
vectors eφ and eθ, respectively. As far as we know, this is the first uniqueness

result for three-dimensional inverse electromagnetic scattering with phaseless
near-field data.
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1. Introduction. Inverse scattering problems occur in many applications such
as radar, remote sensing, geophysics, medical imaging and nondestructive testing.
These problems aim at reconstructing the unknown scatterers from the measure-
ment data of the scattered waves. In the past decades, inverse acoustic and elec-
tromagnetic scattering problems with phased data have been extensively studied
mathematically and numerically. A comprehensive account of these studies can be
found in the monographs [10,14].

In many practical applications, it is much harder to obtain data with accurate
phase information compared with just measuring the intensity (or the modulus) of
the data, and thus it is often desirable to study inverse scattering with phaseless data
(see, e.g., [10, Chapter 8] and the references quoted there). In fact, inverse scattering
problems with phaseless data have also been widely studied numerically over the
past decades (see, e.g. [2, 3, 10–13, 18, 26, 29, 34, 39, 41, 46–48] and the references
quoted there).

Recently, uniqueness and stability results have also been established for inverse
scattering with phaseless data (see, e.g. [1,19,20,24,25,27,31–33,37,42,44,45,49]).
For example, for point source incidence uniqueness results have been established
in [24, 25] for inverse potential and acoustic medium scattering with the phaseless
near-field data generated by point sources placed on a sphere enclosing the scatterer
and measured in a small ball centered at each source position for an interval of
frequencies, and in [32] for inverse acoustic medium scattering with the phaseless
near-field data measured on an annulus surrounding the scatterer at fixed frequency.

The purpose of this paper is to propose a new approach to establish uniqueness
results for inverse acoustic scattering problems with phaseless total-field data at a
fixed frequency. Our approach is based on using superpositions of two point sources
at a fixed frequency as the incident fields and making use of two spheres, which
contain the scatterers, as the locations of such incident fields and the measurement
surfaces of the modulus of the acoustic total-field (the sum of the incident field and
the scattered field). In fact, many phase retrieval algorithms have been developed for
inverse scattering problems with phaseless near-field data measured on two surfaces
to ensure the reliability of the near-field phase reconstruction algorithms (see, e.g.
[17,35,36]). Based on this idea, we prove that the impenetrable bounded obstacle or
the index of refraction of the inhomogeneous medium can be uniquely determined
from the phaseless total-field data at a fixed frequency. Note that the superposition
of two point sources was also used in [37] as the incident field to study uniqueness
for phaseless inverse scattering problems. Some related uniqueness results can be
found in [40,50,51].

The idea is also applied to phaseless inverse electromagnetic scattering which
is more complicated than the acoustic case. In this case, the electric total field
is a complex vector-valued function, so we need to define the phaseless data used
in this paper. In many applications (see, e.g. [5, 34, 38]), the phaseless near-field
data are based on the measurement of the modulus of the tangential component
of the electric total field on the measurement surface. Further, it has been elabo-
rated in [16] that the measurement data are based on two tangential components
of the electric field on the measurement sphere (see [16, p.100]). Therefore, the
phaseless near-field data used is the modulus of the tangential component in the
orientations eφ and eθ, respectively, of the electric total field measured on a sphere
enclosing the scatters and generated by superpositions of two electric dipoles at a
fixed frequency located on the measurement sphere and another bigger sphere with
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the polarizations eφ and eθ, respectively. Following a similar idea as in the acoustic
case, we prove that the impenetrable bounded obstacle or the refractive index of the
inhomogeneous medium (under the condition that the magnetic permeability is a
positive constant) can be uniquely determined by the phaseless total-field data at a
fixed frequency. To the best of our knowledge, this is the first uniqueness result for
three-dimensional inverse electromagnetic scattering with phaseless near-field data.
It should be mentioned that our uniqueness results in this paper are based on parts
of the PhD thesis [43].

The outline of this paper is as follows. The acoustic and electromagnetic scat-
tering models considered are given in Section 2. Sections 3 and 4 are devoted to
the uniqueness results for phaseless inverse acoustic and electromagnetic scattering
problems, respectively. Conclusions are given in Section 5.

2. The direct scattering problems. We will introduce the acoustic and electro-
magnetic scattering models considered in this paper. To this end, assume that D is
an open and bounded domain in R3 with a C2−boundary ∂D such that the exterior
R3\D is connected. Assume further that D ⊂ BR1

, where BR1
is a ball centered at

the origin with radius R1 > 0 large enough.

2.1. The acoustic case. In this paper, we consider the problem of acoustic scat-
tering by an impenetrable obstacle or an inhomogeneous medium in R3. We need
the following fundamental solution to the three-dimensional Helmholtz equation
∆w + k2w = 0 in R3 with k > 0:

Φk(x, y) :=
eik|x−y|

4π|x− y|
, x, y ∈ R3, x 6= y.

For arbitrarily fixed y ∈ R3\D consider the time-harmonic (e−iωt time depen-
dence) point source

wi := wi(x, y) = Φk(x, y), x ∈ R3\D,
which is incident on the obstacle D from the unbounded part R3\D, where k =
ω/c > 0 is the wave number, ω and c are the wave frequency and speed in the ho-
mogeneous medium in the whole space. Then the problem of scattering of the point
source wi by the impenetrable obstacle D is formulated as the exterior boundary
value problem:

∆xw
s(x, y) + k2ws(x, y) = 0, x ∈ R3\D,(1)

Bw = 0 on ∂D,(2)

lim
r→∞

r

(
∂ws

∂r
− ikws

)
= 0, r = |x|,(3)

where ws is the scattered field, w := wi + ws is the total field, and (3) is the
Sommerfeld radiation condition imposed on the scattered field ws. The boundary
condition B in (2) depends on the physical property of the obstacles D:

Bw := w on ∂D if D is a sound-soft obstacle,

Bw := ∂w/∂ν + ηw on ∂D if D is an impedance obstacle,

Bw := w on ΓD, Bw := ∂w/∂ν + ηw on ΓI if D is a partially coated obstacle,

where ν is the unit outward normal to the boundary ∂D and η is the impedance
function on ∂D satisfying that Im[η(x)] ≥ 0 for all x ∈ ∂D or x ∈ ΓI . We assume
that η ∈ C(∂D) or η ∈ C(ΓI), that is, η is continuous on ∂D or ΓI . When η = 0,
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the impedance boundary condition becomes the Neumann boundary condition (a
sound-hard obstacle). For a partially coated obstacle, we assume that the boundary
∂D has a Lipschitz dissection ∂D = ΓD ∪ Π ∪ ΓI , where ΓD and ΓI are disjoint,
relatively open subsets of ∂D and having Π as their common boundary in ∂D (see,
e.g., [8]).

The problem of scattering of the point source wi by an inhomogeneous medium
is modeled as follows:

∆xw
s(x, y) + k2n(x)ws(x, y) = k2(1− n(x))wi(x, y), x ∈ R3,(4)

lim
r→∞

r

(
∂ws

∂r
− ikws

)
= 0, r = |x|,(5)

where ws is the scattered field and n in (4) is the refractive index characterizing the
inhomogeneous medium. We assume that n−1 has compact support D, n ∈ L∞(D),
Re[n(x)] ≥ nmin > 0 for a constant nmin in D and Im[n(x)] ≥ 0 in D.

The existence of a unique (variational) solution to the problems (1)-(3) and (4)-
(5) has been proved in [7, 14, 21, 22]. In particular, the scattered-field ws has the
asymptotic behavior:

ws(x, y) =
eik|x|

|x|

{
w∞(x̂, y) +O

(
1

|x|

)}
, |x| → ∞

uniformly for all observation directions x̂ = x/|x| ∈ S2, where S2 is the unit sphere
in R3 and w∞(x̂, y) is the far-field pattern of ws which is an analytic function of
x̂ ∈ S2 for each y ∈ R3 \D (see, e.g., [14, (2.13)]).

In this paper, we also consider the superposition of two point sources

wi = wi(x; y1, y2) = wi(x, y1) + wi(x, y2) = Φk(x, y1) + Φk(x, y2)(6)

as the incident field, where y1, y2 ∈ R3\D are the locations of the two point sources.
It then follows by the linear superposition principle that the corresponding scattered
field

ws(x; y1, y2) = ws(x, y1) + ws(x, y2)(7)

and the corresponding total field

w(x; y1, y2) = w(x, y1) + w(x, y2),(8)

where ws(x, yj) and w(x, yj) are the scattered field and the total field corresponding
to the incident point source wi(x, yj), respectively, j = 1, 2.

The inverse acoustic obstacle (or medium) scattering problem we consider in this
paper is to reconstruct the obstacle D and its physical property (or the index of re-
fraction n of the inhomogeneous medium) from the phaseless total field |w(x; y1, y2)|
for x, y1, y2 on some spheres enclosing D and the inhomogeneous medium.

2.2. The electromagnetic case. In this paper, we consider two electromagnetic
scattering models, that is, scattering by an impenetrable obstacle and scattering
by an inhomogeneous medium. We will consider the time-harmonic (e−iωt time
dependence) incident electric dipole located at y ∈ R3 \ D and described by the
matrices Ei(x, y) and Hi(x, y) defined by

Ei(x, y)p :=
i

k
curlxcurlx[pΦk(x, y)], Hi(x, y)p := curlx[pΦk(x, y)], x 6= y,
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for x ∈ R3, where p ∈ R3\{(0, 0, 0)} is the polarization vector, k := ω/c > 0 is the
wave number, ω and c := 1/

√
ε0µ0 are the wave frequency and speed in the homo-

geneous medium in R3 \D, respectively, and ε0 and µ0 are the electric permittivity
and the magnetic permeability of the homogeneous medium, respectively. A direct
calculation shows that for x 6= y,

Ei(x, y) = ikΦk(x, y)I +
i

k
∇x∇xΦk(x, y)(9)

=
i

k

{[
k2 +

(
ik − 1

|x− y|

)
1

|x− y|

]
I + x̂− y · x̂− y

>
f(|x− y|)

}
Φk(x, y),

where I is a 3 × 3 identity matrix, ∇x∇x := (∂xi∂xj )3×3, x̂− y = (x− y)/|x− y|
and f(r) := 3/r2−3ik/r−k2. Then the problem of scattering of the electric dipole
Ei and Hi by the impenetrable obstacle D can be modeled as the exterior boundary
value problem:

curlxE
s − ikHs = 0 in R3 \D,(10)

curlxH
s + ikEs = 0 in R3 \D,(11)

BE = 0 on ∂D,(12)

lim
r→∞

(Hs × x− rEs) = 0, r = |x|,(13)

where (Es, Hs) is the scattered field, E := Ei + Es and H := Hi + Hs are the
electric total field and the magnetic total field, respectively, and (13) is the Silver–
Müller radiation condition which holds uniformly for all x̂ ∈ S2 and ensures the
uniqueness of the scattered field. The boundary condition B in (12) depends on
the physical property of the obstacle D, that is, BE := ν ×E on ∂D (called as the
PEC condition) if D is a perfect conductor, where ν is the unit outward normal to
the boundary ∂D, BE := ν × curlE − iλ(ν × E) × ν on ∂D if D is an impedance
obstacle, where λ is the impedance function on ∂D, and

BE := ν × E on ΓD, BE := ν × curlE − iλ(ν × E)× ν on ΓI

if D is a partially coated obstacle, where ∂D has a Lipschitz dissection ∂D =
ΓD ∪ Π ∪ ΓI with ΓD and ΓI being disjoint and relatively open subsets of ∂D and
having Π as their common boundary in ∂D and λ is the impedance function on ΓI .
We assume throughout this paper that λ ∈ C(∂D) with λ(x) ≥ 0 for all x ∈ ∂D or
λ ∈ C(ΓI) with λ(x) ≥ 0 for all x ∈ ΓI .

The problem of scattering of an electric dipole by an inhomogeneous medium is
modeled as the medium scattering problem:

curlxE
s − ikHs = 0 in R3,(14)

curlxH
s + ikn(x)Es = ik(1− n(x))Ei in R3,(15)

lim
r→∞

(Hs × x− rEs) = 0, r = |x|,(16)

where (Es, Hs) is the scattered field and (E,H) := (Ei, Hi) + (Es, Hs) is the total
field. The refractive index n(x) in (15) is given by

n(x) :=
1

ε0

(
ε(x) + i

σ(x)

ω

)
,

where ε(x) and σ(x) are the electric permittivity and electric conductivity in R3,
respectively. In this paper, we assume the magnetic permeability µ = µ0 to be a
positive constant in the whole space. We assume further that n− 1 has a compact
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support D, n ∈ C2,γ(R3) for 0 < γ < 1, Re[n(x)] ≥ nmin > 0 in D for a constant
nmin and Im[n(x)] ≥ 0 in D.

The existence of a unique (variational) solution to the problems (10)–(13) and
(14)–(16) has been established in [8, 9, 14]. In particular, it is well known that the
electromagnetic scattered field Es has the asymptotic behavior:

Es(x, y)p =
eik|x|

|x|

{
E∞(x̂, y)p+O

(
1

|x|

)}
, |x| → ∞

uniformly for all observation directions x̂ = x/|x| ∈ S2, where E∞(x̂, y) is the
electric far-field pattern of Es which is an analytic function of x̂ ∈ S2 for each
y ∈ R3 \D (see, e.g., [14, (6.23)]). Because of the linearity of the direct scattering
problem with respect to the incident field, we can express the scattered waves by
matrices Es(x, y) and Hs(x, y), the total waves by matrices E(x, y) and H(x, y),
and the far-field patterns by E∞(x̂, y) and H∞(x̂, y), respectively.

We will also consider the following superposition of two electric dipoles as the
incident field:

Ei = Ei(x, y1)p1 + Ei(x, y2)p2 =
i

k
curlxcurlx[p1Φk(x, y1) + p2Φk(x, y2)],

Hi = Hi(x, y1)p1 +Hi(x, y2)p2 = curlx[p1Φk(x, y1) + p2Φk(x, y2)],

where x ∈ R3, y1, y2 ∈ R3 \ D, x 6= y1, x 6= y2 and p1, p2 ∈ R3\{(0, 0, 0)}. For
convenience, we define the following incident field:

Ei = Ei(x, y1, p1, τ1, y2, p2, τ2) := τ1E
i(x, y1)p1 + τ2E

i(x, y2)p2

=
i

k
curlxcurlx[τ1p1Φk(x, y1) + τ2p2Φk(x, y2)],

Hi = Hi(x, y1, p1, τ1, y2, p2, τ2) := τ1H
i(x, y1)p1 + τ2H

i(x, y2)p2

= curlx[τ1p1Φk(x, y1) + τ2p2Φk(x, y2)],

with x ∈ R3, y1, y2 ∈ R3 \D, x 6= y1, x 6= y2, p1, p2 ∈ R3\{(0, 0, 0)} and (τ1, τ2) ∈
{(1, 0), (0, 1), (1, 1)}. By the linear superposition principle, the electric scattered
field and total field corresponding to the incident field Ei(x, y1, p1, τ1, y2, p2, τ2),
Hi(x, y1, p1, τ1, y2, p2, τ2) satisfy

Es(x, y1, p1, τ1, y2, p2, τ2) := τ1E
s(x, y1)p1 + τ2E

s(x, y2)p2

and

E(x, y1, p1, τ1, y2, p2, τ2) := τ1E(x, y1)p1 + τ2E(x, y2)p2,(17)

where Es(x, yj)pj and E(x, yj)pj are the electric scattered field and the electric total
field corresponding to the incident electric field Ei(x, yj)pj , respectively, j = 1, 2.

Following [16, 34, 38], we measure the modulus of the tangential component of
the electric total field on a sphere ∂Br centered at the origin with radius r >
0. To represent the tangential components, we introduce the following spherical
coordinate 

x1 = r sin θ cosφ,

x2 = r sin θ sinφ,

x3 = r cos θ,

with x := (x1, x2, x3) ∈ R3 and (r, θ, φ) ∈ [0,+∞)×[0, π]×[0, 2π). For any x ∈ ∂B̊r,
the spherical coordinate gives an one-to-one correspondence between x and (r, φ, θ).
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Here, ∂B̊r := ∂Br \ {Nr, Sr} with Nr := (0, 0, r) and Sr := (0, 0,−r) denoting the
north and south poles of ∂Br, respectively. If we define

eφ(x) := (− sinφ, cosφ, 0), eθ(x) := (cos θ cosφ, cos θ sinφ,− sin θ),

then eφ(x) and eθ(x) are two orthonormal tangential vectors of ∂Br at x∈ ∂B̊r.
Now, we can represent our phaseless measurement data by

|em(x) · E(x, y1, en(y1), τ1, y2, el(y2), τ2)|

with x, y1, y2 ∈ ∂B̊r, x 6= y1, x 6= y2, m,n, l ∈ {φ, θ} and (τ1, τ2) ∈ {(1, 0), (0, 1),
(1, 1)}.

The inverse electromagnetic obstacle or medium scattering problem we consider
in this paper is to reconstruct the obstacle D and its physical property or the index
of refraction n of the inhomogeneous medium from the modulus of the tangential
component of the electric total field, |em(x)·E(x, y1, en(y1), τ1, y2, el(y2), τ2)|, for all
x, y1, y2 in some spheres enclosing D or the inhomogeneous medium, m,n, l ∈ {φ, θ}
and (τ1, τ2) ∈ {(1, 0), (0, 1), (1, 1)}. The purpose of this paper is to prove uniqueness
results for the above inverse acoustic and electromagnetic scattering problems.

3. Inverse acoustic scattering with phaseless total-field data. This section
is devoted to the uniqueness results for inverse acoustic scattering with phaseless
total-field data at a fixed frequency measured on two spheres enclosing the scatterers
(see Figure 1).

Denote by wsj and wj the scattered field and the total field, respectively, asso-
ciated with the impenetrable obstacle Dj (or the refractive index nj) and corre-
sponding to the incident field wi, j = 1, 2. Let BR2 denote the ball centered at
the origin with radius R2 > R1 > 0 with ∂BR2 denoting the boundary of BR2 . By
appropriately choosing R2 > R1 > 0, it can be ensured that k2 is not a Dirichlet
eigenvalue of −∆ in BR2

\ BR1
. Here, k2 is called a Dirichlet eigenvalue of −∆ in

a bounded domain V if the the interior Dirichlet boundary value problem{
∆u+ k2u = 0 in V,

u = 0 on ∂V

has a nontrivial solution u. The above assumption on R1 and R2 can be easily
satisfied since the Dirichlet eigenvalues of −∆ in a bounded domain are discrete and
satisfy the strong monotonicity property [28, Theorem 4.7] (see also the arguments
in the proof of [14, Theorem 5.2]). Let G denote the unbounded component of the
complement of D1 ∪D2. Then we have the following global uniqueness results for
the phaseless inverse scattering problems.

Theorem 3.1. Let D1, D2 be two bounded domains and let R2 > R1 > 0 be large
enough so that D1 ∪D2 ⊂ BR1 . Assume that k2 is not a Dirichlet eigenvalue of
−∆ in BR2

\BR1
.

(a) Assume that D1 and D2 are two impenetrable obstacles with boundary con-
ditions B1 and B2, respectively. If the corresponding total fields satisfy

|w1(x, y)| = |w2(x, y)|, ∀(x, y) ∈ (∂BR1 × ∂BR1) ∪ (∂BR2 × ({y0} ∪ ∂BR2)),

x 6= y(18)

and

|w1(x; y, y0)| = |w2(x; y, y0)|, ∀(x, y) ∈ (∂BR1 × ∂BR1) ∪ (∂BR2 × ∂BR2),

x 6= y, y0(19)

Inverse Problems and Imaging Volume 14, No. 3 (2020), 489–510
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Figure 1. Acoustic scattering by an obstacle (left) or a medium (right).

for an arbitrarily fixed y0 ∈ ∂BR1 , then D1 = D2 and B1 = B2.
(b) Assume that n1, n2 ∈ L∞(R3) are the indices of refraction of two inhomoge-

neous media with nj − 1 supported in Dj , j = 1, 2. If the corresponding total fields
satisfy (18) and (19), then n1 = n2.

To prove Theorem 3.1, we need the following lemmas on the property of the total
field.

Lemma 3.2. Let R2 > R1 > 0 and let D be a bounded domain such that D ⊂ BR1
.

Suppose w(x, y) is the total field of the obstacle scattering problem (1)-(3) or the
medium scattering problem (4)-(5) associated with the point source wi(x, y). Then,
for any fixed y0 ∈ ∂BR1 we have

w(x, y0) 6≡ 0, x ∈ ∂BR1
, x 6= y0,(20)

w(x, y0) 6≡ 0, x ∈ ∂BR2
,(21)

w(x, y) 6≡ 0, (x, y) ∈ ∂BR2
× ∂BR2

, x 6= y.(22)

Proof. Since w(x, y) is singular at x = y0 or y, we know that (20) and (22) are true.
We now prove (21). Assume to the contrary that w(x, y0) ≡ 0 for x ∈ ∂BR2

, that
is, ws(x, y0) = −Φk(x, y0) for x ∈ ∂BR2

. Then, by the uniqueness of the exterior
Dirichlet problem it follows that ws(x, y0) = −Φk(x, y0) for all x ∈ R3 \BR2

. Since
the scattered field ws(x, y0) is analytic for x ∈ R3 \D and Φk(x, y0) is analytic for
x ∈ R3 \ {y0}, we have ws(x, y0) = −Φk(x, y0) for all x ∈ R3 \ (D ∪ {y0}). This is
a contradiction since Φk(x, y0) has a singularity at x = y0 ∈ ∂BR1 and ws(x, y0) is
analytic when x is in a neighbourhood of y0. Thus, (21) is true.

Lemma 3.3. Under the assumption of Lemma 3.2, we have the following results.
(i) There exist two open sets U1, U2 ⊂ ∂BR1 such that U1∩U2 = ∅ and w(x, y) 6= 0

for all (x, y) ∈ U1 × U2.
(ii) There exist two open sets U ′1, U

′
2 ⊂ ∂BR2

such that U ′1∩U ′2 = ∅ and w(x, y) 6=
0 for all (x, y) ∈ U ′1 × (U ′2 ∪ {y0}), where y0 ∈ ∂BR1

.

Proof. We only prove (ii). The proof of (i) is similar.
By (21) we know that for y0 ∈ ∂BR1

there exists x0 ∈ ∂BR2
such that w(x0, y0) 6=

0. Since w(x, y) is continuous for x, y ∈ R3 \ D with x 6= y, there exists a neigh-
bourhood U ′ ⊂ ∂BR2 of x0 such that w(x, y0) 6= 0 for all x ∈ U ′. Further, since
w(x, y) is analytic with respect to x ∈ ∂BR2 and y ∈ ∂BR2 , respectively, when
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x 6= y, then it follows from (22) that there exist two points x1 ∈ U ′ and x2 ∈ ∂BR2

such that w(x1, x2) 6= 0 with x1 6= x2. Finally, again by the continuity of w(x, y)
for x, y ∈ R3 \ D with x 6= y, there exists a neighbourhood U ′1 ⊂ U ′ of x1 and a
neighbourhood U ′2 ⊂ ∂BR1

of x2 such that U ′1 ∩ U ′2 = ∅ and w(x, y) 6= 0 for all
(x, y) ∈ U ′1×U ′2. Thus, w(x, y) 6= 0 for all (x, y) ∈ U ′1× (U ′2∪{y0}). This completes
the proof.

Proof of Theorem 3.1. From (8) it is easy to see that (19) is equivalent to the equa-
tion

|w1(x, y) + w1(x, y0)| = |w2(x, y) + w2(x, y0)|
for all (x, y) ∈ (∂BR1 ×∂BR1)∪ (∂BR2 ×∂BR2) with x 6= y, y0. This, together with
(18), implies that

Re{w1(x, y)w1(x, y0)} = Re{w2(x, y)w2(x, y0)}(23)

for all (x, y) ∈ (∂BR1 × ∂BR1) ∪ (∂BR2 × ∂BR2) with x 6= y, y0. Define rj(x, y) :=
|wj(x, y)|, j = 1, 2. Then it follows from (18) that r1(x, y) = r2(x, y) =: r(x, y), for
all x ∈ ∂BR1

, y ∈ ∂BR1
∪ ∂BR2

with x 6= y, so we can write

wj(x, y) = r(x, y)eiϑj(x,y), ∀x, y ∈ ∂BR1
∪ ∂BR2

, x 6= y, j = 1, 2

with real-valued functions ϑj(x, y), j = 1, 2.

Case 1. (23) holds with (x, y) ∈ ∂BR1
× ∂BR1

, x 6= y.
Since wsj (x, y), j = 1, 2, are analytic functions of x ∈ ∂BR1

and y ∈ ∂BR1
,

respectively, and Φk(x, y) has a singularity at x = y, then, by Lemma 3.3 we can
choose two open sets U1, U2 ⊂ ∂BR1

small enough so that U1 ∩ U2 = ∅, r(x, y) 6= 0
for all (x, y) ∈ U1 × (U2 ∪ y0), and ϑj(x, y), j = 1, 2, are analytic with respect to
x ∈ U1 and y ∈ U2, respectively.

Now, by (23) we have

cos[ϑ1(x, y)− ϑ1(x, y0)] = cos[ϑ2(x, y)− ϑ2(x, y0)](24)

for all (x, y) ∈ U1 × U2. Since ϑj(x, y), j = 1, 2, are real-valued analytic functions
of x ∈ U1 and y ∈ U2, respectively, we have either

ϑ1(x, y)− ϑ1(x, y0) = ϑ2(x, y)− ϑ2(x, y0) + 2qπ, ∀(x, y) ∈ U1 × U2(25)

or

ϑ1(x, y)− ϑ1(x, y0) = −[ϑ2(x, y)− ϑ2(x, y0)] + 2qπ, ∀(x, y) ∈ U1 × U2,(26)

where q ∈ Z.
For the case when (25) holds, we have

ϑ1(x, y)− ϑ2(x, y) = ϑ1(x, y0)− ϑ2(x, y0) + 2qπ, ∀(x, y) ∈ U1 × U2.

This implies that α(x) := ϑ1(x, y)− ϑ2(x, y) = ϑ1(x, y0)− ϑ2(x, y0) + 2qπ depends
only on x ∈ U1. Then it follows that

w1(x, y) = r(x, y)eiϑ1(x,y) = r(x, y)eiα(x)+iϑ2(x,y) = eiα(x)w2(x, y)

for all x ∈ U1 and y ∈ U2 ∪ {y0}. By the analyticity of w1(x, y)− eiα(x)w2(x, y) in
y ∈ ∂BR1

with y 6= x, we get

w1(x, y) = eiα(x)w2(x, y), ∀x ∈ U1, y ∈ ∂BR1 , x 6= y.(27)

Changing the variables x→ y and y → x in (27) gives

w1(y, x) = eiα(y)w2(y, x), ∀x ∈ ∂BR1 , y ∈ U1, x 6= y.(28)
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Use (27), (28) and the reciprocity relation that wsj (x, y) = wsj (y, x) for all x, y ∈
∂BR1

, j = 1, 2 (see [14, Theorem 3.17]) to give

eiα(x)w2(x, y) = eiα(y)w2(x, y), ∀x, y ∈ U1 with x 6= y.(29)

Since wj(x, y) has a singularity at x = y, and by (29) and the analyticity of
wj(x, y) (j = 1, 2) with respect to x ∈ ∂BR1

and y ∈ ∂BR1
, respectively, with

x 6= y, it follows that eiα(x) = eiα(y) for all x, y ∈ U1 with x 6= y. This means that
eiα(x) ≡ eiα for all x ∈ U1, where α is a real constant. Substituting this formula
into (27) gives that w1(x, y) = eiαw2(x, y) for all x ∈ U1, y ∈ ∂BR1 with x 6= y.
Again, by the analyticity of wj(x, y) (j = 1, 2) with respect to x ∈ ∂BR1

with x 6= y
we have

w1(x, y) = eiαw2(x, y), ∀x, y ∈ ∂BR1
with x 6= y,(30)

which gives

ws1(x, y)− eiαws2(x, y) = (eiα − 1)Φk(x, y), ∀x, y ∈ ∂BR1 with x 6= y.(31)

Since wsj (x, y), j = 1, 2, are analytic for x ∈ G and y ∈ G, respectively, and Φk(x, y)

has a singularity at x = y, then passing the limit y → x in (31) gives that eiα = 1,
so

ws1(x, y) = ws2(x, y), ∀x, y ∈ ∂BR1
.(32)

For the case when (26) holds, a similar argument as above gives

w1(x, y) = eiβw2(x, y), ∀x, y ∈ ∂BR1
with x 6= y(33)

for a real constant β, that is,

ws1(x, y)− eiβws2(x, y) = eiβΦk(x, y)− Φk(x, y), ∀x, y ∈ ∂BR1 with x 6= y.

Since wsj (x, y), j = 1, 2, are analytic for x ∈ G and y ∈ G, respectively, Re[Φk(x, y)]

has a singularity at x = y and Im[Φk(x, y)] is analytic for all x, y ∈ R3, then eiβ = 1.
Thus, it follows from (33) that

w1(x, y) = w2(x, y), ∀x, y ∈ ∂BR1 with x 6= y.(34)

Case 2. (23) holds with (x, y) ∈ ∂BR2
× ∂BR2

, x 6= y.
By a similar argument as in Case 1, it can be obtained that there holds either

ws1(x, y) = ws2(x, y), ∀x ∈ ∂BR2
, y ∈ ∂BR2

∪ {y0}(35)

or

w1(x, y) = w2(x, y), ∀x ∈ ∂BR2
, y ∈ ∂BR2

∪ {y0} with x 6= y.(36)

We now prove that both (34) and (36) can not hold simultaneously. Suppose this

is not the case. Then define v(x) := w1(x, y0) − w2(x, y0) for x ∈ G with x 6= y0.

Since Φk(x, y) − Φk(x, y) = i sin(k|x− y|)/(2π|x− y|) is analytic for all x, y ∈ R3,
then, by the analyticity of wsj (x, y) (j = 1, 2) with respect to x ∈ G it follows that
v can be extended as an analytic function of x ∈ G, denoted by v again. Further,
since i sin(k|x− y|)/(2π|x− y|) and wsj (x, y) (j = 1, 2) as functions of x satisfy the

Helmholtz equation ∆u + k2u = 0 in G, we have by (34) and (36) that v satisfies
the Dirichlet boundary value problem:{

∆v + k2v = 0 in BR2
\BR1

,
v = 0 on ∂BR1

∪ ∂BR2
.
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From the assumption that k2 is not a Dirichlet eigenvalue of −∆ in BR2\BR1 , it

is known that v(x) = 0 for any x ∈ BR2
\BR1

. Thus w1(x, y0) = w2(x, y0) for all
x ∈ BR2

\BR1
with x 6= y0. By the analyticity of wj(x, y0) (j = 1, 2) with respect

to x ∈ G with x 6= y0, we obtain

w1(x, y0) = w2(x, y0), ∀x ∈ G, x 6= y0,(37)

which contradicts to the fact that wj(x, y0) = Φk(x, y0)+wsj (x, y0), j = 1, 2, satisfy
the Sommerfeld radiation condition. We then conclude that both (34) and (36) can
not hold simultaneously. This means that at least one of the formulas (34) and (36)
does not hold.

If (34) does not hold, then it follows that (32) holds. By the reciprocity re-
lation, the well-posedness of the exterior Dirichlet problem and the analyticity of
wsj (x, y) (j = 1, 2) with respect to x ∈ G and y ∈ G, respectively, it is easily derived
from (32) that

ws1(x, y) = ws2(x, y), ∀x, y ∈ G.(38)

Then, by [14, Theorem 2.13] and the mixed reciprocity relation 4πw∞j (−d, z) =

usj(z, d) for all d ∈ S2 and z ∈ G, j = 1, 2 (see [14, Theorem 3.16]) it is obtained on
applying (38) that

u∞1 (x̂, d) = u∞2 (x̂, d), ∀x̂, d ∈ S2,(39)

where u∞j is the far-field pattern associated with the obstacle Dj (or the refractive

index nj) and corresponding to the incident field ui(x, d) = eikx·d, j = 1, 2. Sim-
ilarly, if (36) does not hold, then (35) holds and thus we can also show that (39)
holds.

Finally, for the case with two impenetrable obstacles D1 and D2, it follows from
(39), [14, Theorem 5.6] and [30, Theorem 3.7] that D1 = D2 and B1 = B2, while
for the case with two refractive indices n1 and n2, we have by (39) and [21, Theorem
6.26] that n1 = n2. Theorem 3.1 is thus proved.

Remark 1. (i) Theorem 3.1 (a) remains true for the two-dimensional case, and the
proof is similar.

(ii) Theorem 3.1 (b) also holds in two dimensions if the assumption n1, n2 ∈
L∞(R3) is replaced by the condition that nj is piecewise in W 1,p(Dj) with p >
2, j = 1, 2. In this case, the proof is similar except that we need Bukhgeim’s result
in [6] (see also the theorem in Section 4.1 in [4]) instead of [21, Theorem 6.26] in
the proof.

(iii) Theorem 3.1 (b) generalizes the uniqueness results in [24,25,27,32] substan-
tially in the sense that our uniqueness results only need the measurement data of
the modulus of the total-field on two spheres enclosing the inhomogeneous medium
at a fixed frequency, under no smoothness assumption on the refractive index, in-
stead of the measurement data in a ball for each point source in a sphere for an
interval of frequencies as used in [24, 25, 27] or in an open domain for each point
source in another open domain at a fixed frequency as used in [32].

4. Inverse electromagnetic scattering with phaseless electric total field
data. In this section, we extend the uniqueness results in Section 3 for the acoustic
case to the case of inverse electromagnetic scattering problems with phaseless elec-
tric total-field data at a fixed frequency. In this case, we consider the measurement
of the modulus of the tangential component of the electric total-field on two spheres
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enclosing the scatterers, generated by superpositions of two electric dipoles located
also on the two spheres. Denote by Ej , E

s
j , H

s
j and Hj the electric scattered-field,

electric total-field, magnetic scattered-field and magnetic total-field, respectively,
associated with the obstacle Dj (or the refractive index nj) and corresponding to
the incident electric field Ei, j = 1, 2. Let BR2 denote the ball centered at the
origin with radius R2 > R1 > 0 with ∂BR2

denoting the boundary of BR2
and

let G denote the unbounded component of the complement of D1 ∪ D2. Denote
by NRj and SRj the north and south poles of ∂BRj , respectively, j = 1, 2. De-

fine ∂B̊Rj := ∂BRj \ {NRj , SRj}, j = 1, 2. See Figure 2 for the geometry of the
electromagnetic scattering problem.

D

Es
∂BR1

∂BR2

Ei

n

Es
∂BR1

∂BR2

Ei

Figure 2. Electromagnetic scattering by an obstacle (left) or a
medium (right).

By choosing appropriate R1 and R2 (see Lemma 4.1), it can be ensured that k2

is not a Maxwell eigenvalue in BR2 \ BR1 . Here, k2 is called a Maxwell eigenvalue
in a bounded domain V if the interior Maxwell problem

curlE − ikH = 0 in V

curlH + ikE = 0 in V

ν × E = 0 on ∂V

has a nontrivial solution (E,H).

Lemma 4.1. k2 is not a Maxwell eigenvalue in BR2
\BR1

if and only if
∣∣∣∣ jn(kR1) yn(kR1)
jn(kR2) yn(kR2)

∣∣∣∣ 6= 0,∣∣∣∣ jn(kR1) + kR1j
′
n(kR1) yn(kR1) + kR1y

′
n(kR1)

jn(kR2) + kR2j
′
n(kR2) yn(kR2) + kR2y

′
n(kR2)

∣∣∣∣ 6= 0

(40)

for all n = 1, 2, · · · , where jn and yn are the spherical Bessel functions and spherical
Neumann functions of order n, respectively.

Proof. Assume that (E,H) solves the interior Maxwell problem
curlE − ikH = 0 in BR2 \BR1

curlH + ikE = 0 in BR2 \BR1

ν × E = 0 on ∂BR2
∪ ∂BR1

.

(41)
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A similar argument as in the proof of [23, Theorems 2.48 and 2.50] gives the following
expansion in the spherical vector harmonics of the electric field E in BR2 \BR1 as
a uniformly convergent series:

E(x) =

∞∑
n=1

n∑
m=−n

[
amn curl {xjn(k|x|)Y mn (x̂)}+ bmn curl curl {xjn(k|x|)Y mn (x̂)}

]
+

∞∑
n=1

n∑
m=−n

[
cmn curl {xyn(k|x|)Y mn (x̂)}+ dmn curl curl {xyn(k|x|)Y mn (x̂)}

]
,

x ∈ BR2
\BR1

,

where Y mn , m = −n, . . . , n, n = 0, 1, 2, . . ., are the spherical harmonics. By [14,
(6.71) and (6.72)], we have that for any x ∈ ∂Br with r ∈ [R1, R2],

x̂× E(x)

=

∞∑
n=1

n∑
m=−n

[
amn jn(kr)GradY mn (x̂) + bmn

1

r
{jn(kr) + krj′n(kr)} x̂×GradY mn (x̂)

]
+

∞∑
n=1

n∑
m=−n

[
cmn yn(kr)GradY mn (x̂) + dmn

1

r
{yn(kr) + kry′n(kr)} x̂×GradY mn (x̂)

]
.

By the perfectly conducting boundary condition on ∂BR2 ∪ ∂BR1 we have(
jn(kR1) yn(kR1)
jn(kR2) yn(kR2)

)(
amn
cmn

)
=

(
0
0

)
,(42) (

jn(kR1) + kR1j
′
n(kR1) yn(kR1) + kR1y

′
n(kR1)

jn(kR2) + kR2j
′
n(kR2) yn(kR2) + kR2y

′
n(kR2)

)(
bmn
dmn

)
=

(
0
0

)
(43)

for all n = 1, 2, · · · , m = −n, · · · , n. By (40) we have amn = bmn = cmn = dmn = 0 for
all n = 1, 2, · · · , m = −n, · · · , n, and so k2 is not a Maxwell eigenvalue in BR2

\BR1
.

On the other hand, if ∣∣∣∣ jn(kR1) yn(kR1)
jn(kR2) yn(kR2)

∣∣∣∣ = 0

or ∣∣∣∣ jn(kR1) + kR1j
′
n(kR1) yn(kR1) + kR1y

′
n(kR1)

jn(kR2) + kR2j
′
n(kR2) yn(kR2) + kR2y

′
n(kR2)

∣∣∣∣ = 0

for some n ∈ N+, then (42) or (43) has non-zero solutions. Thus there exists a
nontrivial solution to the interior Maxwell problem (41), and so k2 is a Maxwell
eigenvalue in BR2

\BR1
. The proof is thus complete.

We have the following uniqueness results for the phaseless inverse electromagnetic
scattering problems.

Theorem 4.2. Let D1, D2 be two bounded domains and let R2 > R1 > 0 be large
enough such that D1 ∪D2 ⊂ BR1 and k2 is not a Maxwell eigenvalue in BR2 \BR1 .

(a) Assume that D1 and D2 are two impenetrable obstacles with boundary con-
ditions B1 and B2, respectively. If the corresponding electric total fields satisfy

|em(x) · E1 (x, y1, eφ(y1), τ1, y2, eθ(y2), τ2) |
= |em(x) · E2 (x, y1, eφ(y1), τ1, y2, eθ(y2), τ2) |(44)
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for all x, y1, y2 ∈ ∂B̊R1 with x 6= y1, y2, (τ1, τ2) ∈ {(1, 0), (0, 1), (1, 1)}, m ∈ {φ, θ}
and

|em(x) · E1(x, y1, en(y1), τ1, y2, el(y2), τ2)|
= |em(x) · E2(x, y1, en(y1), τ1, y2, el(y2), τ2)|(45)

for all x, y1 ∈ ∂B̊R1
with x 6= y1, y2 ∈ ∂B̊R2

, (τ1, τ2) ∈ {(0, 1), (1, 1)}, m,n, l ∈
{φ, θ}, then D1 = D2 and B1 = B2.

(b) Assume that n1, n2 ∈ C2,γ(R3) with γ > 0 are the refractive indices of two
inhomogeneous media with nj − 1 supported in Dj (j = 1, 2). If the corresponding
electric total fields satisfy (44) and (45), then n1 = n2.

Remark 2. Since Eij(x, y) = [Eij(y, x)]>, and by the reciprocity relation Esj (x, y) =

[Esj (y, x)]> for all x, y ∈ G (see [14, Theorem 6.32]), j = 1, 2, we know that (44) with
m = φ and (τ1, τ2) = (0, 1) is equivalent to (44) with m = θ and (τ1, τ2) = (1, 0).

To prove Theorem 4.2, we need some results on the phaseless electric total-fields
measured on ∂BR1

.

Lemma 4.3. Assume that the assumptions of Theorem 4.2 are satisfied. If for any
fixed m ∈ {φ, θ} there holds

|em(x) · E1(x, y1, eφ(y1), τ1, y2, eθ(y2), τ2)|
= |em(x) · E2(x, y1, eφ(y1), τ1, y2, eθ(y2), τ2)|(46)

for all x, y1, y2 ∈ ∂B̊R1
with x 6= y1, y2, (τ1, τ2) ∈ {(1, 0), (0, 1), (1, 1)}, then we have

either

em(x) · E1(x, y1)eφ(y1) = em(x) · E2(x, y1)eφ(y1), ∀x, y1 ∈ ∂B̊R1 , x 6= y1,(47)

em(x) · E1(x, y2)eθ(y2) = em(x) · E2(x, y2)eθ(y2), ∀x, y2 ∈ ∂B̊R1 , x 6= y2(48)

or

em(x) · E1(x, y1)eφ(y1) = −em(x) · E2(x, y1)eφ(y1), ∀x, y1 ∈ ∂B̊R1 , x 6= y1,(49)

em(x) · E1(x, y2)eθ(y2) = −em(x) · E2(x, y2)eθ(y2), ∀x, y2 ∈ ∂B̊R1 , x 6= y2.(50)

Proof. We only consider the case m = φ since the case m = θ can be proved
similarly.

Using (17) and (46) and arguing similarly as in the proof of Theorem 3.1 give

Re{[eφ(x) · E1(x, y1)eφ(y1)]× [eφ(x) · E1(x, y2)eθ(y2)]}
= Re{[eφ(x) · E2(x, y1)eφ(y1)]× [eφ(x) · E2(x, y2)eθ(y2)]}(51)

for all x, y1, y2 ∈ ∂B̊R1
, x 6= y1, y2. For x, y ∈ ∂B̊R1

, x 6= y, define

r
(φφ)
j (x, y) := |eφ(x) · Ej(x, y)eφ(y)|, r(φθ)j (x, y) := |eφ(x) · Ej(x, y)eθ(y)|, j = 1, 2.

It then follows from (46) with (τ1, τ2) = (1, 0) and (τ1, τ2) = (0, 1) that

r
(φφ)
1 (x, y) = r

(φφ)
2 (x, y) =: r(φφ)(x, y), r

(φθ)
1 (x, y) = r

(φθ)
2 (x, y) =: r(φθ)(x, y)

for all x, y ∈ ∂B̊R1
, x 6= y. Therefore we can write

eφ(x) · Ej(x, y1)eφ(y1) := r(φφ)(x, y1)eiϑ
(φφ)
j (x,y1), ∀x, y1 ∈ ∂B̊R1 , x 6= y1,

eφ(x) · Ej(x, y1)eθ(y2) := r(φθ)(x, y2)eiϑ
(φθ)
j (x,y2), ∀x, y2 ∈ ∂B̊R1

, x 6= y2,

where ϑ
(φφ)
j and ϑ

(φθ)
j , j = 1, 2 are real-valued functions.
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We now prove that r(φφ)(x, y1) 6≡ 0, x, y1 ∈ ∂B̊R1 , x 6= y1, and r(φθ)(x, y2) 6≡ 0,

x, y2 ∈ ∂B̊R1
, x 6= y2. In fact, fix y1 ∈ ∂B̊R1

and define the circle Ceφ(y1) := {x ∈
∂BR1

: (x − y1) · eφ(y1) = 0}, which is the intersection of the sphere ∂BR1
with

the plane whose normal vector is eφ(y1) at y1. When x tends to y1 along the circle

Ceφ(y1), we have x̂− y1
>
eφ(y1) → 0 and eφ(x) · eφ(y1) → 1. Thus, by (9) it is

known that

eφ(x) · Ei(x, y1)eφ(y1) ∼ i

k

[
k2 +

(
ik − 1

|x− y1|

)
1

|x− y1|

]
Φk(x, y1)(52)

as x goes to y1 along the circle Ceφ(y1). The singularity in (52) implies that

r(φφ)(x, y1) 6≡ 0 for x, y1 ∈ ∂B̊R1 with x 6= y1 since Esj (x, y1) is analytic with

respect to x, y1 ∈ ∂B̊R1
with x 6= y1, respectively (j = 1, 2). Further, fix y2 ∈ ∂B̊R1

and define the circle

Ceφ(y2)+eθ(y2) := {x ∈ ∂BR1
: (x− y2) · (eφ(y2) + eθ(y2)) = 0}.

Then, on letting x tend to y2 along Ceφ(y2)+eθ(y2) we have eφ(x) · eθ(y2) → 0 and

eφ(x) ·
[
x̂− y2 · x̂− y2

>
eθ(y2)

]
→ c1 for a non-zero constant c1. Thus it follows

from (9) that

eφ(x) · Ei(x, y2)eθ(y2) =
1

|x− y2|2
Φk(x, y2) [c2 + o(1)](53)

as x → y2 along Ceφ(y2)+eθ(y2), where c2 is a non-zero constant. Therefore the

singularity in (53) implies that r(φθ)(x, y2) 6≡ 0 for x, y2 ∈ ∂B̊R1
with x 6= y2 since

Esj (x, y2) is analytic with respect to x, y2 ∈ ∂B̊R1 , x 6= y2, respectively (j = 1, 2).
Then, similarly as in the proof of Theorem 3.1, we can show that there are three
small enough open sets U,U1, U2 ⊂ ∂B̊R1

such that U,U1 and U2 are disjoint,
r(φφ)(x, y1) 6= 0 and r(φθ)(x, y2) 6= 0 for all x ∈ U , y1 ∈ U1 and y2 ∈ U2, and

ϑ
(φφ)
j (x, y1) and ϑ

(φθ)
j (x, y2) are analytic with respect to x ∈ U , y1 ∈ U1, y2 ∈ U2,

respectively, j = 1, 2.
Now, by (51) we have

cos[ϑ
(φφ)
1 (x, y1)− ϑ(φθ)1 (x, y2)] = cos[ϑ

(φφ)
2 (x, y1)− ϑ(φθ)2 (x, y2)](54)

for all (x, y1, y2) ∈ U × U1 × U2. Since ϑ
(φφ)
j (x, y1) and ϑ

(φθ)
j (x, y2) are analytic

functions of x ∈ U , y1 ∈ U1 and y2 ∈ U2, respectively (j = 1, 2), we obtain that
there holds either

ϑ
(φφ)
1 (x, y1)− ϑ(φθ)1 (x, y2) = ϑ

(φφ)
2 (x, y1)− ϑ(φθ)2 (x, y2) + 2qπ(55)

or

ϑ
(φφ)
1 (x, y1)− ϑ(φθ)1 (x, y2) = −[ϑ

(φφ)
2 (x, y1)− ϑ(φθ)2 (x, y2)] + 2qπ(56)

for all (x, y1, y2) ∈ U × U1 × U2, where q ∈ Z.
For the case when (55) holds, we have

α(x) := ϑ
(φφ)
1 (x, y1)− ϑ(φφ)2 (x, y1) = ϑ

(φθ)
1 (x, y2)− ϑ(φθ)2 (x, y2) + 2qπ
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depends only on x, which is a real-valued analytic function in x ∈ U . Thus

eφ(x) · E1(x, y1)eφ(y1) = r(φφ)(x, y1)eiϑ
(φφ)
1 (x,y1)

= r(φφ)(x, y1)eiα(x)+iϑ
(φφ)
2 (x,y1)

= eiα(x)eφ(x) · E2(x, y1)eφ(y1),

eφ(x) · E1(x, y2)eθ(y2) = r(φθ)(x, y2)eiϑ
(φθ)
1 (x,y2)

= r(φθ)(x, y2)eiα(x)+iϑ
(φθ)
2 (x,y2)

= eiα(x)eφ(x) · E2(x, y2)eθ(y2)

for all (x, y1, y2) ∈ U × U1 × U2. By the analyticity of E1(x, y) − eiα(x)E2(x, y) in
y ∈ ∂BR1 for y 6= x, we obtain

eφ(x) · E1(x, y1)eφ(y1) = eiα(x)eφ · E2(x, y1)eφ(y1), ∀x ∈ U, y1 ∈ ∂B̊R1
, x 6= y1,

(57)

eφ(x) · E1(x, y2)eθ(y2) = eiα(x)eφ · E2(x, y2)eθ(y2),∀x ∈ U, y2 ∈ ∂B̊R1 , x 6= y2.

(58)

From (57) it follows that

eφ(x) · [Es1(x, y1)eφ(y1)− eiα(x)Es2(x, y1)eφ(y1)]

= [eiα(x) − 1]eφ(x) · Ei(x, y1)eφ(y1)(59)

for all x ∈ U and y1 ∈ ∂B̊R1 with x 6= y1. For arbitrarily fixed y1 ∈ U , the left-hand
side of (59) is analytic in x ∈ U , while, by (52) the right-hand side of (59) is singular
when x is close to y1 along the circle Ceφ(y1). Therefore, eiα(y1) = 1. Since y1 ∈ U
is arbitrary, we have eiα(x) = 1 for all x ∈ U , and so (57) and (58) become

eφ(x) · E1(x, y1)eφ(y1) = eφ · E2(x, y1)eφ(y1), ∀x ∈ U, y1 ∈ ∂B̊R1 , x 6= y1,(60)

eφ(x) · E1(x, y2)eθ(y2) = eφ · E2(x, y2)eθ(y2), ∀x ∈ U, y2 ∈ ∂B̊R1 , x 6= y2.(61)

This, together with the analyticity of Ej(x, y) (j = 1, 2) in x ∈ ∂BR1
with x 6= y,

gives (47) and (48).
Similarly, for the case when (56) holds, we can deduce

eφ(x) · E1(x, y1)eφ(y1) = eiβ(x)eφ(x) · E2(x, y1)eφ(y1), ∀x ∈ U, y1 ∈ ∂B̊R1 , x 6= y1,

(62)

eφ(x) · E1(x, y2)eθ(y2) = eiβ(x)eφ(x) · E2(x, y2)eθ(y2), ∀x ∈ U, y2 ∈ ∂B̊R1
, x 6= y2,

(63)

where β is a real-valued analytic function of x ∈ U . From (62) it is easy to derive
that

eφ(x) · [Es1(x, y1)− eiβ(x)Es2(x, y1)]eφ(y1)

= eφ(x) · [eiβ(x)Ei(x, y1)− Ei(x, y1)]eφ(y1)(64)

for all x ∈ U , y1 ∈ ∂BR1
, x 6= y1. For arbitrarily fixed y1 ∈ U , the left-hand side of

(64) is analytic in x ∈ U , but, by (9) and a direct calculation, the right-hand side
of (64) has a singularity at x = y1 unless eiβ(x) = −1 for x ∈ Ceφ(y1) near y1. This

means that eiβ(y1) = −1. By the arbitrariness of y1 ∈ U , we have eiβ(x) = −1 for
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all x ∈ U , and so

eiβ(x)Ei(x, y)− Ei(x, y) = −Ei(x, y)− Ei(x, y)

= (k2I +∇x∇x)
i

k

[
Φk(x, y)− Φk(x, y)

]
(65)

is analytic in x ∈ R3 and y ∈ R3, respectively, since Φk(x, y)− Φk(x, y) is analytic
in x ∈ R3 and y ∈ R3, respectively. Thus (62) and (63) are reduced to

eφ(x) · E1(x, y1)eφ(y1) = −eφ(x) · E2(x, y1)eφ(y1), ∀x ∈ U, y1 ∈ ∂B̊R1 , x 6= y1,

(66)

eφ(x) · E1(x, y2)eθ(y2) = −eφ(x) · E2(x, y2)eθ(y2), ∀x ∈ U, y2 ∈ ∂B̊R1 , x 6= y2.

(67)

Both (49) and (50) then follow from the analyticity of Ej(x, y) (j = 1, 2) in x ∈
∂BR1

for x 6= y. The proof is thus complete.

Lemma 4.4. Assume that the assumptions of Theorem 4.2 are satisfied. If for any
fixed m,n, l ∈ {φ, θ} there holds

|em(x) · E1(x, y1, en(y1), τ1, y2, el(y2), τ2)|
= |em(x) · E2(x, y1, en(y1), τ1, y2, el(y2), τ2)|(68)

for all x, y1 ∈ ∂B̊R1
with x 6= y1, y2 ∈ ∂B̊R2

, (τ1, τ2) ∈ {(1, 0), (0, 1), (1, 1)}, then
we have either

em(x) · E1(x, y1)en(y1) = em(x) · E2(x, y1)en(y1), ∀x, y1 ∈ ∂B̊R1 with x 6= y1,

(69)

em(x) · E1(x, y2)el(y2) = em(x) · E2(x, y2)el(y2), ∀x ∈ ∂B̊R1
, y2 ∈ ∂B̊R2

(70)

or

em(x) · E1(x, y1)en(y1) = −em(x) · E2(x, y1)en(y1), ∀x, y1 ∈ ∂B̊R1
with x 6= y1,

(71)

em(x) · E1(x, y2)el(y2) = −em(x) · E2(x, y2)el(y2), ∀x ∈ ∂B̊R1
, y2 ∈ ∂B̊R2

.

(72)

Proof. Since |em(x) · E1(x, y2)el(y2)| is analytic in x ∈ ∂B̊R1
and y2 ∈ ∂B̊R2

,
respectively, we only need to distinguish between two cases:

A) |em(x) · E1(x, y2)el(y2)| 6≡ 0, ∀(x, y2) ∈ ∂B̊R1
× ∂B̊R2

,

B) |em(x) · E1(x, y2)el(y2)| ≡ 0, ∀(x, y2) ∈ ∂B̊R1 × ∂B̊R2 .

For the case when A) holds, by arguing similarly as in the proof of Lemma 4.3
it can be deduced from (68) that we have either

em(x) · E1(x, y1)en(y1) = eiα(x)em(x) · E2(x, y1)en(y1), ∀x ∈ U, y1 ∈ ∂B̊R1 , x 6= y1,

(73)

em(x) · E1(x, y2)el(y2) = eiα(x)em(x) · E2(x, y2)el(y2), ∀x ∈ U, y2 ∈ ∂B̊R2

(74)
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or

em(x) · E1(x, y1)en(y1) = eiβ(x)em(x) · E2(x, y1)en(y1), ∀x ∈ U, y1 ∈ ∂B̊R1
, x 6= y1,

(75)

em(x) · E1(x, y2)el(y2) = eiβ(x)em(x) · E2(x, y2)el(y2), ∀x ∈ U, y2 ∈ ∂B̊R2
,

(76)

where U is some small open subset of ∂B̊R1
, and α(x) and β(x) are real-valued

functions of x. By (47) and (49) in Lemma 4.3 it follows easily that eiα(x) = 1 and
eiβ(x) = −1. This, together with (73)-(76) and the analyticity of the total fields
Ej(x, y), j = 1, 2, in x for x 6= y, implies that either (69) and (70) hold or (71) and
(72) hold.

For the case when B) holds, it follows from (68) that

|em(x) · E2(x, y2)el(y2)| ≡ 0, ∀(x, y2) ∈ ∂B̊R1
× ∂B̊R2

.

Therefore, both (70) and (72) hold. Further, by Lemma 4.3 we have that either
(69) or (71) holds. The proof is thus complete.

Using Lemmas 4.3 and 4.4 we can prove the following lemma.

Lemma 4.5. Assume that the assumptions of Theorem 4.2 are satisfied. If (46)
and (68) hold for all m,n, l ∈ {φ, θ}, then we have

E1(x, y) = E2(x, y), ∀x, y ∈ G, x 6= y.(77)

Proof. We first show that for any fixed m ∈ {φ, θ},

em(x) · E1(x, y1)en(y1) = em(x) · E2(x, y1)en(y1),

∀x, y1 ∈ ∂B̊R1
, x 6= y1, ∀n ∈ {φ, θ}.(78)

To this end, for any fixed m ∈ {φ, θ} we need to distinguish between the following
two cases.

Case 1. Re[em(x) · E1(x, y1)el(y1)] = 0 for all x, y1 ∈ ∂B̊R1 with x 6= y1 and for
all l ∈ {φ, θ}.

In this case, by Lemma 4.3 it follows that Re[em(x) ·E2(x, y1)el(y1)] = 0 for all

x, y1 ∈ ∂B̊R1 with x 6= y1 and for all l ∈ {φ, θ}. By Lemma 4.3 again we have (78).

Case 2. Re[em(x) · E1(x, y1)el(y1)] 6= 0 for some x, y1 ∈ ∂B̊R1 with x 6= y1,
l ∈ {φ, θ}. Here, we only consider the case with l = φ. The case l = θ can be
treated similarly.

In this case, by Lemma 4.3 we have that either both (47) and (48) hold or
both (49) and (50) hold. We can prove that both (49) and (50) can not hold
simultaneously. Suppose this is not the case. Then we have

em(x) · [E1(x, y1)en(y1)] = −em(x) · [E2(x, y1)en(y1)],

∀x, y1 ∈ ∂B̊R1
, x 6= y1, ∀n ∈ {φ, θ}.(79)

This, together with Lemmas 4.3 and 4.4, implies that

em(x) · [E1(x, y2)en(y2)] = −em(x) · [E2(x, y2)en(y2)],

∀x ∈ ∂B̊R1
, y2 ∈ ∂B̊R2

,∀n ∈ {φ, θ}.(80)
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We now show that both (79) and (80) can not hold simultaneously. In fact, by the
reciprocity relation Ej(x, y) = [Ej(y, x)]> for all x, y ∈ G (j = 1, 2), we deduce
from (79) and (80) that

en(y1) · [E1(y1, x)em(x)] = −en(y1) · [E2(y1, x)em(x)],

∀x, y1 ∈ ∂B̊R1
, x 6= y1,∀n ∈ {φ, θ},(81)

en(y2) · [E1(y2, x)em(x)] = −en(y2) · [E2(y2, x)em(x)],

∀x ∈ ∂B̊R1 , y2 ∈ ∂B̊R2 ,∀n ∈ {φ, θ}.(82)

This, together with the linear combination of eφ(yj) and eθ(yj) (j = 1, 2), gives
that

ν(y1)× [E1(y1, x)em(x)] = −ν(y1)× [E2(y1, x)em(x)], ∀x, y1 ∈ ∂B̊R1 , x 6= y1,

(83)

ν(y2)× [E1(y2, x)em(x)] = −ν(y2)× [E2(y2, x)em(x)], ∀x ∈ ∂B̊R1
, y2 ∈ ∂B̊R2

.

(84)

For any fixed x ∈ ∂B̊R1 and m ∈ {φ, θ}, define Ẽ(y) := E1(y, x)em(x) + E2(y, x)

em(x), y 6= x. Since 2Re[Ei(y, x)] := Ei(y, x) +Ei(y, x) is analyticity for all x, y ∈
R3 (see (65)), then, by the analyticity of Esj (y, x) with respect to y ∈ G (j = 1, 2), it

follows that Ẽ can be extended as an analytic function of y ∈ G, which we denote by

Ẽ again. Define H̃(y) := [1/(ik)]curlyẼ(y). Then (Re[Ei(y, x)]em(x), Im[Hi(y, x)]
em(x)) and (Esj (y, x)em(x), Hs

j (y, x)em(x)) satisfy the Maxwell equations for x ∈
G, j = 1, 2. Thus it follows by (83), (84) and the analyticity of Ej(y, x) in y ∈ G
with y 6= x (j = 1, 2) that (Ẽ, H̃) satisfies the interior Maxwell problem

curl Ẽ − ikH̃ = 0 in BR2
\BR1

,

curl H̃ + ikẼ = 0 in BR2
\BR1

,

ν × Ẽ = 0 on ∂BR1
∪ ∂BR2

.

Since k2 is not a Maxwell eigenvalue in BR2
\ BR1

, then Ẽ = 0 in BR2
\ BR1

.
Thus, and by the analyticity of Ej(y, x) in y ∈ G with y 6= x (j = 1, 2), we have

E1(y, x)eφ(x) = −E2(y, x)eφ(x) for all y ∈ G, y 6= x. This contradicts to the fact
that Ej(y, x)em(x) = Ei(y, x)em(x) + Esj (y, x)em(x), j = 1, 2, satisfy the Silver-
Müller radiation condition. Therefore, (79) and (80) can not be true simultaneously,
which means that both (49) and (50) can not hold simultaneously. This then implies
that both (47) and (48) are true, and so (78) holds.

Finally, by (78) and the linear combination of eφ and eθ we obtain that for

arbitrarily fixed y1 ∈ ∂B̊R1
and n ∈ {φ, θ},

ν(x)× [Es1(x, y1)en(y1)] = ν(x)× [Es2(x, y1)en(y1)], ∀x ∈ ∂B̊R1
.

By the well-posedness of the exterior Maxwell problem in R3 \ BR1 with the PEC

condition on ∂BR1
it is deduced that for arbitrarily fixed y1 ∈ ∂B̊R1

,

Es1(x, y1)en(y1) = Es2(x, y1)en(y1), ∀ x ∈ R3 \BR1
, ∀ n ∈ {φ, θ}.

This, together with the reciprocity relation Esj (x, y) = [Esj (y, x)]> for all x, y ∈ G,

j = 1, 2, implies that for any fixed x ∈ R3 \BR1
,

ν(y)× Es1(y, x) = ν(y)× Es2(y, x), ∀y ∈ ∂BR1 .
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Again, by the well-posedness of the exterior Maxwell problem in R3 \BR1 with the
PEC condition on ∂BR1 it is derived that for any fixed x ∈ R3 \BR1 ,

Es1(y, x) = Es2(y, x), ∀y ∈ R3 \BR1
.

The required result (77) then follows from this, the reciprocity relation and the
analyticity of Esj (x, y) (j = 1, 2) in x ∈ G and y ∈ G, respectively.

Proof of Theorem 4.2. By Lemma 4.5 it follows from (44) and (45) that (77) holds.
For j = 1, 2, denote by E∞j (x̂, y) the far-field pattern of Esj (x, y), x, y ∈ G, and by
Esj (x, d) and E∞j (x̂, d) the electric scattered field and its far-field pattern associated
with the obstacle Dj (or the refractive index nj) and corresponding to the incident
electromagnetic plane waves described by the matrices Ei(x, d), Hi(x, d) defined by

Ei(x, d)p :=
i

k
curl curl peikx·d = ik(d× p)× deikx·d,

Hi(x, d)p := curl peikx·d = ikd× peikx·d,
where d ∈ S2 and p ∈ R3\{(0, 0, 0)} denote the incident direction and polarization
vector, respectively, and x ∈ R3. Then, by (77) in Lemma 4.5 and the mixed reci-
procity relation that 4πE∞j (−d, x) = [Esj (x, d)]> for all x ∈ G, d ∈ S2 and j = 1, 2
(see [14, Theorem 6.31]), we obtain that Es1(x, d) = Es2(x, d) for all x ∈ G and
all d ∈ S2 or E∞1 (x̂, d) = E∞2 (x̂, d) for all x̂, d ∈ S2. By the uniqueness result
for inverse electromagnetic scattering with full far-field data (see [14, Theorem 7.1]
and [9, Theorem 3.1] for the obstacle case, and [15, Theorem 4.9] for the inhomo-
geneous medium case) it follows easily that the uniqueness statements (a) and (b)
of Theorem 4.2 are true. The theorem is thus proved.

5. Conclusions. This paper proposed a new approach to prove uniqueness results
for inverse acoustic and electromagnetic scattering for obstacles and inhomogeneous
media with phaseless near-field data at a fixed frequency. The idea is to use su-
perpositions of two point sources at a fixed frequency as the incident fields and,
as the phaseless near-field data, to measure the modulus of the acoustic total-field
on two spheres enclosing the scatterers generated by such incident fields located on
the two spheres, in the acoustic case. For the electromagnetic case, the idea is to
utilize superpositions of two electric dipoles at a fixed frequency with the polar-
ization vectors eφ and eθ, respectively, as the incident fields and, as the phaseless
near-field data, to measure the modulus of the tangential component with the ori-
entations eφ and eθ, respectively, of the electric total-field on a sphere enclosing the
scatterers and generated by such incident fields located on the measurement sphere
and another bigger sphere. As far as we know, this is the first uniqueness result for
three-dimensional inverse electromagnetic scattering with phaseless near-field data.
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