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UNIQUENESS IN INVERSE DIFFRACTION GRATING PROBLEMS
WITH INFINITELY MANY PLANE WAVES AT A FIXED

FREQUENCY*

XIAOXU XU\dagger , GUANGHUI HU\ddagger , BO ZHANG\S , AND HAIWEN ZHANG\P 

Abstract. This paper is concerned with uniqueness of solution of the inverse diffraction by
problems by a periodic curve with Dirichlet boundary condition in two dimensions. It is proved that
the periodic curve can be uniquely determined by the near-field measurement data corresponding to
infinitely many incident plane waves with distinct directions at a fixed frequency. Our proof is based
on Schiffer's idea which consists of two ingredients: (i) the total fields for incident plane waves with
distinct directions are linearly independent, and (ii) for a fixed wave number there exist only finitely
many linearly independent Dirichlet eigenfunctions in a bounded domain or in a closed waveguide
under additional assumptions on the waveguide boundary. Based on the Rayleigh expansion, we
prove that the phased near-field data can be uniquely determined by the phaseless near-field data
in a bounded domain, with the exception of a finite set of incident angles. Such a phase retrieval
result leads to a new uniqueness result for the inverse grating diffraction problem with phaseless
near-field data at a fixed frequency. Since the incident direction determines the quasi-periodicity of
the boundary value problem, our inverse issues are different from the existing results of [F. Hettlich
and A. Kirsch, Inverse Problems, 13 (1997), pp. 351--361], where fixed-direction plane waves at
multiple frequencies were considered.

Key words. uniqueness, inverse grating diffraction problem, Dirichlet boundary condition,
phaseless data
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1. Introduction. Suppose a perfectly conducting grating is illuminated by an
incident monochromatic plane wave in an isotropic homogeneous background medium.
For simplicity it is assumed that the grating is periodic in one surface direction x1 and
independent of another surface direction x3. In the present paper, we restrict discus-
sions to the TE (transverse electric) polarization case, where the three-dimensional
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INVERSE DIFFRACTION GRATING PROBLEMS 303

Fig. 1. Scattering by a periodic curve with Dirichlet boundary condition.

scattering problem governed by the Maxwell equations can be reduced to a two-
dimensional diffraction problem modeled by the scalar Helmholtz equation over the
x1x2-plane. Accordingly, the perfect conductor boundary condition on the grating
surface can be reduced to the Dirichlet boundary condition. This work is concerned
with the inverse diffraction problem of recovering the periodic curve (i.e., the cross-
section of the grating surface) with a Dirichlet boundary condition from phased and
phaseless near-field data measured above the grating.

Denote by \Gamma \subset \BbbR 2 a curve that is periodic in the x1-direction and bounded in the
x2-direction and represents the cross-section of the grating surface in the x1x2-plane.
Let the incident field be a time-harmonic plane wave of the form ui(x)e - i\omega t, incited
at the angular frequency \omega > 0, where the spatially dependent function ui takes the
form

ui(x) = eikx\cdot d = eikx1 sin\theta  - ikx2 cos\theta , x= (x1, x2)\in \BbbR 2.(1.1)

Here the incident direction d := (sin\theta , - cos\theta ) is given in terms of the incident angle
\theta \in ( - \pi /2,\pi /2), and k := \omega /c is the wave number with c > 0 denoting the wave speed
in the homogeneous background medium. In this paper we assume further that \Gamma 
satisfies one of the following regularity conditions:

Condition (i). \Gamma is the graph of a 3-times continuously differentiable function;
Condition (ii). \Gamma is an analytical curve.

Denote by L > 0 the period of \Gamma and by \Omega the unbounded connected domain above
\Gamma (cf. Figure 1). The wave propagation is then modeled by the Dirichlet boundary
value problem for the Helmholtz equation,

\Delta u+ k2u= 0 in \Omega , u= 0 on \Gamma ,(1.2)

where the total field u= ui + us is the sum of the incident field ui and the scattered
field us.

Set \alpha = \alpha (k, \theta ) := k sin\theta . Obviously, the incident field (1.1) is \alpha -quasi-periodic in
the sense that e - i\alpha x1ui(x) is L-periodic with respect to x1 for all x \in \Omega . In view of
the periodicity of the structure together with the form of the incident field, we require
the total field u to be \alpha -quasi-periodic, that is, e - i\alpha x1u(x) is L-periodic with respect
to x1 for all x\in \Omega . This implies that

u(x1 + nL,x2) = u(x1, x2)e
i\alpha nL for any n\in \BbbZ .(1.3)

The number \alpha \in \BbbR will be referred to as the phase shift of the solution. Since
the domain \Omega is unbounded in the x2-direction, a radiation condition needs to be
imposed at infinity as x2 \rightarrow \infty to ensure the well-posedness of the diffraction problem.
Precisely, we require the scattered field us to satisfy the Rayleigh expansion, that is,
there exist Rayleigh coefficients An \in \BbbC (n\in \BbbZ ) depending on k, \theta and \Gamma such that

us(x) =
\sum 
n\in \BbbZ 

Ane
i\alpha nx1+i\beta nx2 , x\in Uh := \{ x= (x1, x2)\in \BbbR 2 : x2 >h\} ,(1.4)
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304 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

where the parameters \alpha n \in \BbbR and \beta n \in \BbbC for n\in \BbbZ are defined by

\alpha n = \alpha n(k, \theta ,L) := \alpha + 2n\pi /L,

\beta n = \beta n(k, \theta ,L) :=

\biggl\{ \sqrt{} 
k2  - (\alpha n)2 if | \alpha n| \leq k,

i
\sqrt{} 
(\alpha n)2  - k2 if | \alpha n| >k

(1.5)

for any fixed h > max\{ x2 : x \in \Gamma \} . We note that the series (1.4) is uniformly
convergent and bounded in Uh (see Lemma 2.1). It consists of a finite number of
propagating wave modes for | \alpha n| \leq k and infinitely many surface (evanescent) wave
modes corresponding to | \alpha n| > k. For notational convenience we rewrite the incident
plane wave (1.1) as

ui(x) =A\imath e
i\alpha \imath x1+i\beta \imath x2 ,(1.6)

where A\imath = A\imath (k, \theta ) := 1, \alpha \imath = \alpha \imath (k, \theta ) := k sin\theta , \beta \imath = \beta \imath (k, \theta ) :=  - k cos\theta . Here, the
symbol \imath denotes the index for the incident plane wave. We note that \alpha \imath = \alpha = \alpha 0

and \beta \imath = - \beta 0.
The well-posedness of the forward diffraction problem is presented in the following

proposition.

Proposition 1.1. (1) If Condition (i) holds, the diffraction problem (1.1)--(1.4)
admits a unique \alpha -quasi-periodic solution u\in C2(\Omega )\cap C(\Omega ).

(2) Under Condition (ii), there exists at least one solution u \in C2(\Omega ) \cap C(\Omega ) to
the diffraction problem (1.1)--(1.4). Moreover, uniqueness of the solution remains true
for small wave numbers or for all wave numbers excluding a discrete set with the only
accumulating point at infinity.

We refer the reader to [20, 28] for the proof of the first statement when the period
of the curve is L = 2\pi . Actually, it follows from a scaling argument that statement
(1) holds for an arbitrary period L > 0. Further, by the Fredholm alternative (see,
e.g., [35, Theorem 4.17]) and the analytic Fredholm theory (see, e.g., [14, Theorem
8.26]), one can prove the second statement through a standard variational argument
together with quasi-periodic transparent boundary conditions (see, e.g., [1, 4, 10,
41]). We remark that the well-posedness of the diffraction problem (1.1)--(1.4) can be
established under weaker conditions than Conditions (i) and (ii). To be more specific,
if \Gamma is the graph of a periodic Lipschitz function, the existence of \alpha -quasi-periodic
variational solutions in H1

0,\alpha (\Omega ) can be shown, where

H1
0,\alpha (\Omega ) := \{ u\in H1

loc(\Omega ) : e
 - i\alpha x1u(x) is L-periodic with respect to x1, u= 0 on \Gamma \} .

Further, uniqueness of solutions remains valid for any k > 0 even under the following
weaker assumption (see [12, (4.1) and Theorem 4.1] and [11, (2.2) and Theorem 4.1]):

(x1, x2)\in \Omega \Rightarrow (x1, x2 + s)\in \Omega for all s > 0.

Note that this geometric assumption is fulfilled if \Gamma is the graph of a continuous
function.

The inverse problem we consider in this paper is to recover a periodic curve with
Dirichlet boundary condition from phased or phaseless near-field data corresponding
to an infinite number of incident plane waves with different angles, where the period
L of the curve is unknown.

Let \theta n \in ( - \pi /2, \pi /2) with n \in \BbbZ + be distinct incident angles, and denote by
u(x;\theta n) the total field corresponding to the diffraction problem (1.1)--(1.4) with \theta = \theta n.
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INVERSE DIFFRACTION GRATING PROBLEMS 305

Note that, according to Proposition 1.1, the diffraction problem (1.1)--(1.4) may admit
multiple solutions under Condition (ii) if k is an exceptional wave number. If this
happens, u(x;\theta n) is assumed to be any one of these solutions. The main uniqueness
result for the inverse problem considered is presented in the following theorem.

Theorem 1.1. Assume that the unknown periodic curve \Gamma with Dirichlet bound-
ary condition satisfies either Condition (i) or Condition (ii). Suppose the period
of \Gamma is unknown. Then \Gamma can be uniquely determined by either the phased data
\{ u(x;\theta n) : x \in \scrS \} \infty n=1, where \scrS \subset \Gamma h is a line segment parallel to the x1-axis, or
the phaseless data \{ | u(x;\theta n)| : x \in \scrD \} \infty n=1, where \scrD \subset \Omega is a bounded domain. Here,
\Gamma h := \{ x : x2 = h\} with h>max\{ x2 : x\in \Gamma \} being an arbitrary constant.

The proof of Theorem 1.1 will be given in section 4 for the case of phased data and
in section 5 for the case of phaseless data. If the background medium is nonabsorbing
(i.e., k > 0), it is well known that the global uniqueness with phased near-field data
corresponding to one incident plane wave is impossible (see [16]). We will show in
section 3 that phased near-field data corresponding to one incident plane wave cannot
even determine the period of a grating curve.

Below we shall review some uniqueness results for inverse time-harmonic scatter-
ing from periodic curves of Dirichlet kind and compare our results with them. To the
best of our knowledge, uniqueness with one incident wave was verified in the following
special cases:

(i) when the background medium is lossy (i.e., Imk > 0) [6];
(ii) when the wave number or the grating height is sufficiently small [23];
(iii) within the class of rectangular gratings [19], or within the class of polygonal

gratings when Rayleigh frequencies are excluded (i.e., \beta n \not = 0 for all n \in \BbbZ )
[16].

If a Rayleigh frequency occurs (i.e., \beta n = 0 for some n \in \BbbZ ), the measured data
for two incident plane waves can be used to determine a general polygonal grating
[19] (see also [8, 9] in the case of inverse electromagnetic scattering from perfectly
conducting polyhedral gratings). Based on the ``blowing up"" arguments arising from
inverse scattering from bounded obstacles [25, 30], Kirsch proved in [29] that a general
periodic curve can be uniquely determined by using all \alpha -quasi-periodic incident waves
\{ ei\alpha nx1 - i\beta nx2 : n \in \BbbZ \} . The uniqueness result of [29] also extends to Neumann and
impedance boundary value problems as well as the transmission problem [18, 24, 42].
Note that the incident waves used in [29] include a finite number of plane waves
for | \alpha n| \leq k and infinitely many evanescent waves corresponding to | \alpha n| > k, which
constitute the \alpha -quasi-periodic Green's function with a fixed phase shift. However,
the incoming evanescent waves are usually difficult to generate. The factorization
method established in [5] also gives rise to the same uniqueness result. Our work
differs from [5, 29] in the use of infinitely many plane waves with various directions
lying on the semicircle \BbbS  - := \{ x= (x1, x2)\in \BbbR 2 : | x| = 1, x2 < 0\} . Such incoming waves
do not include any evanescent wave and thus seem more natural in applications.

In the case when the a priori information of the grating height is available, Hettlich
and Kirsch [23] obtained a uniqueness result by using fixed-direction plane waves
with a finite number of frequencies. See also [21] for an analogous result for the
inverse transmission problem in a two-layered periodic medium. These works can
be viewed as the extension of the idea due to Colton and Sleeman [15] from inverse
scattering by bounded sound-soft obstacles to the case of inverse scattering by periodic
structures. As will be seen in subsection 4.2, the fixed-direction problem of [23] and
the fixed-frequency problem to be investigated here are different inverse issues. With
multiple incident directions, Colton and Sleeman's idea [15] and the approach of
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306 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

[23] cannot be straightforwardly applied to inverse diffraction problems in periodic
structures, because of the different phase shifts caused by incident angles at a fixed
frequency. In fact, the multifrequency inverse problem of [23] and the multidirection
problem of this paper result in different eigenvalue problems. Using different directions
leads to a \mu -eigenvalue problem where \mu = sin\theta is determined by the incident angle
\theta \in ( - \pi /2, \pi /2), which brings difficulties in proving the discreteness of eigenvalues.
To apply the analytical Fredholm theory, we shall resort to the arguments of [40] to
exclude the existence of flat dispersion curves in a closed waveguide. For this reason
we need the same regularity assumption on grating profiles as in [40] (see Conditions
(i) and (ii)).

In many practical applications, it is difficult to accurately measure the phase in-
formation of wave fields. This motivates us to study the inverse problem of recovering
a periodic curve of Dirichlet kind from phaseless data. However, most uniqueness
results with phaseless data are confined to inverse scattering from bounded scatterers
(see, e.g., [26, 31, 32, 33, 38, 45]). In particular, using the Sommerfeld radiating
behavior of the scattered field at infinity, we see that explicit formulas for recovering
phased far-field patterns from phaseless near-field data are derived in [38]. This result
has been extended to scattering by locally rough surfaces in [44]. The key ingredi-
ent of [38, 44] is the Rellich's lemma (see [14, Theorem 2.14] and [43, Theorem 2.2]),
which establishes the one-to-one correspondence between Sommerfeld radiating waves
and their far-field patterns. In this paper we consider a periodic curve (which can be
viewed as a special nonlocally perturbed rough surface in two dimensions) and also
prove a phase retrieval result but rather based on the Rayleigh expansion (1.4) for
diffraction grating problems. We remark that the Rayleigh expansion radiation con-
dition is different from the Sommerfeld radiation condition, since the scattered field
(1.4) dose not decay as x2 tends to infinity and does not lead to the classical far-field
patterns. As a consequence, the phase retrieval approach and uniqueness proofs in [38,
44] cannot carry over to diffraction grating problems here. Instead of recovering the
phased far-field pattern as in [38, 44], we need to determine the Rayleigh coefficients
in a special order by sophisticated arguments (see the proof of Theorem 5.2). To the
best of our knowledge, uniqueness results for identifying periodic grating curves using
phaseless near-field data are not yet available. We refer the reader to [2, 3, 7, 26, 34,
44, 46, 47] for numerical schemes of inverse scattering using phaseless data.

This paper is organized as follows. In section 2, we prepare several lemmas for
later use. Section 3 is devoted to determining one grating period from the phased
near-field data for one incident plane wave. The results in sections 2 and 3 are
independent of the smoothness Conditions (i) and (ii) of the periodic curve given in
the introduction. In section 4, we prove uniqueness for recovering periodic curves
with Dirichlet boundary condition using the phased near-field data corresponding to
infinitely many incident plane waves with distinct directions. A similar uniqueness
result based on phaseless near-field data will be established in section 5. Finally,
concluding remarks will be given in section 6.

2. Preliminary lemmas. The following lemmas are useful in the proofs of
uniqueness results in what follows.

Lemma 2.1. Let \Gamma be a periodic curve. Set Uh := \{ x \in \BbbR 2 : x2 > h\} for any
h>max\{ x2 :x\in \Gamma \} .

(i) The Rayleigh expansion (1.4) is uniformly bounded for x\in Uh.
(ii) The Rayleigh expansion (1.4) is uniformly and absolutely convergent for x \in 

Uh.
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INVERSE DIFFRACTION GRATING PROBLEMS 307

(iii) Let b \in \BbbR , and let An (n \in \BbbZ ) be given as in (1.4). Set \scrP \pm (N) := \{ n \in \BbbZ :
| \alpha n| >k,\pm n>N\} for N > 0. Then, for the case when b < | \beta n| for all n\in \scrP +(N), the
series \sum 

n\in \scrP +(N)

Ane
i\alpha nx1+i\beta nx2+bx2(2.1)

is uniformly and absolutely convergent for x \in Uh. For the case when b < | \beta n| for all
n\in \scrP  - (N), the series \sum 

n\in \scrP  - (N)

Ane
i\alpha nx1+i\beta nx2+bx2

is uniformly and absolutely convergent for x\in Uh.
(iv) Let N \in \BbbZ +, aj \in \BbbC , and bj \in \BbbR \setminus \{ 0\} for j = 1, . . . ,N . Then\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1T

\int 2T

T

N\sum 
j=1

aje
ibjtdt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2

T

N\sum 
j=1

| aj | 
| bj | 

\rightarrow 0 as T \rightarrow +\infty .

Proof. Choosing \sigma > 0 small enough so that h  - 2\sigma > max\{ x2 : x \in \Gamma \} , noting
that (1.4) also holds with h replaced by h - 2\sigma , and applying Parseval's equality yield
the estimate

2| us(x)| \leq 
\sum 
n\in \BbbZ 

2
\bigm| \bigm| Ane

i\alpha nx1+i\beta nx2
\bigm| \bigm| 

\leq 
\sum 
n\in \BbbZ 

\bigm| \bigm| \bigm| Ane
i\alpha nx1+i\beta n(h - \sigma )

\bigm| \bigm| \bigm| 2 +\sum 
n\in \BbbZ 

\bigm| \bigm| \bigm| ei\beta n(x2 - h+\sigma )
\bigm| \bigm| \bigm| 2

\leq 1

L

\int L

0

| us(x1, h - \sigma )| 2dx1 +
\sum 

| \alpha n| \leq k

1 +
\sum 

| \alpha n| >k

Ce - | n| /C(2.2)

uniformly for all x\in Uh, where we have used the fact that 2\sigma 
\sqrt{} 

(2n\pi /L+ \alpha 0)2  - k2 >
| n| /C holds for sufficiently large | n| provided the constant C > 0 is large enough.
Thus statement (i) holds. The estimate (2.2) also implies that statement (ii) holds.

We now prove statement (iii). We only consider the case when b < | \beta n| for all
n \in \scrP +(N) since the proof of the other case is similar. We first conclude from (2.2)
that \{ | Ane

i\alpha nx1+i\beta n(h - \sigma )| : n \in \scrP +(N)\} is uniformly bounded. Noting that in this
case (i\beta n + b)< 0 for all n\in \scrP +(N), we have\sum 
n\in \scrP +(N)

\bigm| \bigm| Ane
i\alpha nx1+i\beta nx2+bx2

\bigm| \bigm| \leq \sum 
n\in \scrP +(N)

\bigm| \bigm| \bigm| Ane
i\alpha nx1+i\beta n(h - \sigma )

\bigm| \bigm| \bigm| eb(h - \sigma )e(i\beta n+b)(x2 - h+\sigma )

\leq 
\sum 

n\in \scrP +(N)

Ce - | n| /C

uniformly for all x\in Uh, where we have used the fact that \sigma 
\sqrt{} 
(2n\pi /L+ \alpha 0)2  - k2 - b >

| n| /C holds for sufficiently large | n| provided the constant C > 0 is large enough. This
implies that (2.1) is uniformly and absolutely convergent for x\in Uh.

Finally, noting that\bigm| \bigm| \bigm| \bigm| \bigm| 1T
\int 2T

T

aje
ibjtdt

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| 1T aj(e2ibjT  - eibjT )

ibj

\bigm| \bigm| \bigm| \bigm| \leq 1

T

2| aj | 
| bj | 

, j = 1, . . . ,N,

it is easy to see that statement (iv) holds.
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308 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

Lemma 2.2. Let u(x;\theta m) be the total field corresponding to the diffraction problem
(1.1)--(1.4) with the incident angle \theta = \theta m \in ( - \pi /2, \pi /2) for m = 1, . . . ,M and M \in 
\BbbZ +. Suppose \{ \theta m\} Mm=1 are distinct incident angles. Then \{ u(x;\theta m)\} Mm=1 are linearly
independent in \Omega .

Proof. Assume that
\sum M

m=1 cmu(x;\theta m) = 0 in \Omega for some cm \in \BbbC , m = 1, . . . ,M .
To indicate the dependence of us on the incident angle, we rewrite the Rayleigh
expansion (1.4) as

us(x;\theta m) =
\sum 
n\in \BbbZ 

An(\theta m) ei\alpha n(\theta m)x1+i\beta n(\theta m)x2 , x\in Uh,

where h>max\{ x2 : x\in \Gamma \} and \alpha n(\theta m) := \alpha (\theta m) + 2n\pi /L with \alpha (\theta m) := k sin\theta m and
\beta n(\theta m) \in \BbbC are defined as in (1.5) with the incident angle \theta = \theta m. Then, by (1.6) it
follows that

M\sum 
m=1

cm u(x;\theta m) =

M\sum 
m=1

cm

\left(  \sum 
n\in \BbbZ \cup \{ \imath \} 

An(\theta m) ei\alpha n(\theta m)x1+i\beta n(\theta m)x2

\right)  = 0.(2.3)

For any \~m\in \{ 1,2, . . . ,M\} , multiplying (2.3) by e - i\beta \imath (\theta \~m)x2 we obtain\sum 
m\in \scrI \~m

cme
i\alpha \imath (\theta m)x1 +

\sum 
m\in \{ 1,...,M\} \setminus \scrI \~m

cme
i\alpha \imath (\theta m)x1+i[\beta \imath (\theta m) - \beta \imath (\theta \~m)]x2

+

M\sum 
m=1

cm

\Biggl( \sum 
n\in \BbbZ 

An(\theta m) ei\alpha n(\theta m)x1+i[\beta n(\theta m) - \beta \imath (\theta \~m)]x2

\Biggr) 
= 0, x\in Uh,(2.4)

where \scrI \~m := \{ m\in \{ 1, . . . ,M\} : \beta \imath (\theta m) = \beta \imath (\theta \~m)\} .
Next we claim that

lim
H\rightarrow +\infty 

1

H

\int 2H

H

\sum 
m\in \{ 1,...,M\} \setminus \scrI \~m

cme
i\alpha \imath (\theta m)x1+i[\beta \imath (\theta m) - \beta \imath (\theta \~m)]x2dx2 = 0,(2.5)

lim
H\rightarrow +\infty 

1

H

\int 2H

H

M\sum 
m=1

cm

\Biggl( \sum 
n\in \BbbZ 

An(\theta m) ei\alpha n(\theta m)x1+i[\beta n(\theta m) - \beta \imath (\theta \~m)]x2

\Biggr) 
dx2 = 0(2.6)

for all x1 \in \BbbR . In fact, (2.5) follows easily from Lemma 2.1 (iv). To prove (2.6), let
m \in \{ 1, . . . ,M\} be arbitrarily fixed. For N > 0 large enough we set \scrJ 1(N) := \{ n \in 
\BbbZ : | \alpha n(\theta m)| > k, | n| > N\} and \scrJ 2(N) := \{ n \in \BbbZ : | \alpha n(\theta m)| > k, | n| \leq N\} . Using
| e - i\beta \imath (\theta \~m)x2 | = 1, it follows from Lemma 2.1 (ii) that

lim
N\rightarrow +\infty 

\sum 
n\in \scrJ 1(N)

\bigm| \bigm| \bigm| An(\theta m) ei\alpha n(\theta m)x1+i[\beta n(\theta m) - \beta \imath (\theta \~m)]x2

\bigm| \bigm| \bigm| = 0(2.7)

uniformly for all x \in Uh. For any fixed N \in \BbbZ +, since \scrJ 2(N) is a finite set and
i\beta n(\theta m)< 0 for all n\in \scrJ 2(N), we have

lim
x2\rightarrow +\infty 

\sum 
n\in \scrJ 2(N)

\bigm| \bigm| \bigm| An(\theta m) ei\alpha n(\theta m)x1+i[\beta n(\theta m) - \beta \imath (\theta \~m)]x2

\bigm| \bigm| \bigm| = 0(2.8)

uniformly for all x1 \in \BbbR . Since \scrJ 3 := \{ n \in \BbbZ : | \alpha n(\theta m)| \leq k\} is also a finite set and
\beta n(\theta m)\geq 0>\beta \imath (\theta \~m) for all n\in \scrJ 3, it follows from Lemma 2.1 (iv) that

lim
H\rightarrow +\infty 

1

H

\int 2H

H

\sum 
n\in \scrJ 3

An(\theta m) ei\alpha n(\theta m)x1+i[\beta n(\theta m) - \beta \imath (\theta \~m)]x2dx2 = 0
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INVERSE DIFFRACTION GRATING PROBLEMS 309

uniformly for all x1 \in \BbbR . This, together with (2.7)--(2.8), implies that (2.6) holds.
Combining (2.4)--(2.6), we arrive at\sum 

m\in \scrI \~m

cme
i\alpha \imath (\theta m)x1 = 0, x1 \in \BbbR .(2.9)

Multiplying (2.9) by e - i\alpha \imath (\theta \~m)x1 we obtain\sum 
m\in \scrK \~m

cm +
\sum 

m\in \scrI \~m\setminus \scrK \~m

cme
i[\alpha \imath (\theta m) - \alpha \imath (\theta \~m)]x1 = 0, x1 \in \BbbR ,

where \scrK \~m := \{ m \in \scrI \~m : \alpha \imath (\theta m) = \alpha \imath (\theta \~m)\} . Obviously, \scrK \~m = \{ \~m\} . Then it follows
from Lemma 2.1 (iv) that c \~m = 0. By the arbitrariness of \~m it follows that cm = 0 for
all m= 1, . . . ,M , implying that \{ u(x;\theta m)\} Mm=1 are linearly independent in \Omega .

Remark 2.1. By (1.6) the total field u to the diffraction problem (1.1)--(1.4) is
given by

u(x) =
\sum 

n\in \BbbZ \cup \{ \imath \} 

Ane
i\alpha nx1+i\beta nx2 , x\in Uh.(2.10)

We claim that

u \not \equiv 0 in \Omega .(2.11)

Assume to the contrary that u\equiv 0 in \Omega . Then, proceeding as in the proof of Lemma
2.2, we first multiply (2.10) by e - i\beta \imath x2 and then by e - i\alpha \imath x1 to obtain that A\imath = 0,
which contradicts A\imath = 1. This implies that (2.11) holds.

In the remaining part of this paper, we consider two periodic curves \Gamma (1) and
\Gamma (2) with periods L1 > 0 and L2 > 0, respectively. Denote by \Omega j the unbounded
connected domain above \Gamma (j) for j = 1,2. Set \Gamma h := \{ x : x2 = h\} for some h>max\{ x2 :
x \in \Gamma (1) \cup \Gamma (2)\} . Denote by usj(x;\theta ) and uj(x;\theta ) the scattered field and total field,
respectively, for incident plane wave ui(x;\theta ) with \theta \in ( - \pi /2, \pi /2) corresponding to

the curve \Gamma (j), j = 1,2. Analogously, denote by (\alpha 
(j)
n , \beta 

(j)
n ) the pair (\alpha n, \beta n) (see (1.5)

and (1.6)) and by A
(j)
n the Rayleigh coefficient An in (1.4) and (1.6) corresponding to

\Gamma = \Gamma (j) for n\in \BbbZ \cup \{ \imath \} and j = 1,2.

3. Determination of grating period from phased data. In this section we
consider the inverse problem, that is, whether it is possible to determine the period
of a periodic curve from phased near-field data corresponding to one incident plane
wave. Since the total field u to the forward diffraction model (1.1)--(1.4) is required
to be \alpha -quasi-periodic, it is seen that e - i\alpha x1u(x) is L-periodic with respect to x1.
Actually, this is also implied by (1.4) and (1.6). However, the period L may not
be the minimum period of e - i\alpha x1u(x), as illustrated in the following remark, which
presents two diffraction grating curves with different minimum periods which can
generate identical near-field data for one incident plane wave. Such an example was
motivated by the classification of unidentifiable polygonal diffraction gratings using
one incident plane wave; see [8, 9, 16, 17].

Remark 3.1. Consider the example with u= ui + us, where

ui(x) = ei( - x1 - 
\surd 
3x2), us(x) = ei(x1+

\surd 
3x2)  - e - 2ix1  - e2ix1 .(3.1)
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310 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

Fig. 2. Contour of the total field u given by (3.2). The red solid line and the red dash-dot line
denote two grating curves with different minimum periods, respectively.

Obviously, ui is a plane wave defined as in (1.1) with incident angle \theta = - \pi /6 and wave
number k= 2, implying that \alpha = - 1. Note that if we choose the period L= 2\pi , then
the Rayleigh frequency occurs (since \beta  - 1 = \beta 3 = 0 in this case). A straightforward
calculation shows

u(x) = 2cos(x1 +
\surd 
3x2) - 2cos(2x1) = - 4 sin

3x1 +
\surd 
3x2

2
sin

 - x1 +
\surd 
3x2

2
.(3.2)

Therefore, the zeros of u(x) consist of two families of parallel lines,

l(1)n := \{ x= (x1, x2)\in \BbbR 2 : 3x1 +
\surd 
3x2 = 2n\pi \} ,

l(2)n := \{ x= (x1, x2)\in \BbbR 2 : - x1 +
\surd 
3x2 = 2n\pi \} 

for n \in \BbbZ , which form a grid in \BbbR 2, as illustrated by Figure 2. It is obvious that
the two curves \Gamma (1) and \Gamma (2) plotted by the red solid line `-' and the red dashed
line `-.', respectively, as shown in Figure 2, lie on the above grid. The minimum
period of \Gamma (1) and \Gamma (2) is L1 = 2\pi and L2 = 4\pi , respectively. From the above
discussions and the formula (3.1), it can be seen that us is the scattered field to the
diffraction problem (1.1)--(1.4), with the curve \Gamma = \Gamma (1) and the period L = L1, and

satisfies the Rayleigh expansion (1.4) with nonzero Rayleigh coefficients A
(1)
2 = 1,

A
(1)
 - 1 = A

(1)
3 =  - 1. However, on the other hand, it is also easily seen that us is the

scattered field to the diffraction problem (1.1)--(1.4), with the curve \Gamma = \Gamma (2) and
the period L= L2, and satisfies the Rayleigh expansion (1.4) with nonzero Rayleigh

coefficients A
(2)
4 = 1, A

(2)
 - 2 = A

(2)
6 =  - 1. This example shows that it is impossible

to determine the minimum period (also the shape) of a grating curve from phased
near-field data corresponding to one incident plane wave.

In general, one can only find a common period of two grating curves if their
scattered fields coincide. This will be proved rigorously in Theorem 3.1, where the
periodic curves do not need to satisfy the smoothness Conditions (i) and (ii).

Theorem 3.1. Suppose \theta \in ( - \pi /2, \pi /2) is an arbitrarily fixed incident angle.
Let \Gamma (1) and \Gamma (2) be two periodic curves. If the corresponding scattered fields satisfy

us1(x;\theta ) = us2(x;\theta ) on x2 = h>max\{ x2 :x\in \Gamma (1) \cup \Gamma (2)\} ,(3.3)

then there exists L> 0 such that L is a period of both \Gamma (1) and \Gamma (2).

Proof. Suppose Lj > 0 is a period of the curve \Gamma (j), j = 1,2. Then the corre-
sponding scattered field usj(x;\theta ) satisfies the Rayleigh expansions

usj(x) =
\sum 
n\in \BbbZ 

A(j)
n ei\alpha 

(j)
n x1+i\beta (j)

n x2 , x\in Uh := \{ x\in \BbbR 2 : x2 >h\} , j = 1,2,(3.4)
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INVERSE DIFFRACTION GRATING PROBLEMS 311

where \alpha 
(j)
n , \beta 

(j)
n , and the coefficients A

(j)
n that depend on k, \theta , and \Gamma (j) are defined

analogously to \alpha n, \beta n, and An, with \Gamma replaced by \Gamma (j). Note that the following
conditions are fulfilled:

(i) us1  - us2 satisfies the Helmholtz equation in Uh;
(ii) us1  - us2 = 0 on \Gamma h := \{ x : x2 = h\} ;
(iii) supx\in Uh

| us1(x) - us2(x)| <+\infty ;
(iv) us1 - us2 satisfies the upward propagating radiation condition (see [13, Defini-

tion 2.2]).
In fact, (i) follows from (1.1) and (1.2), and (ii) follows from (3.3). (iii) and (iv) are
implied by the Rayleigh expansions (3.4) (see Lemma 2.1 (i) and [13, p. 1777]). By
uniqueness to the Dirichlet boundary value problem in Uh (see [13, Theorem 3.4]), it
follows that

us1(x;\theta ) = us2(x;\theta ), x\in Uh.(3.5)

We now consider the following two cases.
Case 1. L1/L2 is rational.
Let p/q = L1/L2 with reduced fraction p/q and positive integers p, q \in \BbbZ +. Set

L := qL1. Then L= pL2. Thus L is a common period for both \Gamma (1) and \Gamma (2).
Case 2. L1/L2 is irrational.
We claim that any L > 0 is a period of both \Gamma (1) and \Gamma (2). To do this, we first

deduce from the fact that L1/L2 is irrational that

\alpha (1)
m \not = \alpha (2)

n for all (m,n)\in \BbbZ 2\setminus \{ (0,0)\} and \alpha 
(1)
0 = \alpha 

(2)
0 = k sin\theta .(3.6)

It follows from (3.4) and (3.5) that\sum 
n\in \BbbZ 

A(1)
n ei\alpha 

(1)
n x1+i\beta (1)

n x2  - 
\sum 
n\in \BbbZ 

A(2)
n ei\alpha 

(2)
n x1+i\beta (2)

n x2 = 0, x\in Uh.(3.7)

The proof of this case can be divided into three steps as follows.
Step 1. We prove that

A
(1)
0 =A

(2)
0 ,(3.8)

A(1)
n = 0 for all n\in \BbbZ \setminus \{ 0\} such that | \alpha (1)

n | \leq k,(3.9)

A(2)
n = 0 for all n\in \BbbZ \setminus \{ 0\} such that | \alpha (2)

n | \leq k.(3.10)

Let \~n \in \BbbZ be arbitrarily fixed such that | \alpha (1)
\~n | \leq k. Multiplying (3.7) by e - i\beta 

(1)
\~n x2 , we

obtain \sum 
n\in \scrI (1)

\~n

A(1)
n ei\alpha 

(1)
n x1 +

\sum 
n\in \BbbZ \setminus \scrI (1)

\~n

A(1)
n ei\alpha 

(1)
n x1+i(\beta (1)

n  - \beta 
(1)
\~n )x2

 - 
\sum 

n\in \scrI (2)
\~n

A(2)
n ei\alpha 

(2)
n x1  - 

\sum 
n\in \BbbZ \setminus \scrI (2)

\~n

A(2)
n ei\alpha 

(2)
n x1+i(\beta (2)

n  - \beta 
(1)
\~n )x2 = 0, x\in Uh,(3.11)

where \scrI (j)
\~n := \{ n \in \BbbZ : \beta 

(j)
n = \beta 

(1)
\~n \} is at most a finite set for j = 1,2. Analogously to

(2.6), using | ei\beta 
(1)
\~n x2 | = 1, we can apply Lemma 2.1 (ii) and (iv) to obtain

lim
H\rightarrow +\infty 

1

H

\int 2H

H

\sum 
n\in \BbbZ \setminus \scrI (j)

\~n

A(j)
n ei\alpha 

(j)
n x1+i(\beta (j)

n  - \beta 
(1)
\~n )x2dx2 = 0, j = 1,2,
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312 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

for all x1 \in \BbbR . Therefore, it follows from (3.11) that\sum 
n\in \scrI (1)

\~n

A(1)
n ei\alpha 

(1)
n x1  - 

\sum 
n\in \scrI (2)

\~n

A(2)
n ei\alpha 

(2)
n x1 = 0, x1 \in \BbbR .(3.12)

Similarly, multiplying (3.12) by e - i\alpha 
(1)
\~n x1 , we can deduce from Lemma 2.1 (iv) that\sum 

n\in \scrK (1)
\~n

A(1)
n  - 

\sum 
n\in \scrK (2)

\~n

A(2)
n = 0,(3.13)

where \scrK (j)
\~n := \{ n \in \BbbZ : \alpha 

(j)
n = \alpha 

(1)
\~n , \beta 

(j)
n = \beta 

(1)
\~n \} , j = 1,2. Obviously, \scrK (1)

\~n = \{ \~n\} . In

view of (3.6), we know that \scrK (2)
\~n = \{ 0\} if \~n = 0 and \scrK (2)

\~n = \emptyset if \~n \in \BbbZ \setminus \{ 0\} . These,
together with (3.13), imply (3.8) and (3.9). By interchanging the roles of us1 and us2,
we can employ an argument similar to that above to obtain (3.10).

Step 2. We prove that

A(1)
n = 0 for all n\in \BbbZ such that | \alpha (1)

n | >k,(3.14)

A(2)
n = 0 for all n\in \BbbZ such that | \alpha (2)

n | >k.(3.15)

Set \scrP (j) := \{ n\in \BbbZ :| \alpha (j)
n | >k\} , j = 1,2. It follows from (3.7)--(3.10) that\sum 

n\in \scrP (1)

A(1)
n ei\alpha 

(1)
n x1+i\beta (1)

n x2  - 
\sum 

n\in \scrP (2)

A(2)
n ei\alpha 

(2)
n x1+i\beta (2)

n x2 = 0, x\in Uh.(3.16)

By (1.5), we can rearrange the elements in \{ (1, n) : n\in \scrP (1)\} \cup \{ (2, n) : n\in \scrP (2)\} as a

sequence \{ (p\ell , q\ell )\} \ell \in \BbbZ +
such that \beta 

(p\ell )
q\ell = ib\ell with b\ell > 0 and b\ell \leq b\ell +1 for all \ell \in \BbbZ +.

Obviously, b\ell \rightarrow +\infty as \ell \rightarrow +\infty .
Without loss of generality, we may assume that p1 = 1 and q1 = \~n for some

\~n \in \scrP (1) and thus that \beta 
(p1)
q1 = \beta 

(1)
\~n . Let \scrI (j)

\~n (j = 1,2) be defined as in Step 1. It is

clear that \scrI (j)
\~n = \{ n\in \scrP (1) : \beta 

(j)
n = \beta 

(1)
\~n \} and is at most a finite set. Then, multiplying

(3.16) by e - i\beta 
(1)
\~n x2 , we obtain\sum 

n\in \scrI (1)
\~n

A(1)
n ei\alpha 

(1)
n x1 +

\sum 
n\in \scrP (1)\setminus \scrI (1)

\~n

A(1)
n ei\alpha 

(1)
n x1+i(\beta (1)

n  - \beta 
(1)
\~n )x2

 - 
\sum 

n\in \scrI (2)
\~n

A(2)
n ei\alpha 

(2)
n x1  - 

\sum 
n\in \scrP (2)\setminus \scrI (2)

\~n

A(2)
n ei\alpha 

(2)
n x1+i(\beta (2)

n  - \beta 
(1)
\~n )x2 = 0, x\in Uh.(3.17)

For N > 0 large enough and j = 1,2, we set \scrQ (j)
1 (N) := \{ n \in \scrP (j)\setminus \scrI (j)

\~n : | n| >N\} 
and \scrQ (j)

2 (N) := \{ n\in \scrP (j)\setminus \scrI (j)
\~n : | n| \leq N\} . By Lemma 2.1 (iii), we have

lim
N\rightarrow +\infty 

\sum 
n\in \scrQ (j)

1 (N)

\bigm| \bigm| \bigm| A(j)
n ei\alpha 

(j)
n x1+i(\beta (j)

n  - \beta 
(1)
\~n )x2

\bigm| \bigm| \bigm| = 0, j = 1,2,(3.18)

uniformly for all x \in Uh. For any fixed N > 0, since \scrQ (j)
2 (N) is a finite set and

i(\beta 
(j)
n  - \beta 

(1)
\~n )< 0 for all n\in \scrQ (j)

2 (N) due to the definition of \beta 
(1)
\~n , thus we have

lim
x2\rightarrow +\infty 

\sum 
n\in \scrQ (j)

2 (N)

\bigm| \bigm| \bigm| A(j)
n ei\alpha 

(j)
n x1+i(\beta (j)

n  - \beta 
(1)
\~n )x2

\bigm| \bigm| \bigm| = 0, j = 1,2,(3.19)
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INVERSE DIFFRACTION GRATING PROBLEMS 313

uniformly for all x1 \in \BbbR . Thus, it follows from (3.18) and (3.19) that

lim
x2\rightarrow +\infty 

\sum 
n\in \scrP (j)\setminus \scrI (j)

\~n

A(j)
n ei\alpha 

(j)
n x1+i(\beta (j)

n  - \beta 
(1)
\~n )x2 = 0, j = 1,2,

for all x1 \in \BbbR . This, together with (3.17), implies that (3.12) holds. Analogously to

Step 1, multiplying (3.12) by e - i\alpha 
(1)
\~n x1 , we can apply Lemma 2.1 (iv) to obtain (3.13)

and thus A
(1)
\~n = A

(p1)
q1 = 0. Taking this into (3.16), we obtain that (3.16) holds with

\scrP (1) replaced by \scrP (1)\setminus \{ q1\} . Then using the same argument as above, we can obtain

that A
(p2)
q2 = 0. Now, we can repeat the same argument again to obtain that A

(p\ell )
q\ell = 0

for all \ell \in \BbbZ +. This means that (3.14) and (3.15) hold.
Step 3. Combining (3.8)--(3.10), (3.14), and (3.15), we arrive at

A
(1)
0 =A

(2)
0 andA(1)

n =A(2)
n = 0 for n\in \BbbZ \setminus \{ 0\} .

Then by the Dirichlet boundary condition imposed on \Gamma (j) (j = 1,2), we have

ei\alpha 0x1 - i\beta 0x2 = ui(x) = - usj(x) = - A(j)
0 ei\alpha 0x1+i\beta 0x2 , x\in \Gamma (j), j = 1,2.

This further implies that \Gamma (j) (j = 1,2) is a straight line parallel to the x1-axis since

A
(j)
0 is a constant. Thus, any L> 0 is a common period of \Gamma (1) and \Gamma (2).

Remark 3.2. Case (ii) in the proof of Theorem 3.1 implies that if the relation
(3.3) holds and one of \Gamma (j) (j = 1,2) is not a straight line parallel to the x1-axis, then
it is impossible that L1/L2 is irrational.

4. Uniqueness with phased data. In this section, we prove that a periodic
curve with Dirichlet boundary condition fulfilling Condition (i) or Condition (ii) can be
uniquely determined by the fixed-frequency near-field data corresponding to incident
plane waves with distinct angles (i.e., Theorem 1.1 with phased data). This differs
from [23], where fixed-direction incident plane waves with different frequencies are
used, and this also differs from [29] which involves fixed-frequency quasi-periodic
incident waves with the same phase shift. For the inverse problem to recovering
a periodic curve from near-field data corresponding to incident plane waves with
distinct directions, difficulties arise from the fact that the corresponding total fields
have different phase shifts since \alpha = k sin\theta depends on the incident angle \theta . We
rephrase Theorem 1.1 with phased data in Theorem 4.1 below, which is the main
uniqueness result of this section. Here we shall provide a proof based on the ideas
of Schiffer both for bounded obstacles (see [15]) and for periodic structures with
multifrequency data (see [23]) and the concept of dispersion relations (see, e.g., [22,
36, 40]) arising from the analysis of photonic crystals.

Theorem 4.1. Let \Gamma (1) and \Gamma (2) be two periodic curves with Dirichlet boundary
conditions. Assume both satisfy Condition (i) or both satisfy Condition (ii). Suppose
that the periods of \Gamma (1) and \Gamma (2) are unknown. If the corresponding total fields satisfy

u1(x;\theta n) = u2(x;\theta n), x\in \scrS , n\in \BbbZ +,(4.1)

where \{ \theta n\} \infty n=1 are distinct incident angles in ( - \pi /2, \pi /2), then \Gamma (1) = \Gamma (2). Here,
\scrS \subset \Gamma h is a line segment with \Gamma h := \{ x:x2 = h\} and with h >max\{ x2 :x \in \Gamma (1)\cup \Gamma (2)\} 
being an arbitrary constant.
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Γ
(1)

Γ
(2)

D
Γ
(1)

Γ
(2)

(a) Both Γ(1) and Γ(2) are graphs

D

Γ
(1)

Γ
(2)

(b) Neither Γ(1) nor Γ(2) is a graph

Fig. 3. The bounded domain D in Case (i): \Gamma (1) \cap \Gamma (2) \not = \emptyset .

Remark 4.1. In Theorem 4.1, the wave number k > 0 is fixed, and uj(\cdot ;\theta n)
(j = 1,2) are forward solutions corresponding to \Gamma (j) and the incident direction \theta n,
respectively. The uniqueness result of Theorem 4.1 remains true even if the incident
angle causes a Rayleigh frequency, i.e., k2 = (k sin\theta n+m)2 for some n\in \BbbZ + andm\in \BbbZ .
The preliminary results presented in sections 2 and 3 and the proof of Theorem 4.1
are all valid in the case of a Rayleigh frequency.

Since u1 and u2 are analytic functions of x\in \Gamma h, (4.1) is equivalent to u1(x;\theta n) =
u2(x;\theta n) for all x\in \Gamma h and n\in \BbbZ +. Therefore, u

s
1(x;\theta n) = us2(x;\theta n) for all x\in \Gamma h and

n\in \BbbZ +. Analogously to (3.5), we have us1(x;\theta n) = us2(x;\theta n) for all x\in Uh and n\in \BbbZ +.
By analyticity we arrive at

us1(x;\theta n) = us2(x;\theta n), x\in \Omega \prime , n\in \BbbZ +,(4.2)

where \Omega \prime denotes the unbounded component of \Omega 1\cap \Omega 2 which can be connected to Uh.
By Theorem 3.1, the above relation (4.2) implies that there exists L > 0 such that
L is a common period of \Gamma (1) and \Gamma (2). Without loss of generality, we may assume
L= 2\pi in the rest of this section. Assume to the contrary that \Gamma (1) \not = \Gamma (2). We need
to consider the following two cases:

Case (i): \Gamma (1) \cap \Gamma (2) \not = \emptyset ; Case (ii): \Gamma (1) \cap \Gamma (2) = \emptyset .

The proofs of Theorem 4.1 for these two cases will be given in the following subsections.

4.1. Proof of Theorem 4.1 for Case (i): \Gamma (1) \cap \Gamma (2) \not = \emptyset \Gamma (1) \cap \Gamma (2) \not = \emptyset \Gamma (1) \cap \Gamma (2) \not = \emptyset . Since \Gamma (1)\cap \Gamma (2) \not = \emptyset 
and both \Gamma (1) and \Gamma (2) are 2\pi -periodic, there exists at least one bounded domain D
enclosed by \Gamma (1) and \Gamma (2). In other words, \partial D\subset \Gamma (1)\cup \Gamma (2). Without loss of generality,
we may suppose that D \subset \Omega 1\setminus \Omega \prime as shown in Figure 3. It follows from Remark 2.1,
formula (4.2), and the Dirichlet boundary condition of uj(x;\theta n) on \Gamma (j) that the total
field u1(x;\theta n) := ui(x;\theta n)+u

s
1(x;\theta n) is a nontrivial solution to the eigenvalue problem

\Delta u+ k2u= 0 in D, u= 0 on \partial D

for all n \in \BbbZ +. In other words, u1(x;\theta n) is a Dirichlet eigenfunction of the negative
Laplacian in D for each n \in \BbbZ +. Recall from Lemma 2.2 that \{ u1(x;\theta n)\} Nn=1 are
linearly independent functions in D for any positive integer N < +\infty . However, by
a similar argument as in the proof of [14, Theorem 5.1], it follows that there are at
most finitely many independent Dirichlet eigenfunctions of the negative Laplacian in
H1

0 (D) corresponding to the eigenvalue k2 > 0. This contradiction implies that Case
(i) does not hold.

Remark 4.2. It should be noted that the proof of [14, Theorem 5.1] relies essen-
tially on the a priori estimate of solutions after the Gram-Schmidt orthogonalization
of \{ u1(x;\theta n)\} n\in \BbbZ + (see [14, third formula on page 140]). However, if D were an un-
bounded periodic strip, as will be seen in Case (ii), it would be difficult to establish
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D M

Γ
(1)

Γ
(2)

(a) Both Γ(1) and Γ(2) are graphs

D M

Γ
(1)

Γ
(2)

(b) Γ(1) is not a graph and Γ(2) is a graph

Fig. 4. The unbounded periodic strip D and its one periodicity cell M in Case (ii): \Gamma (1)\cap \Gamma (2) =
\emptyset .

an analogous a priori estimate of solutions with different incident angles (or, equiva-
lently, with different phase shifts k sin\theta n) after the Gram--Schmidt orthogonalization.
Hence, the aforementioned arguments cannot be used for treating Case (ii).

4.2. Proof of Theorem 4.1 for Case (ii): \Gamma (1) \cap \Gamma (2) = \emptyset \Gamma (1) \cap \Gamma (2) = \emptyset \Gamma (1) \cap \Gamma (2) = \emptyset . We suppose with-
out loss of generality that \Gamma (2) lies entirely above \Gamma (1) as shown in Figure 4. Denote by
D the unbounded 2\pi -periodic strip (waveguide) lying between the two curves. To in-
vestigate the dependence of solutions on the quasi-periodic shift \alpha = \alpha (\theta n) = k sin\theta n,
we set wn(x) := e - i\alpha (\theta n)x1u1(x;\theta n). It then follows from (1.2) and (4.2) that wn

satisfies the periodic boundary value problem\left\{   
\nabla \alpha (\theta n) \cdot \nabla \alpha (\theta n)wn + k2wn = 0 in D,
wn = 0 on \Gamma (1) \cup \Gamma (2),
wn is 2\pi -periodic with respect to x1 in D,

(4.3)

for all n \in \BbbZ +, where \nabla \alpha (\theta n) := (\partial 1 + i\alpha (\theta n), \partial 2)
\top . For \alpha = k\mu with \mu \in ( - 1,1), we

consider the following abstract Dirichlet boundary value problem in a closed periodic
waveguide D:

(BVP)

\left\{   
\nabla \alpha \cdot \nabla \alpha w+ k2w= 0 in D,
w= 0 on \Gamma (1) \cup \Gamma (2),
w is 2\pi -periodic with respect to x1 in D.

Definition 4.1. For any fixed k > 0, we say that \mu \in ( - 1,1) is called a \mu -
eigenvalue if (BVP) admits a nontrivial solution in the space H1

0,0(D) := \{ w \in 
H1

loc(D) :w is 2\pi -periodic with respect to x1, w= 0 on \partial D\} . Accordingly, the nontriv-
ial solution is the associated eigenfunction.

Since u1(x;\theta n) \not \equiv 0 for x \in \Omega 1 (see Remark 2.1), we conclude from (4.3) that
sin\theta n is a \mu -eigenvalue to (BVP) with the eigenfunction wn for all n \in \BbbZ +. On the
other hand, for any fixed \mu \in ( - 1,1), we say that k > 0 is called a k-eigenvalue if
(BVP) admits a nontrivial solution w \in H1

0,0(D). As shown in [23, Theorem 2.3], the
k-eigenvalues form a discrete set on the positive real-axis with the only accumulating
point at infinity, and the associated eigenspace for each k-eigenvalue is of finite dimen-
sion. It is easy to observe that if w(x) solves (BVP) with \mu \in ( - 1,1) and some kj(\mu ),
then the conjugate w is also a nontrivial solution corresponding to  - \mu . This implies
the even symmetry of kj(\mu ) with respect to the line \mu = 0, that is, kj(\mu ) = kj( - \mu ) for
each \mu \in ( - 1,1).

The \alpha -dependent partial differential equation in (BVP) can be regarded as the
Floquet--Bloch (FB) transform of the Helmholtz equation (\Delta + k2)u = 0 in the x1-
direction with the variable \alpha \in \BbbR ; see [22, 36]. The Bloch theory in one direction
was well summarized in [22, section 3] for deriving physically meaningful radiation
conditions in a closed periodic waveguide.
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316 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

Let us now recall the dispersion relations for the 2\pi -periodic system (BVP), where
the FB transform variable \alpha \in \BbbR is independent of k. For each \alpha \in \BbbR , there also exists
a discrete set of numbers Kj(\alpha )> 0 such that (BVP) admits nontrivial solutions with
k2 = Kj(\alpha ) for each j = 1,2, . . . (see Remark 4.3). By [27, Chapter 7], the function
\alpha \rightarrow Kj(\alpha ) is continuous and piecewise analytic. Further, Kj(\alpha ) is not analytic
at \alpha = \alpha 0 only if k2 = Kj(\alpha 0) is not a simple eigenvalue. Recall from (1.3) with
L= 2\pi that an \alpha -quasi-periodic function must also be (\alpha + j)-quasi-periodic for any
j \in \BbbN . It is easy to conclude that Kj(\alpha ) : \BbbR \rightarrow \BbbR is periodic in \alpha with periodicity
one. Restricting to one periodic interval [ - 1/2,1/2], we also have the even symmetry
Kj(\alpha ) = Kj( - \alpha ) for all \alpha \in [ - 1/2,1/2]. The \alpha -dependent eigenvalues Kj(\alpha ) can
be relabeled for j \in \BbbZ + so as to make the eigenvalues and associated eigenfunctions
analytic in \alpha \in \BbbR (see, e.g., [27, Theorem 3.9, Chapter 7] or [22, section 3.3]). For
j \in \BbbZ + the curves given by Kj(\alpha ) : ( - 1/2,1/2]\rightarrow \BbbR for the relabeled indices are well
known as dispersion relations, and the graphs of the dispersion relations define the
Bloch variety [36]. Note that the dispersion curves are no longer periodic. Below we
characterize the relation between the function \mu \mapsto \rightarrow k(\mu ) and the dispersion relation
\alpha \mapsto \rightarrow K(\alpha ).

Lemma 4.1. (i) The function kj(\mu ) : ( - 1,1) \rightarrow \BbbR + must fulfill the dispersion
relation K

j
\prime (\mu kj(\mu )) = k2j (\mu ) for some j\prime \in \BbbZ +. Conversely, from the dispersion

relation K
j
\prime (\mu k) = k2 one can always deduce the function k= kj(\mu ) for some j \in \BbbZ +.

(ii) If kj(\mu )\equiv Const for some j \in \BbbZ +, then Kj
\prime (\alpha )\equiv Const for some j\prime \in \BbbZ + and

vice versa.

Proof. (i) The first part follows straightforwardly from the definitions of kj and
K

j
\prime . To prove the second part, we set F (k) := K(\mu k)  - k2. Obviously, dF/dk =

\mu K \prime (\mu k) - 2k, where K \prime (\alpha ) := dK/d\alpha . If

K(\mu k) - k2 = 0, \mu K \prime (\mu k) - 2k= 0,(4.4)

we can conclude that

\alpha K \prime (\alpha ) - 2K(\alpha ) = 0, \alpha = \mu k.

Hence, K(\alpha ) = c\alpha 2 for some constant c \in \BbbR . By the 1-periodicity of K we obtain
c = 0 and thus K \equiv 0. This further leads to k = 0, and by integration by part, any
solution to (BVP) must vanish identically. Hence, the two relations in (4.4) cannot
hold simultaneously. By the implicit function theorem one can always get the function
k= kj(\mu ) for some j \in \BbbZ + from the dispersion relation K

j
\prime (\alpha ) = k2.

(ii) The second assertion is a direct consequence of the first assertion.

Remark 4.3. We consider a special case when D = \BbbR \times (0, h) is a straight strip
with some h> 0. By separation of variables, it was proved in [23] that the dispersion
relation is given by

Kn,m(\alpha ) = (\alpha + n)2 +
\Bigl( m\pi 
h

\Bigr) 2
, n\in \BbbZ ,m\in \BbbZ +,(4.5)

when | \alpha | < k (see [23, (3.5)]). By the same argument as in [23], (4.5) holds for all
\alpha \in \BbbR . Here, the dispersion relation \{ Kn,m(\alpha )\} n\in \BbbZ ,m\in \BbbZ +

is the rearrangement of
\{ Kj(\alpha )\} j\in \BbbZ +

mentioned above.

For a proof of Theorem 4.1 in Case (ii), it suffices to prove that the \mu -eigenvalues
must be discrete for any fixed k > 0. To this end, we need the following proposition.
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INVERSE DIFFRACTION GRATING PROBLEMS 317

Proposition 4.1. Assume both \Gamma (1) and \Gamma (2) satisfy Condition (i) or both satisfy
Condition (ii) such that \Gamma (1)\cap \Gamma (2) = \emptyset . Then the problem (BVP) has no flat dispersion
curves, that is, Kj(\alpha ) \not \equiv const for any j \in \BbbZ +.

The result of Proposition 4.1 was essentially contained in the proof of [40, Theorem
2.3] for general periodic partial differential equations in an open or closed waveguide.
In a closed waveguide, both the Dirichlet and Neumann boundary conditions were
considered there. Moreover, Proposition 4.1 applies to general 3-admissible periodic
domains (see [40, Definition 2.2]), which can be obtained from a straight strip by a
periodic W 3,\infty -mapping/a 3-admissible mapping, including the periodic strips stated
in Proposition 4.1. As a direct consequence of Proposition 4.1, we have the following
result.

Corollary 4.1. Let k > 0 be an arbitrarily fixed wave number. Under the
conditions of Proposition 4.1, there exists at least one parameter \mu \in ( - 1,1) such that
the periodic boundary value problem (BVP) admits the trivial solution only.

Proof. Assume to the contrary that for some k > 0 the periodic boundary value
problem (BVP) admits nontrivial solutions for each \mu \in ( - 1,1). This implies that
kj(\mu ) = k > 0 for all \mu \in ( - 1,1) and for some j \in \BbbZ +. By Lemma 4.1 (ii), there exists
one flat dispersion curve K

j
\prime (\alpha ) \equiv k2 for some j\prime \in \BbbZ + for the system (BVP), which

contradicts Proposition 4.1.

In the case when \alpha \in \BbbC and Im\alpha > 0 are sufficiently large, the strict coercivity of
the sesquilinear form corresponding to (BVP) was justified in the proof of [40, The-
orem 3.4] contained in [40, section 5]. The proof was based on a suitable change of
variables which reduces the \alpha -eigenvalue problem over 3-admissible periodic domains
to an equivalent problem over straight strips. This, together with the analytic Fred-
holm theory or the perturbation theory (see, e.g., [27, Chapter 7, Theorems 1.10 and
1.9] or [39, Theorem XIII.86]) and Lemma 4.1, also implies Corollary 4.1. Now, we
state the discreteness of the \mu -eigenvalues for any fixed k > 0 and complete the proof
of Theorem 4.1 in Case (ii).

Lemma 4.2. Under the conditions of Proposition 4.1, the \mu -eigenvalues of (BVP)
form at most a discrete set in ( - 1,1) without any accumulating points on the real-axis.

Proof. We carry out the proof following the ideas in the proof of [23, Theorem
2.3], where the k-eigenvalue problem was investigated for the case when \mu is fixed.
Let w be a solution to the problem (BVP). Let M := \{ x \in D : 0 < x1 < 2\pi \} be one
2\pi -periodic cell (see Figure 4 for the geometry of M), and let H be the completion of
\{ \varphi \in C1

p(M) : \varphi = 0 on \partial D \cap M\} with respect to the H1-norm, where C1
p denotes the

space of differentiable functions which are 2\pi -periodic with respect to x1. Note that
M may be disconnected. Then we can apply Green's theorem to obtain that for any
function \psi \in H,\int 

M

\nabla w \cdot \nabla \psi dx+ \mu 

\int 
M

\bigl( 
 - 2ik\partial 1w\psi 

\bigr) 
dx+ (\mu 2  - 1)

\int 
M

k2w\psi dx= 0.(4.6)

Let \langle \cdot , \cdot \rangle H denote the inner product of the Hilbert space H, which is given by

\langle \varphi ,\psi \rangle H :=

\int 
M

\nabla \varphi \cdot \nabla \psi dx, \varphi ,\psi \in H.

By Poincar\'e's inequality, it is known that \langle \cdot , \cdot \rangle H is equivalent to the ordinary inner
product in H1(M). Then with the aid of Riesz's representation theorem, there exist
B,C \in \scrL (H) such that
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318 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG\int 
M

\bigl( 
 - 2ik\partial 1\varphi \psi 

\bigr) 
dx= \langle B\varphi ,\psi \rangle H , \varphi ,\psi \in H,\int 

M

k2\varphi \psi dx= \langle C\varphi ,\psi \rangle H , \varphi ,\psi \in H,

where \scrL (H) denotes the space of bounded linear operators from H into itself. Thus
the formula (4.6) is equivalent to the operator equation

w+ \mu Bw+ (\mu 2  - 1)Cw= 0, w \in H.(4.7)

Further, it is easily verified that B and C are compact operators in \scrL (H). On the
other hand, let A : \BbbC \rightarrow \scrL (H) be an operator-valued function given by A(\mu ) :=
\mu B + (\mu 2  - 1)C. Then it is obvious that A(\mu ) is analytic in \BbbC and compact for each
\mu \in \BbbC . Thus we can apply Corollary 4.1 and the analytic Fredholm theory (see, e.g.,
[14, Theorem 8.26]) to obtain that (I +A(\mu )) - 1 exists for all \mu \in \BbbC \setminus S where S is a
discrete subset of \BbbC with the only accumulating point at infinity. This, together with
the equivalence of (BVP) with (4.7), implies the statement of this lemma.

Recall from (4.3) and Remark 2.1 that sin\theta n are \mu -eigenvalues to (BVP) for all
n \in \BbbZ +. Since \theta n \in ( - \pi /2, \pi /2) are distinct angles, these \mu -eigenvalues must have a
finite accumulating point on the real-axis, which contradicts Lemma 4.2. This implies
that Case (ii) does not hold.

Finally, the relation \Gamma (1) =\Gamma (2) follows by combining Case (i) and Case (ii). This
finishes the proof of Theorem 4.1.

We conclude this section with two remarks.

Remark 4.4. By setting u = wei\alpha x1 with \alpha \in \BbbR , the periodic boundary value
problem (4.3) can be rewritten as\left\{   \Delta u+ k2u= 0 in D,

u= 0 on \partial D,
e - i\alpha x1u is 2\pi -periodic with respect to x1 in D.

Multiplying u on both sides of the equation and integrating over M , we deduce from
the quasi-periodicity of u that

0 =

\int 
M

\bigl( 
| \nabla u| 2  - k2| u| 2

\bigr) 
dx.

By Poincar\'e's inequality (see [37, Lemma 3.13]), it follows from the Dirichlet boundary
condition of u on \partial D\cap M that 0 \geq (C  - k2)\| u\| 2L2(M) for a constant C > 0. Hence,

w= e - i\alpha x1u= 0 provided k > 0 is small enough. Proceeding as in the proof of Lemma
4.2, we can conclude from the analytic Fredholm theory (see, e.g., [14, Theorem 8.26])
that for any \alpha \in \BbbR , (4.3) admits only the trivial solution for all k2 \in \BbbC \setminus E(\alpha ) where
E(\alpha ) is a discrete subset of \BbbC . Therefore, the eigenvalues \{ Kj(\alpha )\} j\geq 1 are contained
in E(\alpha ) and thus accumulate only at infinity. Moreover, the associated eigenspace for
each eigenvalue Kj(\alpha ) is of finite dimension due to the compactness of corresponding
operators.

Remark 4.5. In [14, Theorem 5.1], it was proved that a sound-soft scatterer can
be uniquely determined by the far-field patterns from a finite number of incident plane
waves with a fixed wave number under the assumption that the scatterer is contained
in a ball. We note that it is interesting to extend this result to the case of periodic
curves. This may require further investigation of properties of the \mu -eigenvalues with
respect to domains and is thus beyond the scope of this paper. For analogous results
with finitely many wave numbers and a fixed incident angle, we refer the reader to
[23, Theorem 3.2].
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INVERSE DIFFRACTION GRATING PROBLEMS 319

5. Uniqueness with phaseless data. In contrast to the inverse problem with
phase information, this section is devoted to uniqueness for recovering the periodic
curve from phaseless near-field data (i.e., Theorem 1.1 with phaseless data). We
rephrase Theorem 1.1 with phaseless data as follows.

Theorem 5.1. Let \Gamma (1) and \Gamma (2) be two periodic curves with Dirichlet boundary
conditions. Assume both satisfy Condition (i) or both satisfy Condition (ii). Suppose
that the periods of \Gamma (1) and \Gamma (2) are unknown. If the corresponding phaseless total
fields satisfy

| u1(x;\theta n)| = | u2(x;\theta n)| , x\in \scrD , n\in \BbbZ +,(5.1)

where \{ \theta n\} \infty n=1 are distinct incident angles in ( - \pi /2, \pi /2), then \Gamma (1) = \Gamma (2). Here,
\scrD \subset \Omega is a bounded domain.

To prove Theorem 5.1, we will apply Rayleigh expansion (1.4) to show that the
phaseless near-field data corresponding to one incident plane wave uniquely determine
the total field with phase information except for a finite set of incident angles.

Theorem 5.2 (phase retrieval). Let \Gamma (1) and \Gamma (2) be two periodic curves satis-
fying the conditions in Theorem 5.1. Assume the periods of \Gamma (1) and \Gamma (2) are L1 > 0
and L2 > 0, respectively. Let uj(x;\theta ) (j = 1,2) be the total field for the incident plane
wave defined by (1.1) corresponding to the periodic curve \Gamma (j), and let \theta \in ( - \pi /2, \pi /2)
satisfy k sin\theta Lj/\pi /\in \BbbZ (i.e., \alpha Lj/\pi /\in \BbbZ ) for j = 1,2. Suppose the corresponding total
fields satisfy

| u1(x;\theta )| = | u2(x;\theta )| , x\in Uh,(5.2)

for some h>max\{ x2 : x\in \Gamma (1)\cup \Gamma (2)\} . Then u1(x;\theta ) = u2(x;\theta ), x\in Uh.

To prove Theorem 5.2, we need several auxiliary lemmas. Let \alpha n and \beta n be
defined by (1.5) with some \theta \in ( - \pi /2, \pi /2), and let \imath be the index for the incident
plane wave (see (1.6)).

Lemma 5.1. If \alpha L/\pi /\in \BbbZ , then \alpha n \not = - \alpha \imath for all n\in \BbbZ \cup \{ \imath \} .
Proof. We assume to the contrary that \alpha n = - \alpha \imath for n \in \BbbZ \cup \{ \imath \} . Obviously, we

have n \not = \imath , since otherwise there holds \alpha \imath = 0, which contradicts \alpha L/\pi /\in \BbbZ . If n \in \BbbZ 
and \alpha + n2\pi /L =  - \alpha \imath =  - \alpha , we can get \alpha L/\pi =  - n \in \BbbZ , which also contradicts the
assumption that \alpha L/\pi /\in \BbbZ .

In the following, we retain the notation introduced in the proof of Theorem 3.1.

Lemma 5.2. Suppose \Gamma (1) and \Gamma (2) are two grating curves with the periods L1 > 0
and L2 > 0, respectively. Assume that \alpha Lj/\pi /\in \BbbZ for j = 1,2. Then the following
statements hold.

(i) For any fixed \~m\in \BbbZ , if

(\alpha 
(1)
\~m  - \alpha \imath , \beta 

(1)
\~m  - \beta \imath ) = (\alpha (2)

m  - \alpha (2)
n , \beta (2)

m  - \beta 
(2)
n ),(5.3)

for some m,n\in \BbbZ \cup \{ \imath \} , then (\alpha 
(1)
\~m , \beta 

(1)
\~m ) = (\alpha 

(2)
m , \beta 

(2)
m ) and n= \imath .

(ii) For any fixed \~m\in \BbbZ , if

(\alpha 
(1)
\~m  - \alpha \imath , \beta 

(1)
\~m  - \beta \imath ) = (\alpha (1)

m  - \alpha (1)
n , \beta (1)

m  - \beta 
(1)
n ),

for some m,n\in \BbbZ \cup \{ \imath \} , then (\alpha 
(1)
\~m , \beta 

(1)
\~m ) = (\alpha 

(1)
m , \beta 

(1)
m ) and n= \imath .
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320 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

Proof. We only prove statement (i) since statement (ii) is a consequence of state-
ment (i) for the special case when \Gamma (1) =\Gamma (2).

We consider the following two cases.
Case 1. \beta 

(1)
\~m \in \BbbR .

Noting that \beta 
(1)
\~m  - \beta \imath > 0, we conclude from (5.3) that \beta 

(2)
m , \beta 

(2)
n \in \BbbR . Hence, the

points (\alpha \imath , \beta \imath ), (\alpha 
(1)
\~m , \beta 

(1)
\~m ), (\alpha 

(2)
m , \beta 

(2)
m ), and (\alpha 

(2)
n , \beta 

(2)
n ) are all located on the circle

x21+x
2
2 = k2 in the x1x2-plane. From this and the relation (5.3), it follows easily that

there holds either

(\alpha (2)
m , \beta (2)

m ) = (\alpha 
(1)
\~m , \beta 

(1)
\~m ) and (\alpha (2)

n , \beta (2)
n ) = (\alpha \imath , \beta \imath )(5.4)

or

(\alpha (2)
m , \beta (2)

m ) = - (\alpha \imath , \beta \imath ) and (\alpha (2)
n , \beta (2)

n ) = - (\alpha 
(1)
\~m , \beta 

(1)
\~m ).(5.5)

By Lemma 5.1 and the assumption \alpha L2/\pi /\in \BbbZ , the relations in (5.5) cannot be true.
Hence, the relations in (5.4) imply the desired result of this lemma.

Case 2. \beta 
(1)
\~m /\in \BbbR .

Observing that Re(\beta 
(1)
\~m  - \beta \imath )> 0 and Im(\beta 

(1)
\~m  - \beta \imath )> 0, we deduce from (5.3) that

Re(\beta 
(2)
m  - \beta 

(2)
n )> 0 and Im(\beta 

(2)
m  - \beta 

(2)
n )> 0.

If \beta 
(2)
m /\in \BbbR , then \beta 

(2)
m /i \in \BbbR . This, together with Re(\beta 

(2)
m  - \beta 

(2)
n ) > 0, implies

Re( - \beta (2)
n ) > 0. This is possible only if n = \imath , since Re\beta 

(2)
n \geq 0 for all n \in \BbbZ . Again

using (5.3), we find (\alpha 
(1)
\~m , \beta 

(1)
\~m ) = (\alpha 

(2)
m , \beta 

(2)
m ), which yields the desired result of this

lemma.
Now suppose that \beta 

(2)
m \in \BbbR . We shall derive a contradiction as follows. Taking

the real and imaginary parts of (5.3) gives \beta 
(2)
m =  - \beta \imath and \beta (2)

n = \beta 
(1)
\~m . Noting that

(\alpha 
(2)
m )2 + (\beta 

(2)
m )2 = k2 = (\alpha \imath )

2 + (\beta \imath )
2, we deduce from \beta 

(2)
m =  - \beta \imath that | \alpha (2)

m | = | \alpha \imath | .
Then by \alpha L2/\pi /\in \BbbZ and Lemma 5.1 we obtain \alpha 

(2)
m = \alpha \imath . Inserting this equality into

(5.3) gives

\alpha 
(1)
\~m  - \alpha \imath = \alpha (2)

m  - \alpha (2)
n = \alpha \imath  - \alpha (2)

n .(5.6)

Similarly, noting that (\alpha 
(2)
n )2+(\beta 

(2)
n )2 = k2 = (\alpha 

(1)
\~m )2+(\beta 

(1)
\~m )2, we deduce from \beta 

(2)
n =

\beta 
(1)
\~m that | \alpha (1)

\~m | = | \alpha (2)
n | . If \alpha (1)

\~m = \alpha 
(2)
n , then it follows from (5.6) that \alpha 

(1)
\~m = \alpha \imath = \alpha 

(2)
n

and thus \beta 
(2)
n \in \{ \pm \beta \imath \} \subset \BbbR . This contradicts \beta 

(2)
n = \beta 

(1)
\~m /\in \BbbR . If \alpha 

(1)
\~m =  - \alpha (2)

n , then
from (5.6) we deduce \alpha \imath = 0, which contradicts the assumption \alpha L2/ /\in \BbbZ . The proof
for Case 2 is complete.

With the aid of Lemma 5.2, now we can prove Theorem 5.2.

Proof of Theorem 5.2. Recalling (1.6) and (3.4), we deduce from (5.2) that

I
(1)
1 (x)I

(1)
2 (x) + I

(1)
2 (x)I

(1)
1 (x) + | I(1)1 (x)| 2 + | I(1)2 (x)| 2

 - I(2)1 (x)I
(2)
2 (x) - I

(2)
2 (x)I

(2)
1 (x) - | I(2)1 (x)| 2  - | I(2)2 (x)| 2 = 0, x\in Uh,(5.7)

where

I
(j)
1 (x) =

\sum 
m\in \scrT (j)

1

A(j)
m ei\alpha 

(j)
m x1+i\beta (j)

m x2 , I
(j)
2 (x) =

\sum 
n\in \scrT (j)

2

A(j)
n ei\alpha 

(j)
n x1+i\beta (j)

n x2 ,

with \scrT (j)
1 := \{ n\in \BbbZ :| \alpha (j)

n | >k\} and \scrT (j)
2 := \{ n\in \BbbZ \cup \{ \imath \} :| \alpha (j)

n | \leq k\} , j = 1,2.
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INVERSE DIFFRACTION GRATING PROBLEMS 321

The proof can be divided into two steps as follows.
Step 1. We will prove that for any \~m\in \scrT (1)

2 \setminus \{ \imath \} there holds\Biggl\{ 
A

(1)
\~m =A

(2)
m if there existsm\in \BbbZ such that \alpha 

(2)
m = \alpha 

(1)
\~m ,

A
(1)
\~m = 0 if \alpha 

(2)
m \not = \alpha 

(1)
\~m for allm\in \BbbZ ,

(5.8)

and for any \~m\in \scrT (2)
2 \setminus \{ \imath \} there holds\Biggl\{ 

A
(2)
\~m =A

(1)
m if there existsm\in \BbbZ such that \alpha 

(1)
m = \alpha 

(2)
\~m ,

A
(2)
\~m = 0 if \alpha 

(1)
m \not = \alpha 

(2)
\~m for allm\in \BbbZ .

(5.9)

First, we deduce (5.8) for \~m \in \scrT (1)
2 \setminus \{ \imath \} . Multiplying (5.7) by e - i(\beta 

(1)
\~m  - \beta \imath )x2 we

obtain for x\in Uh that

0 =
\Bigl\{ 
I
(1)
1 (x)I

(1)
2 (x) + I

(1)
2 (x)I

(1)
1 (x) + | I(1)1 (x)| 2

\Bigr\} 
e - i(\beta 

(1)
\~m  - \beta \imath )x2(5.10)

+
\sum 

(m,n)\in \scrU (1)
\~m

A(1)
m A

(1)
n ei(\alpha 

(1)
m  - \alpha (1)

n )x1  - 
\sum 

(m,n)\in \scrU (2)
\~m

A(2)
m A

(2)
n ei(\alpha 

(2)
m  - \alpha (2)

n )x1

+
\sum 

(m,n)\in (\scrT (1)
2 \times \scrT (1)

2 )\setminus \scrU (1)
\~m

A(1)
m A

(1)
n ei(\alpha 

(1)
m  - \alpha (1)

n )x1+i[(\beta (1)
m  - \beta 

(1)
n ) - (\beta 

(1)
\~m  - \beta \imath )]x2

 - 
\Bigl\{ 
I
(2)
1 (x)I

(2)
2 (x) + I

(2)
2 (x)I

(2)
1 (x) + | I(2)1 (x)| 2

\Bigr\} 
e - i(\beta 

(1)
\~m  - \beta \imath )x2

 - 
\sum 

(m,n)\in (\scrT (2)
2 \times \scrT (2)

2 )\setminus \scrU (2)
\~m

A(2)
m A

(2)
n ei(\alpha 

(2)
m  - \alpha (2)

n )x1+i[(\beta (2)
m  - \beta 

(2)
n ) - (\beta 

(1)
\~m  - \beta \imath )]x2 ,

where \scrU (j)
\~m := \{ (m,n) \in \scrT (j)

2 \times \scrT (j)
2 : \beta 

(j)
m  - \beta 

(j)
n = \beta 

(1)
\~m  - \beta \imath \} , j = 1,2. Since \scrT (j)

2 is a

finite set, we know that \scrU (j)
\~m is at most a finite set, j = 1,2. Using | e - i(\beta 

(1)
\~m  - \beta \imath )x2 | = 1,

it follows from Lemma 2.1 (i) that\bigm| \bigm| \bigm| \Bigl\{ I(j)1 (x)I
(j)
2 (x) + I

(j)
2 (x)I

(j)
1 (x) + | I(j)1 (x)| 2

\Bigr\} 
e - i(\beta 

(1)
\~m  - \beta \imath )x2

\bigm| \bigm| \bigm| \leq C| I(j)1 | , x\in Uh,

where C > 0 is a constant. Thus, by arguments similar to the proofs of (2.7) and

(2.8), we have | I(j)1 (x)| \rightarrow 0 as x2\rightarrow +\infty and thus

lim
H\rightarrow +\infty 

1

H

\int 2H

H

\Bigl\{ 
I
(j)
1 (x)I

(j)
2 (x) + I

(j)
2 (x)I

(j)
1 (x) + | I(j)1 (x)| 2

\Bigr\} 
e - i(\beta 

(1)
\~m  - \beta \imath )x2dx2 = 0

uniformly for all x1 \in \BbbR and j = 1,2. Moreover, it follows easily from Lemma 2.1 (iv)
that

lim
H\rightarrow +\infty 

1

H

\int 2H

H

\sum 
(m,n)\in (\scrT (j)

2 \times \scrT (j)
2 )\setminus \scrU (j)

\~m

A(j)
m A

(j)
n ei(\alpha 

(j)
m  - \alpha (j)

n )x1+i[(\beta (j)
m  - \beta 

(j)
n ) - (\beta 

(1)
\~m  - \beta \imath )]x2dx2 = 0

uniformly for all x1 \in \BbbR and j = 1,2. Combining (5.10) and the above formulas, we
arrive at\sum 

(m,n)\in \scrU (1)
\~m

A(1)
m A

(1)
n ei(\alpha 

(1)
m  - \alpha (1)

n )x1  - 
\sum 

(m,n)\in \scrU (2)
\~m

A(2)
m A

(2)
n ei(\alpha 

(2)
m  - \alpha (2)

n )x1 = 0, x1 \in \BbbR .
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322 XIAOXU XU, GUANGHUI HU, BO ZHANG, AND HAIWEN ZHANG

Similarly, multiplying (5.11) by e - i(\alpha 
(1)
\~m  - \alpha \imath )x1 , we can employ Lemma 2.1 (iv) to

obtain \sum 
(m,n)\in \scrV (1)

\~m

A(1)
m A

(1)
n  - 

\sum 
(m,n)\in \scrV (2)

\~m

A(2)
m A

(2)
n = 0,(5.11)

where \scrV (j)
\~m := \{ (m,n)\in \scrU (j)

\~m : \alpha 
(j)
m  - \alpha (j)

n = \alpha 
(1)
\~m  - \alpha \imath \} , j = 1,2. By Lemma 5.2 we have

\scrV (1)
\~m = \{ ( \~m, \imath )\} and \scrV (2)

\~m = \{ (m, \imath ) :m \in \BbbZ s.t. \alpha 
(2)
m = \alpha 

(1)
\~m \} . Thus, noting that \scrV (2)

\~m is

perhaps an empty set and A
(1)
\imath = 1 = A

(2)
\imath , we can apply (5.11) to obtain that (5.8)

holds for \~m\in \scrT (1)
2 \setminus \{ \imath \} .

Second, by interchanging the roles of | u1(x;\theta )| and | u2(x;\theta )| , we can employ an

argument similar to that above to obtain (5.9) holds for any \~m\in \scrT (2)
2 \setminus \{ \imath \} .

Step 2. We will prove that (5.8) holds for any \~m \in \scrT (1)
1 and (5.9) holds for any

\~m\in \scrT (2)
1 .

By A
(1)
\imath =A

(2)
\imath = 1, it follows from (5.7) and the result in Step 1 that

I
(1)
1 (x)I

(1)
2 (x) + I

(1)
2 (x)I

(1)
1 (x) + | I(1)1 (x)| 2

 - I(2)1 (x)I
(2)
2 (x) - I

(2)
2 (x)I

(2)
1 (x) - | I(2)1 (x)| 2 = 0, x\in Uh.(5.12)

Let (p1, q1) be an element in \scrB := \{ (1,m) : m \in \scrT (1)
1 \} \cup \{ (2,m) : m \in \scrT (2)

1 \} such

that | \beta (p1)
q1 | \leq | \beta (j)

m | for all (j,m) \in \scrB . Without loss of generality, we assume p1 = 1.

Multiplying (5.12) by e - i(\beta (1)
q1

 - \beta \imath )x2 we obtain for x\in Uh that

\Bigl[ 
I
(1)
1 (x)e - i\beta (1)

q1
x2

\Bigr] \Bigl[ \Bigl( 
I
(1)
2 (x) + I

(1)
1 (x)

\Bigr) 
ei\beta \imath x2

\Bigr] 
+
\Bigl[ 
I
(1)
2 (x)ei\beta \imath x2

\Bigr] \Bigl[ 
I
(1)
1 (x)e - i\beta (1)

q1
x2

\Bigr] (5.13)

 - 
\Bigl[ 
I
(2)
1 (x)e - i\beta (1)

q1
x2

\Bigr] \Bigl[ \Bigl( 
I
(2)
2 (x) + I

(2)
1 (x)

\Bigr) 
ei\beta \imath x2

\Bigr] 
+
\Bigl[ 
I
(2)
2 (x)ei\beta \imath x2

\Bigr] \Bigl[ 
I
(2)
1 (x)e - i\beta (1)

q1
x2

\Bigr] 
=0.

Note that \beta 
(j)
m = - \beta (j)

m and | \beta (1)
q1 | < | \beta (j)

m  - \beta (j)
n | for all m,n\in \scrT (j)

1 with j = 1,2. Thus,
similarly to the proof of Theorem 3.1, we can apply Lemma 2.1 to obtain that for all
j = 1,2 and x1 \in \BbbR ,

lim
x2\rightarrow +\infty 

I
(j)
1 (x)e - i\beta (1)

q1
x2 =

\sum 
m\in \scrT (j)

1 s.t. \beta 
(j)
m =\beta 

(1)
q1

A(j)
m ei\alpha 

(j)
m x1 ,

lim
x2\rightarrow +\infty 

I
(j)
1 (x)e - i\beta (1)

q1
x2 =

\sum 
n\in \scrT (j)

1 s.t. \beta 
(j)
n =\beta 

(1)
q1

A
(j)
n e - i\alpha (j)

n x1 ,

lim
x2\rightarrow +\infty 

\bigm| \bigm| \bigm| I(j)1 (x)
\bigm| \bigm| \bigm| 2 e - i(\beta (1)

q1
 - \beta \imath )x2 = 0

and

lim
H\rightarrow +\infty 

1

H

\int 2H

H

I
(j)
2 (x)ei\beta \imath x2dx2 =

\sum 
m\in \scrT (j)

2 s.t. \beta 
(j)
m = - \beta \imath 

A(j)
m ei\alpha 

(j)
m x1 ,

lim
H\rightarrow +\infty 

1

H

\int 2H

H

I
(j)
2 (x)ei\beta \imath x2dx2 =

\sum 
n\in \scrT (j)

2 s.t. \beta 
(j)
n =\beta \imath 

A
(j)
n e - i\alpha (j)

n x1 .
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These, together with (5.13), imply for x1 \in \BbbR that\sum 
(m,n)\in \scrU (1)

(1,q1)

A(1)
m A

(1)
n ei(\alpha 

(1)
m  - \alpha (1)

n )x1 =
\sum 

(m,n)\in \scrU (2)

(1,q1)

A(2)
m A

(2)
n ei(\alpha 

(2)
m  - \alpha (2)

n )x1 ,(5.14)

where \scrU (j)
q1 := \{ (m,n) \in \scrT (j)

1 \times \scrT (j)
2 : \beta 

(j)
m = \beta 

(1)
q1 , \beta 

(j)
n = \beta \imath \} \cup \{ (m,n) \in \scrT (j)

2 \times \scrT (j)
1 :

\beta 
(j)
m =  - \beta \imath , \beta (j)

n = \beta 
(1)
q1 \} for j = 1,2. It is clear that \scrU (j)

q1 = \{ (m,n) \in (\BbbZ \cup \{ \imath \} )2 :

\beta 
(j)
m  - \beta 

(j)
n = \beta 

(1)
q1  - \beta \imath \} for j = 1,2. Note that \scrU (1)

q1 and \scrU (2)
q1 are at most finite sets.

Then multiplying (5.14) by e - i(\alpha (1)
q1

 - \alpha \imath )x1 , we can apply Lemma 2.1 (iv) to obtain\sum 
(m,n)\in \scrV (1)

q1

A(1)
m A

(1)
n =

\sum 
(m,n)\in \scrV (2)

q1

A(2)
m A

(2)
n ,(5.15)

where \scrV (j)
q1 := \{ (m,n) \in \scrU (j)

q1 : \alpha 
(j)
m  - \alpha 

(j)
n = \alpha 

(1)
q1  - \alpha \imath \} for j = 1,2. By Lemma 5.2, we

have \scrV (1)
q1 = \{ (q1, \imath )\} and \scrV (2)

q1 = \{ (m, \imath ) : m \in \BbbZ s.t. \alpha 
(2)
m = \alpha 

(1)
q1 \} . Now we can apply

(5.15) and A
(1)
\imath = 1=A

(2)
\imath to obtain that (5.8) holds for \~m= q1.

To proceed further, we distinguish between the following two cases.
Case 2.1. there exists q2 \in \BbbZ such that \alpha 

(2)
q2 = \alpha 

(1)
q1 . It is clear that A

(1)
q1 = A

(2)
q2

and q2 \in \scrT (2)
1 , and thus we have that (5.9) holds for \~m = q2. These, together with

A
(1)
\imath =A

(2)
\imath = 1 and the result in Step 1, imply that \widehat I(1)2 (x) = \widehat I(2)2 (x) in x\in Uh, where

\widehat I(j)2 (x) =
\sum 

n\in \scrT (j)
2 \cup \{ qj\} 

A(j)
n ei\alpha 

(j)
n x1+i\beta (j)

n x2 , j = 1,2.

Thus, it follows from (5.2) that

\widehat I(1)1 (x)\widehat I(1)2 (x) + \widehat I(1)2 (x)\widehat I(1)1 (x) + | \widehat I(1)1 (x)| 2

 - \widehat I(2)1 (x)\widehat I(2)2 (x) - \widehat I(2)2 (x)\widehat I(2)1 (x) - | \widehat I(2)1 (x)| 2 = 0, x\in Uh,

where

\widehat I(j)1 (x) =
\sum 

m\in \scrT (j)
1 \setminus \{ qj\} 

A(j)
m ei\alpha 

(j)
m x1+i\beta (j)

m x2 , j = 1,2.

Let (p3, q3) be an element in \scrC := \scrB \setminus \{ (1, q1), (2, q2)\} s.t. | \beta (p3)
q3 | \leq | \beta (j)

m | for all
(j,m) \in \scrC . Then using similar arguments, we can obtain that (5.8) holds for \~m= q3
if p3 = 1 and (5.9) holds for \~m= q3 if p3 = 2.

Case 2.2. \alpha 
(2)
m \not = \alpha 

(1)
q1 for all m\in \BbbZ . In this case, A

(1)
q1 = 0. Thus, similarly to Case

2.1, it follows from (5.2) and the result in Step 1 that

\widehat I(1)1 (x)I
(1)
2 (x) + I

(1)
2 (x)\widehat I(1)1 (x) + | \widehat I(1)1 (x)| 2

 - I(2)1 (x)I
(2)
2 (x) - I

(2)
2 (x)I

(2)
1 (x) - | I(2)1 (x)| 2 = 0, x\in Uh,

where \widehat I(1)1 (x) is given as in Case 2.1. Let (p4, q4) be an element in \scrE := \scrB \setminus \{ (1, q1)\} 
s.t. | \beta (p4)

q4 | \leq | \beta (j)
m | for all (j,m) \in \scrE . Then using similar arguments again, we can

obtain that (5.8) holds for \~m= q4 if p4 = 1 and (5.9) holds for \~m= q4 if p4 = 2.
For both cases, we can repeat similar arguments to obtain that (5.8) holds for

any \~m\in \scrT (1)
1 and (5.9) holds for any \~m\in \scrT (2)

1 .
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Finally, noting that A
(1)
\imath =A

(2)
\imath = 1 and combining the results in Step 1 and Step

2, we have u1(x;\theta ) = u2(x;\theta ) for x\in Uh.

Remark 5.1. The proof for Theorem 5.2 depends only on the Rayleigh expansion
(1.4) of the scattered field. Therefore, the phase retrieval result in Theorem 5.2
remains valid under other boundary conditions.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. For j = 1,2, denote the period of the unknown grating curve
\Gamma (j) by Lj > 0, and define the set \scrA = \{ \theta n : n \in \BbbZ + s.t. k sin\theta nLj/\pi /\in \BbbZ for j = 1,2\} ,
where \{ \theta n\} \infty n=1 are the incident angles from the assumption of Theorem 1.1. By the
analyticity of x \mapsto \rightarrow | uj(x;\theta )| 2 in \Omega and Theorem 5.2, we have u1(x;\theta n) = u2(x;\theta n),
x \in Uh for any \theta n \in \scrA . Obviously, \{ \theta \in ( - \pi /2, \pi /2) : k sin\theta Lj/\pi \in \BbbZ for j = 1,2\} is a
finite set, and thus \scrA is still an infinite set. Therefore, it follows from Theorem 4.1
that \Gamma (1) =\Gamma (2).

Remark 5.2. Assume that the conditions presented in Theorem 5.1 hold true.
Assume further that the grating periods L1 and L2 are known in advance and L1 =L2;
then the conclusion of Theorem 5.1 can be proved in a very simple way. In fact, let D
be the bounded domain defined in subsection 4.1 if \Gamma (1) \cap \Gamma (2) \not = \emptyset or the unbounded
periodic strip defined in subsection 4.2 if \Gamma (1) \cap \Gamma (2) = \emptyset . Then, due to the analyticity
of the total fields and the Dirichlet boundary conditions on \Gamma (1) and \Gamma (2), we can
easily deduce from (5.1) that either \{ u1(x;\theta n)\} n\in \BbbZ +

or \{ u2(x;\theta n)\} n\in \BbbZ +
satisfy the

Helmholtz equation in D with wave number k and vanish on \partial D. This, together with
the same arguments as in section 4, gives that \Gamma (1) =\Gamma (2).

6. Conclusion. In this paper, we have established uniqueness results for in-
verse diffraction grating problems for identifying the period, location, and shape of
a periodic curve with Dirichlet boundary condition. Under the a priori smoothness
assumption, we proved that the unknown grating curve can be uniquely determined
by the near-field data corresponding to infinitely many incident plane waves with dif-
ferent angles at a fixed wave number. For the case when the phase information is
not available and the measurement data are taken in a bounded domain above the
grating curve, we proved that the phase information can be uniquely determined by
phaseless data provided the incident angle \theta and the grating period L satisfy the
relation k sin\theta L/\pi /\in \BbbZ . Our phase retrieval result (see Theorem 5.2) carries over to
other boundary or transmission conditions. However, the proof of Theorem 4.1 for
the case \Gamma (1) \cap \Gamma (2) \not = \emptyset does not apply to the Neumann boundary condition, due
to the same difficulty for inverse scattering problems by bounded obstacles (see [14,
p. 143] for details). In addition, the case that \Gamma (1) \cap \Gamma (2) = \emptyset brings extra difficulties
for treating the discreteness of the so-called \mu -eigenvalues in a closed waveguide. The
uniqueness result with distinct incident angles for recovering penetrable gratings also
remains open. Thus it requires new mathematical theory to establish analogues of
Theorem 4.1 under other boundary conditions.

Acknowledgment. The authors would like to thank Professor Chunxiong Zheng
from Tsinghua University for helpful and stimulating discussions on dispersion rela-
tions in a periodic waveguide.
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