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This paper is concerned with uniqueness in inverse electromagnetic scattering with phaseless far-field
pattern at a fixed frequency. In our previous work (2018,SIAM J. Appl. Math. 78, 3024–3039), by adding
a known reference ball into the acoustic scattering system, it was proved that the impenetrable obstacle
and the index of refraction of an inhomogeneous medium can be uniquely determined by the acoustic
phaseless far-field patterns generated by infinitely many sets of superpositions of two plane waves with
different directions at a fixed frequency. In this paper, we extend these uniqueness results to the inverse
electromagnetic scattering case. The phaseless far-field data are the modulus of the tangential component
in the orientations eφ and eθ , respectively, of the electric far-field pattern measured on the unit sphere and
generated by infinitely many sets of superpositions of two electromagnetic plane waves with different
directions and polarizations. Our proof is mainly based on Rellich’s lemma and the Stratton–Chu formula
for radiating solutions to the Maxwell equations.

Keywords: uniqueness, inverse electromagnetic scattering, phaseless far-field pattern, impenetrable
obstacle, inhomogeneous medium.

1. Introduction

Inverse scattering theory has wide applications in such fields as radar, sonar, geophysics, medical
imaging and non-destructive testing (see, e.g. Colton & Kress, 2013; Kirsch & Grinberg, 2008). This
paper is concerned with inverse electromagnetic scattering by a bounded obstacles or an inhomogeneous
medium from phaseless far-field data, associated with incident plane waves at a fixed frequency.

Inverse scattering problems with phased data have been extensively studied both mathematically and
numerically in the past several decades (see, e.g. Chen, 2018; Colton & Kress, 2013; Kirsch & Grinberg,
2008). However, in many applications, it is difficult to measure the phase of the wave field accurately,
compared with the modulus of the wave field. Therefore, it is desirable to reconstruct the scatterers from
the phaseless near-field or far-field data (i.e. the intensity of the near field or far field), which is called
the phaseless inverse scattering problem.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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824 X. XU ET AL.

The main difficulty of inverse scattering problems with phaseless far-field data is the so-called
translation invariance property of the phaseless far-field pattern, i.e. the modulus of the far-field
pattern generated by one plane wave is invariant under the translation of the scatterers. This implies
that it is impossible to recover the location of the scatterer from the phaseless far-field data with one
plane wave as the incident field. Several iterative methods have been proposed in Ivanyshyn (2007);
Ivanyshyn & Kress (2010, 2011); Kress & Rundell (1997) to reconstruct the shape of the scatterer.
Under a priori condition that the sound-soft scatterer is a ball or disk, it was proved in Liu & Zhang
(2010) that the radius of the scatterer can be uniquely determined by a single phaseless far-field
datum. It was proved in Majda (1976) that the shape of a general, sound-soft, strictly convex obstacle
can be uniquely determined by the phaseless far-field data generated by one plane wave at a high
frequency. However, there is no translation invariance property for phaseless near-field data. Therefore,
many numerical algorithms for inverse scattering problems with phaseless near-field data have been
developed (see, e.g. Chen, 2018; Chen et al., 2017; Chen & Huang, 2017; Klibanov & Romanov, 2016;
Shin, 2016; Xu et al., 2019, for the acoustic case and Chen & Huang, 2016, for the electromagnetic
case). Uniqueness results and stability have also been established for inverse scattering problems with
phaseless near-field data (see Klibanov, 2014, 2017; Klibanov & Romanov, 2017; Maretzke & Hohage,
2017; Novikov, 2015, 2016; Romanov & Yamamoto, 2018; Xu et al., 2020; Zhang et al., 2020a,b, for
the acoustic and potential scattering case and Romanov, 2017; Xu et al., 2020, for the electromagnetic
scattering case).

Recently in Zhang & Zhang (2017b), it was proved that the translation invariance property of the
phaseless far-field pattern can be broken by using superpositions of two plane waves as the incident
fields with an interval of frequencies. Following this idea, several algorithms have been developed for
inverse acoustic scattering problems with phaseless far-field data, based on using the superposition
of two plane waves as the incident field (see Zhang & Zhang, 2017a,b, 2018). Further, by using the
spectral properties of the far-field operator, rigorous uniqueness results have also been established in
Xu et al. (2018a) for inverse acoustic scattering problems with phaseless far-field data generated by
infinitely many sets of superpositions of two plane waves with different directions at a fixed frequency,
under certain a priori assumptions on the property of the scatterers. In Xu et al. (2018b), by adding
a known reference ball into the acoustic scattering system, it was shown that the uniqueness results
obtained in Xu et al. (2018a) remain true without the a priori assumptions on the property of the
scatterers. Note that the idea of adding a known reference ball to the scattering system was first applied
in Li et al. (2010) to numerically enhance the reconstruction results of the linear sampling method
and also used in Zhang & Guo (2018) to prove uniqueness in inverse acoustic scattering problems
with phaseless far-field data. Recently, the reference ball technique has also been used to numerically
reconstruct the unknown scatterers from phaseless far-field data (see Dong et al., 2019b, for the inverse
acoustic scattering problem, Dong et al., 2019a, for the inverse elastic scattering problem and Dong
et al., 2020, for the inverse acoustic–elastic interaction problem). On the other hand, by adding
a reference point scatterer into the scattering system, two direct sampling algorithms have been
proposed to recover acoustic obstacles in Ji et al. (2019c) and acoustic sources in Ji et al. (2019b)
from phaseless far-field data generated with incident plane waves, while, in Ji et al. (2019a), the
authors developed two direct sampling algorithms to recover acoustic obstacles from phaseless far-
field measurements generated by superpositions of plane waves and point sources with fixed source
location and different scattering strengths. It should be remarked that there are certain studies
on uniqueness for phaseless inverse scattering problems with using superpositions of two point
sources as the incident fields (see Romanov & Yamamoto, 2018; Sun et al., 2019; Xu et al., 2020;
Zhang et al., 2020a,b).
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UNIQUENESS IN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM 825

It is worth mentioning that some inversion algorithms have been developed for array imaging
problems with phaseless data. For the acoustic case, we refer to Novikov et al. (2015) for a coherent
imaging method and Moscoso et al. (2017) for a holography-based approach using the time reversal
operator. For the electromagnetic case, we refer to Bardsley et al. (2018) for imaging the polarizability
of polarizable scatterers from the Stokes parameters (which are phaseless data in electromagnetism).

The purpose of this paper is to establish uniqueness results in inverse electromagnetic scattering
problems with phaseless far-field data at a fixed frequency, extending the uniqueness results in Xu
et al. (2018b) for the acoustic case to the electromagnetic case. Different from the acoustic case
considered in Xu et al. (2018b), the electric far-field pattern is a complex-valued vector function,
so the measurement of the phaseless electric far-field pattern is more complicated. In practice, one
usually makes measurement of the modulus of each tangential component of the electric total-field or
electric far-field pattern on the measurement surface (see, e.g. Hansen, 1988; Pan et al., 2011; Schmidt
et al., 2010; Zhang & Wang, 2019). Motivated by this and the idea in Xu et al. (2018a,b), we make
use of superpositions of two electromagnetic plane waves with different directions and polarizations
as the incident fields and consider the modulus of the tangential component in the orientations eφ

and eθ , respectively, of the corresponding electric far-field pattern measured on the unit sphere as the
measurement data (called the phaseless electric far-field data). We then prove that, by adding a known
reference ball into the electromagnetic scattering system, the impenetrable obstacle or the refractive
index of the inhomogeneous medium (under the condition that the magnetic permeability is a positive
constant) can be uniquely determined by the phaseless electric far-field data at a fixed frequency. Our
proof is mainly based on Rellich’s lemma and the Stratton–Chu formula for radiating solutions to the
Maxwell equations, which is possible due to the introduction of the reference ball into the scattering
system.

The rest of this paper is organized as follows. In Section 2, we introduce the electromagnetic
scattering problems considered. The uniqueness results for inverse obstacle and medium electromag-
netic scattering with phaseless electric far-field data are presented in Sections 3 and 4, respectively.
Conclusions are given in Section 5.

2. The electromagnetic scattering problems

In this section, we introduce the electromagnetic scattering problems considered in this paper. To give
a precise description of the scattering problems, we assume that D is an open and bounded domain in
R

3 with C2−boundary ∂D satisfying that the exterior R3 \ D of D is connected. Note that D may not
be connected and thus may consist of several (finitely many) connected components. We consider the
time-harmonic (e−iωt time dependence) incident electromagnetic plane waves described by the matrices
Ei(x, d) and Hi(x, d) defined by

Ei(x, d)p := i

k
curl curl peikx·d = ik(d × p) × deikx·d, x ∈ R

3, (2.1)

Hi(x, d)p := curl peikx·d = ikd × peikx·d, x ∈ R
3, (2.2)

where d ∈ S
2 is the incident direction with S

2 being the unit sphere, p ∈ R
3 is the polarization vector,

k = ω/
√

ε0μ0 is the wave number, ω is the frequency and ε0 and μ0 are the electric permittivity and
magnetic permeability of a homogeneous medium, respectively. From (2.1) and (2.2) it can be seen
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826 X. XU ET AL.

that the incident plane waves Ei = Ei(x, d)p and Hi = Hi(x, d)p satisfy the homogeneous Maxwell
equations:

curl Ei − ikHi = 0 in R
3,

curl Hi + ikEi = 0 in R
3.

When D is an impenetrable obstacle, then the scattering problem can be modeled by the exterior
boundary value problem:

curl E − ikH = 0 in R
3 \ D, (2.3a)

curl H + ikE = 0 in R
3 \ D, (2.3b)

BE = 0 on ∂D, (2.3c)

lim
r→∞(Hs × x − rEs) = 0, r = |x|, (2.3d)

where (Es, Hs) is the scattered field, E := Ei + Es and H := Hi + Hs are the electric total-field and the
magnetic total-field, respectively, the equations (2.3a)–(2.3b) are the Maxwell equations and (2.3d) is the
Silver–Müller radiation condition. The boundary condition B in (2.3c) depends on the physical property
of the obstacle D, i.e. BE = ν × E if D is a perfectly conducting obstacle, BE = ν × curl E − iλ(ν ×
E)×ν = 0 if D is an impedance obstacle, and BE = ν×E on ΓD, BE = ν×curl E− iλ(ν×E)×ν = 0
on ΓI if D is a partially coated obstacle, where ν is the unit outward normal vector on the boundary ∂D.
Here, for the case when D is an impedance obstacle, we assume that λ is the impedance function on ∂D
with λ ∈ C(∂D) and λ(x) ≥ 0 for all x ∈ ∂D. Further, for the case when D is a partially coated obstacle,
we assume that ∂D has a Lipschitz dissection ∂D = ΓD ∪ Π ∪ ΓI with ΓD and ΓI being disjoint and
relatively open subsets of ∂D and having Π as their common boundary in ∂D (see, e.g. McLean, 2000)
and λ is the impedance function on ΓI with λ ∈ C(ΓI) and λ(x) ≥ 0 for all x ∈ ΓI .

When D is an inhomogeneous medium, we assume that the magnetic permeability μ = μ0 is a
positive constant in the whole space. Then the scattering problem is modeled by the medium scattering
problem

curl E − ikH = 0 in R
3, (2.4a)

curl H + iknE = 0 in R
3, (2.4b)

lim
r→∞(Hs × x − rEs) = 0, r = |x|, (2.4c)

where (Es, Hs) is the scattered field and E := Ei + Es and H := Hi + Hs are the electric total field and
the magnetic total field, respectively. The refractive index n in (2.4b) is given by

n(x) := 1

ε0

(
ε(x) + i

σ(x)

ω

)
,
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UNIQUENESS IN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM 827

where ε(x) is the electric permittivity with ε(x) ≥ εmin in R
3 for a constant εmin > 0 and σ(x) is the

electric conductivity with σ(x) ≥ 0 in R
3. We assume further that n − 1 has a compact support D and

n ∈ C2,γ (R3) for 0 < γ < 1. From the above assumptions, it can be seen that Re[n(x)] ≥ nmin :=
εmin/ε0 > 0 and Im[n(x)] ≥ 0 for all x ∈ R

3.
The existence of a unique (variational) solution to the problems (2.3a)–(2.3d) and (2.4a)–(2.4c)

has been proved in Cakoni et al. (2004, 2011); Colton & Kress (1981, 2013); McLean (2000) (see
Theorem 6.21 in Colton & Kress, 2013, and Theorem 10.8 in McLean, 2000, for scattering by a perfectly
conducting obstacle or an impedance obstacle with λ ≡ 0 on ∂D, Theorems 6.11 and 9.11 in Colton
& Kress, 2013, for scattering by an impedance obstacle with constant impedance function, Theorems
2.1 and 3.3 in Colton & Kress, 1981, for scattering by an impedance obstacle with λ ∈ C0,γ (∂D),
Theorem 3.5 in Cakoni et al., 2011, (see also Theorem 2.7 in Cakoni et al., 2004) for scattering by a
partly coated obstacle or an impedance obstacle and Theorem 5.5 in Kirsch & Grinberg, 2008 (see also
Theorem 9.5 in Colton & Kress, 2013) for scattering by an inhomogeneous medium). In particular, it is
well known from Colton & Kress (2013) that the electric and magnetic scattered fields Es and Hs have
the asymptotic behavior

Es(x, d)p = eik|x|

|x|
{

E∞(x̂, d)p + O

(
1

|x|
)}

, |x| → ∞,

Hs(x, d)p = eik|x|

|x|
{

H∞(x̂, d)p + O

(
1

|x|
)}

, |x| → ∞

uniformly for all observation directions x̂ = x/|x| ∈ S
2, where E∞(x̂, d)p is the electric far-field pattern

of Es(x, d)p and H∞(x̂, d)p is the magnetic far-field pattern of Hs(x, d)p for any p ∈ R
3, satisfying that

(see the formula (6.24) in Colton & Kress, 2013)

H∞(x̂, d)p = x̂ × E∞(x̂, d)p, x̂ · E∞(x̂, d)p = x̂ · H∞(x̂, d)p = 0. (2.5)

Because of the linearity of the direct scattering problem with respect to the incident field, the scattered
waves, the total fields and the corresponding far-field patterns can be represented by matrices Es(x, d)

and Hs(x, d), E(x, d) and H(x, d) and E∞(x̂, d) and H∞(x̂, d), respectively. Each component of the
matrices E∞(x̂, d) and H∞(x̂, d) is an analytic function of x̂ ∈ S

2 for each d ∈ S
2 and of d ∈ S

2

for each x̂ ∈ S
2 (see, e.g. Colton & Kress, 2013).

Throughout this paper, we assume that the wave number k is arbitrarily fixed, i.e. the frequency
ω is arbitrarily fixed. Following Xu et al. (2018a,b); Zhang & Zhang (2017a,b), we make use of the
following superposition of two plane waves as the incident (electric) field:

Ei := Ei(x, d1, d2, p1, p2) = Ei(x, d1)p1 + Ei(x, d2)p2 = i

k
curl curl p1eikx·d1 + i

k
curl curl p2eikx·d2 ,

where d1, d2 ∈ S
2 and p1, p2 ∈ R

3. Then the (electric) scattered field Es has the asymptotic behavior

Es(x, d1, d2, p1, p2) = eik|x|

|x|
{

E∞(x̂, d1, d2, p1, p2) + O

(
1

|x|
)}

, |x| → ∞
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828 X. XU ET AL.

uniformly for all observation directions x̂ ∈ S
2. From the linear superposition principle it follows that

Es(x, d1, d2, p1, p2) = Es(x, d1)p1 + Es(x, d2)p2

and

E∞(x̂, d1, d2, p1, p2) = E∞(x̂, d1)p1 + E∞(x̂, d2)p2, (2.6)

where Es(x, dj)pj and E∞(x̂, dj)pj are the (electric) scattered field and its far-field pattern corresponding

to the incident electric field Ei(x, dj)pj, respectively, j = 1, 2.
Following the idea in Hansen (1988); Pan et al. (2011); Schmidt et al. (2010); Zhang & Wang (2019),

we measure the modulus of the tangential component of the electric far-field pattern on the unit sphere
S

2. To present the tangential components, we introduce the spherical coordinates⎧⎪⎨⎪⎩
x̂1 = sin θ cos φ,

x̂2 = sin θ sin φ,

x̂3 = cos θ ,

with x̂ := (x̂1, x̂2, x̂3) ∈ S
2 and (θ , φ) ∈ [0, π ]×[0, 2π). For any x̂ ∈ S

2\{N, S}, the spherical coordinates
give a one-to-one correspondence between x̂ and (φ, θ), where N := (0, 0, 1) and S := (0, 0, −1) denote
the north and south poles of S2, respectively. Define

eφ(x̂) := (− sin φ, cos φ, 0), eθ (x̂) := (cos θ cos φ, cos θ sin φ, − sin θ).

Then eφ(x̂) and eθ (x̂) are two orthonormal tangential vectors of S2 at x̂ /∈ {N, S}. Thus, the phaseless

far-field data we use are |em(x̂) · E∞(x̂, d1, d2, p1, p2)|, x̂ ∈ S
2 \ {N, S}, m ∈ {φ, θ}, dj ∈ S

2 and pj ∈ R
3

such that dj⊥pj, j = 1, 2.
The inverse electromagnetic obstacle (or medium) scattering problem we consider in this paper is

to reconstruct the obstacle D and its physical property (or the refractive index n of the inhomogeneous
medium) from the phaseless far-field data |em(x̂) · E∞(x̂, d1, d2, p1, p2)|, x̂ ∈ S

2 \ {N, S}, m ∈ {φ, θ},
dj ∈ S

2 and pj ∈ R
3 such that dj⊥pj, j = 1, 2. The purpose of this paper is to establish the uniqueness

results for these inverse problems.

3. Uniqueness for inverse electromagnetic obstacle scattering

This section is devoted to establishing the uniqueness result in the inverse electromagnetic obstacle
scattering problem. As discussed in the Introduction, uniqueness results have been established in Xu
et al. (2018a,b) for inverse acoustic scattering with phaseless far-field data. Note that, in Xu et al.
(2018a), the uniqueness results were proved by establishing the spectral properties of the acoustic far-
field operator, which is essential in our proof. However, we do not yet know how to establish the desired
spectral properties of the electromagnetic far-field operator. Thus, in the present paper, we follow the
strategy in our previous acoustic work (Xu et al., 2018b). Namely, we modify the electromagnetic
scattering system by adding a known reference perfectly conducting ball to the scattering system, so we
consider the measurement of the phaseless far-field data associated with the obstacles plus a reference
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UNIQUENESS IN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM 829

Fig. 1. Scattering by a bounded obstacle.

perfectly conducting ball. The introduction of the reference ball allows us to use the Rellich’s lemma
and the Stratten–Chu formula to prove our uniqueness result.

Let B be a given, perfectly conducting ball and let us assume that k is not a Maxwell eigenvalue in
B. Here, k is called a Maxwell eigenvalue in B if the electromagnetic interior boundary value problem

curl Ẽ − ikH̃ = 0 in B, (3.1)

curl H̃ + ikẼ = 0 in B, (3.2)

ν × Ẽ = 0 on ∂B (3.3)

has a non-trivial solution (Ẽ, H̃).
Now, denote by Es

j , Hs
j , E∞

j and H∞
j the electric scattered field, the magnetic scattered field, the

electric far-field pattern and the magnetic far-field pattern, respectively, associated with the obstacle
Dj ∪ B and corresponding to the incident electromagnetic waves Ei and Hi, j = 1, 2. The geometry of
the scattering problem is given in Fig. 1. Then we have the following uniqueness result for the inverse
electromagnetic obstacle problem.

Theorem 3.1 Assume that B is a given perfectly conducting reference ball such that k is not a Maxwell
eigenvalue in B. Suppose D1 and D2 are two obstacles with D1 ∪ D2 ⊂ BR, where BR is a ball of radius
R and centered at the origin satisfying that B ∩ BR = ∅. If the corresponding electric far-field patterns
satisfy that

|em(x̂) · E∞
1 (x̂, d1, d2, p1, p2)| = |em(x̂) · E∞

2 (x̂, d1, d2, p1, p2)| (3.4)

for all x̂ ∈ S
2 \ {N, S}, d1, d2 ∈ S

2, m ∈ {φ, θ} and p1, p2 ∈ R
3 satisfying that d1⊥p1 and d2⊥p2, then

D1 = D2 and B1 = B2.

To simplify the proof of Theorem 3.1 we need the following lemma.

Lemma 3.1 Under the assumptions of Theorem 3.1, the following equation does not hold:

E∞
1 (x̂, d0)em(d0) = eiβE∞

2 (x̂, d0)em(d0) ∀x̂ ∈ S
2, (3.5)

where m ∈ {φ, θ} and d0 ∈ S
2 \ {N, S} are arbitrarily fixed and β is a real constant.
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830 X. XU ET AL.

Proof. Assume to the contrary that (5) holds. Then, by using the Stratton–Chu formula (see Theorem
6.7 in Colton & Kress, 2013), we have that the electric scattered field Es

2(x, d0)em(d0) satisfies that

Es
2(x, d0)em(d0) = curl

∫
∂B∪∂BR

ν(y) × [Es
2(y, d0)em(d0)]Φ(x, y)ds(y)

− 1

ik
curl curl

∫
∂B∪∂BR

ν(y) × [Hs
2(y, d0)em(d0)]Φ(x, y)ds(y), x ∈ R

3 \ B ∪ BR,

where ν(y) is the unit normal vector at y ∈ ∂B or y ∈ ∂BR directed into the exterior of B or BR and
Φ(x, y) is the fundamental solution to the Helmholtz equation in R

3 given by

Φ(x, y) := 1

4π

eik|x−y|

|x − y| , x �= y.

Then it follows from the formula (6.25) in Colton & Kress (2013) that the corresponding far-field pattern
E∞

2 (x̂, d0)em(d0) is given as

E∞
2 (x̂, d0)em(d0)

= ik

4π
x̂ ×

∫
∂B∪∂BR

{
ν(y)×[Es

2(y, d0)em(d0)]+
[
ν(y) × [Hs

2(y, d0)em(d0)]
]×x̂

}
e−ikx̂·yds(y), x̂∈S

2.

By this and (3.5) we deduce that for any x̂ ∈ S
2,

e−iβE∞
1 (x̂, d0)em(d0) = E∞

2 (x̂, d0)em(d0)

= − ik

4π
x̂ ×

∫
∂B∪∂BR

{
ν(y) × [Es

2(y, d0)em(d0)] +
[
ν(y) × [Hs

2(y, d0)em(d0)]
]

× x̂
}

eikx̂·yds(y)

= − ik

4π
x̂ ×

∫
∂B̃∪∂BR

{
−ν(y)×[Es

2(−y, d0)em(d0)]+
[
−ν(y)×[Hs

2(−y, d0)em(d0)]
]
×x̂

}
e−ikx̂·yds(y)

= ik

4π
x̂ ×

∫
∂B̃∪∂BR

{
ν(y) × [Es

2(−y, d0)em(d0)] +
[
ν(y) × [Hs

2(−y, d0)em(d0)]
]

× x̂
}

e−ikx̂·yds(y),

where B̃ := {x ∈ R
3 : −x ∈ B}. This, together with the formulas (6.26) and (6.27) in Colton & Kress

(2013), implies that e−iβE∞
1 (x̂, d0)em(d0) is the far-field pattern of Ẽs given by

Ẽs(x) := curl
∫

∂B̃∪∂BR

ν(y) × [Es
2(−y, d0)em(d0)]Φ(x, y)ds(y)

− 1

ik
curl curl

∫
∂B̃∪∂BR

ν(y) × [Hs
2(−y, d0)em(d0)]Φ(x, y)ds(y), x ∈ R

3 \ B̃ ∪ BR.

It can be seen that Ẽs(x) is an analytic function in x ∈ R
3 \ B̃ ∪ BR. On the other hand, it is known

that e−iβE∞
1 (x̂, d0)em(d0) is the far-field pattern of e−iβEs

1(x, d0)em(d0), which is an analytic function
in x ∈ R

3 \ B ∪ BR. Since the well-known Rellich’s lemma establishes a one-to-one correspondence
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UNIQUENESS IN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM 831

between the electric scattered field and its far-field pattern (cf. Theorem 6.10 in Colton & Kress, 2013),

we obtain that e−iβEs
1(x, d0)em(d0) = Ẽs(x) in x ∈ R

3 \ B ∪ B̃ ∪ BR. Then using the analyticity of Ẽs(x)

in x ∈ R
3 \ B̃ ∪ BR again, we get that Es

1(·, d0)em(d0) can be analytically extended into R
3 \ B̃ ∪ BR and

e−iβEs
1(x, d0)em(d0) = Ẽs(x) = curl

∫
∂B̃∪∂BR

ν(y) × [Es
2(−y, d0)em(d0)]Φ(x, y)ds(y)

(3.6)

− 1

ik
curl curl

∫
∂B̃∪∂BR

ν(y)×[Hs
2(−y, d0)em(d0)]Φ(x, y)ds(y), x∈R

3\ B̃ ∪ BR.

Since

Hs
1(·, d0)em(d0) = 1

ik
curl [Es

1(·, d0)em(d0)],

then it follows from (3.6) that Es
1(·, d0)em(d0) and Hs

1(·, d0)em(d0) satisfy the Maxwell equations

(2.3a)–(2.3b) in R
3 \ B̃ ∪ BR. On the other hand, by the definitions of Es

1 and Hs
1, it is known that

Es
1(·, d0)em(d0) and Hs

1(·, d0)em(d0) also satisfy the Maxwell equations (2.3a)–(2.3b) in R
3 \ B ∪ BR.

Since B ∩ BR = ∅, then the origin 0 /∈ B and B ∩ B̃ = ∅. Thus, it is concluded that Es
1(·, d0)em(d0)

and Hs
1(·, d0)em(d0) satisfy the Maxwell equations (2.3a)–(2.3b) in R

3 \ BR. Since the electric total
field E1 := E1(·, d0)em(d0) = Ei

1(·, d0)em(d0) + Es
1(·, d0)em(d0) and the magnetic total field H1 :=

(1/ik)curl E1 satisfy the perfectly conducting boundary condition on ∂B, then (E1, H1) satisfies the
problem (1)–(3). By the fact that k is not a Maxwell eigenvalue in B we have that E1 ≡ 0 in B, which,
together with the analyticity of the electric total field E1 in R

3 \BR, implies that E1 ≡ 0 in R
3 \BR. This

is a contradiction, and so (5) does not hold. The proof is complete. �
We are now ready to prove Theorem 3.1.

Proof. of Theorem 3.1 Using (2.6) and (3.4), we have

|em(x̂) · [E∞
1 (x̂, d1)p1 + E∞

1 (x̂, d2)p2]| = |em(x̂) · [E∞
2 (x̂, d1)p1 + E∞

2 (x̂, d2)p2| (3.7)

for all x̂ ∈ S
2 \ {N, S}, d1, d2 ∈ S

2, m ∈ {φ, θ} and p1, p2 ∈ R
3 satisfying that d1⊥p1 and d2⊥p2. By

(2.1) we know that Ei(x, d)d = 0 for all x ∈ R
3 and d ∈ S

2, and so, from the wellposedness of the
scattering problem it follows that

E∞
j (x̂, d)d = 0 ∀x̂, d ∈ S

2. (3.8)

Thus, (3.7) is equivalent to the condition

|em(x̂) · [E∞
1 (x̂, d1)p1 + E∞

1 (x̂, d2)p2]| = |em(x̂) · [E∞
2 (x̂, d1)p1 + E∞

2 (x̂, d2)p2| (3.9)
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832 X. XU ET AL.

for all x̂ ∈ S
2 \ {N, S}, d1, d2 ∈ S

2, m ∈ {φ, θ} and p1, p2 ∈ R
3. This implies that

Re
{

[em(x̂) · E∞
1 (x̂, d1)p1][em(x̂) · E∞

1 (x̂, d2)p2]
}

= Re
{

[em(x̂) · E∞
2 (x̂, d1)p1][em(x̂) · E∞

2 (x̂, d2)p2]
}

(3.10)
for all x̂ ∈ S

2 \ {N, S}, d1, d2 ∈ S
2, m ∈ {φ, θ} and p1, p2 ∈ R

3.
For d, q ∈ S

2 and p ∈ R
3 define rj(x̂, d, q, p) := |q · E∞

j (x̂, d)p|, j = 1, 2. Then, by setting
d1 = d2 =: d and p1 = p2 =: p in (3.9), we have

r1(x̂, d, em(x̂), p) = r2(x̂, d, em(x̂), p) =: r(x̂, d, em(x̂), p)

∀x̂ ∈ S
2 \ {N, S}, d ∈ S

2, m ∈ {φ, θ}, p ∈ R
3. (3.11)

Thus, we know that

em(x̂) · E∞
j (x̂, d)p = r(x̂, d, em(x̂), p)eiϑ(m)

j (x̂,d,p) ∀x̂ ∈ S
2\ {N, S}, d ∈ S

2, m∈ {φ, θ}, p ∈ R
3, j = 1, 2,

where ϑ
(m)
j is a real-valued function, j = 1, 2.

Let m ∈ {φ, θ} be arbitrarily fixed. We then prove that

E∞
1 (x̂, d)em(d) = E∞

2 (x̂, d)em(d) ∀x̂ ∈ S
2, d ∈ S

2 \ {N, S}. (3.12)

To do this, we distinguish between the following two cases.
Case 1. r(x̂, d, em(x̂), p) �≡ 0 for x̂ ∈ S

2 \ {N, S}, d ∈ S
2 and p ∈ R

3.
In this case, by the analyticity of em(x̂) · E∞

j (x̂, d)p with respect to x̂, d and p, respectively, j = 1, 2,

and the continuity of em(x̂) · E∞
j (x̂, d)p in (x̂, d, p) ∈ (S2 \ {N, S}) × S

2 × R
3, it can be seen that there

exist open sets U1 ⊂ S
2 \ {N, S}, U2 ⊂ S

2 and V ⊂ R
3 small enough such that (i) r(x̂, d, em(x̂), p) �= 0

for all x̂ ∈ U1, d ∈ U2 and p ∈ V , and (ii) ϑ
(m)
j (x̂, d, p) is analytic with respect to x̂ ∈ U1, d ∈ U2 and

p ∈ V , respectively, j = 1, 2. Then, and by (3.10), we obtain that

cos[ϑ(m)
1 (x̂, d1, p1) − ϑ

(m)
1 (x̂, d2, p2)] = cos[ϑ(m)

2 (x̂, d1, p1) − ϑ
(m)
2 (x̂, d2, p2)] (3.13)

for all x̂ ∈ U1, d1, d2 ∈ U2 and p1, p2 ∈ V . From (3.13) and the fact that ϑ
(m)
j (x̂, d, p) is a real-valued

analytic function of x̂ ∈ U1, d ∈ U2 and p ∈ V , respectively, j = 1, 2, it is derived that there holds either

ϑ
(m)
1 (x̂, d1, p1) − ϑ

(m)
1 (x̂, d2, p2) = ϑ

(m)
2 (x̂, d1, p1) − ϑ

(m)
2 (x̂, d2, p2) + 2lπ (3.14)

or

ϑ
(m)
1 (x̂, d1, p1) − ϑ

(m)
1 (x̂, d2, p2) = −[ϑ(m)

2 (x̂, d1, p1) − ϑ
(m)
2 (x̂, d2, p2)] + 2lπ (3.15)

for some l ∈ Z and for all x̂ ∈ U1, d1, d2 ∈ U2 and p1, p2 ∈ V .
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UNIQUENESS IN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM 833

For the case when (14) holds, we have

ϑ
(m)
1 (x̂, d1, p1) − ϑ

(m)
2 (x̂, d1, p1) = ϑ

(m)
1 (x̂, d2, p2) − ϑ

(m)
2 (x̂, d2, p2) + 2lπ

∀x̂ ∈ U1, d1, d2 ∈ U2, p1, p2 ∈ V . (3.16)

Fix d2 ∈ U2, p2 ∈ V and define

α(m)(x̂) := ϑ
(m)
1 (x̂, d2, p2) − ϑ

(m)
2 (x̂, d2, p2) ∀x̂ ∈ U1. (3.17)

Then, by (3.16), we get

em(x̂) · E∞
1 (x̂, d)p = r(x̂, d, em(x̂), p)eiϑ(m)

1 (x̂,d,p)

= r(x̂, d, em(x̂), p)eiα(m)(x̂)+iϑ(m)
2 (x̂,d,p)

= eiα(m)(x̂)em(x̂) · E∞
2 (x̂, d)p

for all x̂ ∈ U1, d ∈ U2 and p ∈ V . By the analyticity of em(x̂) · E∞
1 (x̂, d)p − eiα(m)(x̂)em(x̂) · E∞

2 (x̂, d)p in
d ∈ S

2 and p ∈ R
3, respectively, it is deduced that

em(x̂) · E∞
1 (x̂, d)p = eiα(m)(x̂)em(x̂) · E∞

2 (x̂, d)p ∀x̂ ∈ U1, d ∈ S
2, p ∈ R

3. (3.18)

Changing the variables x̂ → −d and d → −x̂ in (3.18) gives

em(−d) · E∞
1 (−d, −x̂)p = eiα(m)(−d)em(−d) · E∞

2 (−d, −x̂)p ∀ − d ∈ U1, x̂ ∈ S
2, p ∈ R

3.

The reciprocity relation E∞
j (x̂, d) = [E∞

j (−d, −x̂)]� for all x̂, d ∈ S
2 (j = 1, 2) (see Theorem 6.30 in

Colton & Kress, 2013) leads to the result

p · E∞
1 (x̂, d)em(−d) = eiα(m)(−d)p · E∞

2 (x̂, d)em(−d) ∀ − d ∈ U1, x̂ ∈ S
2, p ∈ R

3.

Since eφ(d) = −eφ(−d) and eθ (d) = eθ (−d), we have

E∞
1 (x̂, d)em(d) = eiα(m)(−d)E∞

2 (x̂, d)em(d) ∀ − d ∈ U1, x̂ ∈ S
2. (3.19)

Now, by Rellich’s lemma (cf. Theorem 6.10 in Colton & Kress, 2013), we obtain that

Es
1(x, d)em(d) = eiα(m)(−d)Es

2(x, d)em(d) ∀x ∈ G, −d ∈ U1, (3.20)

where G denotes the unbounded component of the complement of B∪D1∪D2. The perfectly conducting
boundary condition on ∂B gives that ν × [Es

j (·, d)em(d)] = −ν × [Ei(·, d)em(d)] on ∂B (j = 1, 2), which,
together with (3.20), implies that

−ν × [Ei(·, d)em(d)] = −eiα(m)(−d)ν × [Ei(·, d)em(d)] on ∂B (3.21)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/85/6/823/5890186 by Xi'an Jiaotong U

niversity Law
 School user on 09 July 2024



834 X. XU ET AL.

for all −d ∈ U1. For arbitrarily fixed −d ∈ U1, define Ẽ := (1 − eiα(m)(−d))Ei(·, d)em(d) and H̃ :=
(1/ik)curl Ẽ. Then, by (3.21), it follows that (Ẽ, H̃) satisfies the electromagnetic interior boundary value
problem ⎧⎪⎨⎪⎩

curl Ẽ − ikH̃ = 0 in B,

curl H̃ + ikẼ = 0 in B,

ν × Ẽ = 0 on ∂B.

Since k is not a Maxwell eigenvalue in B and Ei(·, d)em(d) �≡ 0 in B, we have eiα(m)(−d) = 1 for all
−d ∈ U1. Thus, it follows from (3.19) that

E∞
1 (x̂, d)em(d) = E∞

2 (x̂, d)em(d) ∀ − d ∈ U1, x̂ ∈ S
2. (3.22)

By the analyticity of E∞
j (x̂, d)em(d) in d ∈ S

2 \ {N, S}, j = 1, 2, the required equation (3.12) follows.
For the case when (3.15) holds, a similar argument as above gives the result

E∞
1 (x̂, d)em(d) = eiβ(m)(−d)E∞

2 (x̂, d)em(d) ∀x̂ ∈ S
2, −d ∈ U1, (3.23)

where β(m) is a real-valued function defined by

β(m)(x̂) := ϑ
(m)
1 (x̂, d2, p2) + ϑ

(m)
2 (x̂, d2, p2) (3.24)

for all x̂ ∈ U1 and for some fixed d2 ∈ U2, p2 ∈ V . However, by Lemma 3.1, (3.23) does not hold.
Case 2. r(x̂, d, em(x̂), p) ≡ 0 for x̂ ∈ S

2 \ {N, S}, d ∈ S
2 and p ∈ R

3. In this case, it is easily seen that
(3.12) holds.

Finally, by (3.8), (3.12) and the linear combination of eφ(d), eθ (d), d, and noting the arbitrariness of

m ∈ {φ, θ} in (3.12) and the analyticity of E∞
j (x̂, d) in d ∈ S

2, j = 1, 2, we deduce that

E∞
1 (x̂, d) = E∞

2 (x̂, d) ∀x̂, d ∈ S
2. (3.25)

This, together with Theorem 7.1 in Colton & Kress (2013), Theorem 1 in Kress (2002) and Theorem
3.1 in Cakoni et al. (2011), implies that D1 = D2 and B1 = B2. The proof is thus complete. �
Remark 3.1 Let r be the radius of the ball B. Then it is known that if r is chosen such that jn(kr) �= 0
and jn(kr)+ krj′n(kr) �= 0 for n = 0, 1, . . ., then k is not a Maxwell eigenvalue in B, where jn denotes the
spherical Bessel function of order n (see page 252 in Colton & Kress, 2013). This may give a practical
criterion on how to choose the ball B such that k is not a Maxwell eigenvalue in B. Further, by using
the same argument as above, it can be proved that Theorem 3.1 still holds true if the reference ball B is
replaced by any other domain with smooth boundary satisfying all the other conditions in Theorem 3.1.
However, if we choose B to be a domain that is not a ball, then usually there is no practical criterion
on how to choose B such that k is not a Maxwell eigenvalue in B. Due to this reason, for simplicity, we
choose the domain B to be a ball in this paper.

Remark 3.2 In the proof of Theorem 3.1, we have used a simple identity 2Re(ab) = |a + b|2 − |a|2 −
|b|2, a, b ∈ C, to obtain (10). Note that a similar identity was used in a similar context of phaseless

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/85/6/823/5890186 by Xi'an Jiaotong U

niversity Law
 School user on 09 July 2024



UNIQUENESS IN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM 835

Fig. 2. Scattering by an inhomogeneous medium.

inverse scattering problems in Novikov et al. (2015) to recover the phase from the measurements of the
intensity illuminations obtained with two incident waves (see the polarization identity (3.4) in Novikov
et al. (2015)).

4. Uniqueness for inverse electromagnetic medium scattering

This section is concerned with the uniqueness result in the inverse electromagnetic medium scattering
problem. Similarly as in Section 3, we will establish the uniqueness result by adding a reference medium
into the scattering system. To be more specific, assume that B is the given reference ball and that
n0 ∈ C2,γ (R3), 0 < γ < 1, is the refractive index of a given inhomogeneous medium with the
support of n0 − 1 in B. Assume further that n1, n2 ∈ C2,γ (R3) are the refractive indices of two
inhomogeneous media with mj := nj − 1 supported in Dj, j = 1, 2. Denote by Es

j , Hs
j , E∞

j and H∞
j

the electric scattered field, the magnetic scattered field, the electric far-field pattern and the magnetic
far-field pattern, respectively, associated with the inhomogeneous medium with the refractive index ñj

and corresponding to the incident electromagnetic waves Ei and Hi, j = 1, 2. Here, the refractive index
ñj is given by

ñj(x) :=
{

n0(x), x ∈ B,

nj(x), x ∈ R
3 \ B

for j = 1, 2. It is noticed that if Dj∩B = ∅ then ñj ∈ C2,γ (R3). See Fig. 2 for the geometric description of
the scattering problem. Suppose k is not an electromagnetic interior transmission eigenvalue in B. Here,
k is called an electromagnetic interior transmission eigenvalue in B if the homogeneous electromagnetic
interior transmission problem⎧⎪⎨⎪⎩

curl Ẽ − ikH̃ = 0, curl H̃ + ikn0Ẽ = 0 in B,

curl E0 − ikH0 = 0, curl H0 + ikE0 = 0 in B,

ν × (Ẽ − E0) = 0, ν × (H̃ − H0) = 0 on ∂B

(4.1)

has a non-trivial solution (Ẽ, H̃, E0, H0).

Theorem 4.1 Assume that B is a given ball filled with the inhomogeneous medium of the refractive
index n0 ∈ C2,γ (R3), 0 < γ < 1, such that the support of n0 − 1 is B and k is not an electromagnetic
interior transmission eigenvalue in B. Assume further that n1, n2 ∈ C2,γ (R3) are the refractive indices of
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836 X. XU ET AL.

two inhomogeneous media with mj := nj − 1 supported in Dj, j = 1, 2. Suppose D1 ∪ D2 ⊂ BR, where

BR is a ball of radius R and centered at the origin and satisfies that B ∩ BR = ∅. If the corresponding
electric far-field patterns satisfy (3.4) for all x̂ ∈ S

2 \ {N, S}, d1, d2 ∈ S
2, m ∈ {φ, θ} and p1, p2 ∈ R

3

satisfying that d1⊥p1 and d2⊥p2, then n1 = n2.

To simplify the proof of Theorem 4.1, we need the following lemma that is similar to Lemma 3.1.

Lemma 4.1 Under the assumptions of Theorem 4.1, there does not hold the equation

E∞
1 (x̂, d0)em(d0) = eiβE∞

2 (x̂, d0)em(d0) ∀x̂ ∈ S
2, (4.2)

where m ∈ {φ, θ} and d0 ∈ S
2 are arbitrarily fixed and β is a real constant.

Proof. Assume to the contrary that (4.2) holds. Then, by a similar argument as in the proof of
Lemma 3.1, it can be derived that Es

1(·, d0)em(d0) and Hs
1(·, d0)em(d0) can be analytically extended

into R
3 \ BR and satisfy the Maxwell equations (2.3a)–(2.3b) in R

3 \ BR. Noting that the incident waves
Ei(·, d0)em(d0) and Hi(·, d0)em(d0) satisfy the Maxwell equations (2.3a)–(2.3b) in R

3, we obtain that
the total fields E1 := E1(·, d0)em(d0) = Ei

1(·, d0)em(d0) + Es
1(·, d0)em(d0) and H1 := (1/ik)curl E1

satisfy the Maxwell equations (2.3a)–(2.3b) in B.
On the other hand, from the definition of ñ1 and the electromagnetic medium scattering problem, it

follows that the total fields E1 and H1 also satisfy the first two Maxwell equations in (4.1) in B. Thus,
(Ẽ, H̃, E0, H0) := (E1, H1, E1, H1) satisfies the problem (4.1). Since k is not an electromagnetic interior
transmission eigenvalue in B, it follows that E1 ≡ 0 in B. It follows from the analyticity of the incident
field Ei(·, d0)em(d0) and the electric scattered field Es

1(·, d0)em(d0) in R
3 \ BR that E1 is also analytic in

R
3 \ BR, and thus we have that E1 ≡ 0 in R

3 \ BR. This is a contradiction, implying that (4.2) does not
hold. The proof is then complete. �

With the aid of Lemma 4.1, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Our proof follows similar arguments as for the case of inverse obstacle scattering
in Section 3. Using the same argument as in the proof of Theorem 3.1, we can obtain (3.11). We now
want to prove (3.12) for arbitrarily fixed m ∈ {φ, θ}. First, if r(x̂, d, em(x̂), p) ≡ 0 for x̂ ∈ S

2 \ {N, S},
d ∈ S

2 and p ∈ R
3, then it is obvious that (3.12) holds.

We now consider the case r(x̂, d, em(x̂), p) �≡ 0 for x̂ ∈ S
2 \ {N, S}, d ∈ S

2 and p ∈ R
3. It is noticed

that the scattering problem (2.4a)–(2.4c) is well posed (see, e.g. Theorem 9.5 in Colton & Kress, 2013)
and the reciprocity relation E∞

j (x̂, d) = [E∞
j (−d, −x̂)]� for all x̂, d ∈ S

2 (j = 1, 2) still holds true when
D is an inhomogeneous medium (see, e.g. Theorem 6.30 in Colton & Kress, 2013). Thus, by a similar
argument as in the proof of Theorem 3.1, it can be shown that either (3.19) or (3.23) holds for some open
set U1 ⊂ S

2 \ {N, S}, where α(m) and β(m) are defined similarly as in (3.17) and (3.24), respectively,
in the proof of Theorem 3.1. But, Lemma 4.1 implies that (3.23) does not hold. Thus, we only need
to consider the case when (3.19) holds. By (3.19) and Rellich’s lemma (cf. Theorem 6.10 in Colton &
Kress, 2013), we obtain (3.20), where G is defined as above. For any fixed −d ∈ U1, define

Ẽ := [Ei(·, d) + Es
1(·, d)]em(d) − eiα(m)(−d)[Ei(·, d) + Es

2(·, d)]em(d), H̃ := (1/ik)curl Ẽ,

E0 := (
1 − eiα(m)(−d)

)
Ei(·, d)em(d), H0 := (1/ik)curl E0.

Then, by (3.20), we have Ẽ = E0 in G, and so (Ẽ, H̃, E0, H0) satisfies the boundary conditions on ∂B in
the problem (4.1). Further, by the definition of Ẽ, H̃, E0 and H0, it is known that (Ẽ, H̃, E0, H0) satisfies
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UNIQUENESS IN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM 837

the problem (4.1). Since k is not an electromagnetic interior transmission eigenvalue in B, we obtain
that eiα(m)(−d) = 1 for all −d ∈ U1, which means that (3.22) holds. By this and the analyticity of
E∞

j (x̂, d)em(d) in d ∈ S
2 \ {N, S}, j = 1, 2, it follows that (3.12) is true. On the other hand, the well

posedness of the medium scattering problem (2.4a)–(2.4c) and the fact that Ei(x, d)d = 0 for x ∈ R
3

and d ∈ S
2 imply (3.8). Then, by the same argument as in the proof of Theorem 3.1, it follows from

(3.8) and (3.12) that (3.25) holds. Since D1 ∪ D2 ⊂ BR and B ∩ BR = ∅ then ñj ∈ C2,γ (R3), j = 1, 2.
Therefore, by (3.25) and Theorem 4.9 in Hähner (1998), we obtain that n1 = n2. The proof is then
complete. �
Remark 4.1 It is worth noting that if n0 is chosen so that Im [n0(x0)] > 0 for some x0 ∈ B then k is not
an electromagnetic interior transmission eigenvalue in B (see the discussion in the proof of Theorem 9.8
in Colton & Kress, 2013). Moreover, by a similar argument as above, it can be proved that Theorem 4.1
still holds true if the reference ball B is replaced by any other domain with smooth boundary satisfying
all the other conditions in Theorem 4.1.

Remark 4.2 In Theorem 4.1, we assume that n0 ∈ C2,γ (R3), 0 < γ < 1. This assumption is necessary
since we need Theorem 4.9 in Hähner (1998).

5. Conclusion

In this paper, by adding a given reference ball into the electromagnetic scattering system, we established
uniqueness results for inverse electromagnetic obstacle and medium scattering with phaseless electric
far-field data generated by infinitely many sets of superpositions of two electromagnetic plane waves
with different directions and polarizations at a fixed frequency for the first time. These uniqueness
results extend our previous results in Xu et al. (2018b) for the acoustic case to the electromagnetic case.
Our method is based on a simple technique of using Rellich’s lemma and the Stratton–Chu formula for
the radiating solutions to the Maxwell equations. In the future, we hope to show the same uniqueness
results without using the reference ball, which are more challenging.
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