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Topological edge solitons that bifurcate and inherit topological protection from linear edge states and, therefore,
demonstrate immunity to disorder and defects upon propagation, attract considerable attention in a rapidly
growing field of topological photonics. Valley Hall systems are especially interesting from the point of view of re-
alization of topological edge solitons because they do not require external or artificial magnetic fields or longitu-
dinalmodulations of the underlying potential for the emergence of the topological phases. Herewe report on the
diverse types of vector valley Hall edge solitons forming at the domain walls between superhoneycomb lattices,
including bright-dipole, bright-tripole, dark-bright, and dark-dipole solitons. In contrast to conventional scalar
topological solitons, such vector states can be constructed as envelope solitons on the edge states from different
branches and with different Bloch momenta. Such vector solitons can be remarkably robust, they show stable
long-distance propagation and can bypass sharp bends of the domain wall. The existence of the counter-
propagating valley Hall edge solitons at the same domain wall allows us to study their structural robustness
upon collisions that can be nearly elastic. Our results illustrate richness of soliton families in the valley Hall sys-
tems and open new prospects for the light field manipulation and design of the nonlinear topological functional
devices.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last decade, the nonlinear topological photonics [1] has
grown up into a significant branch of the topological photonics [2–10].
Nonlinearity in topological systems enables novel interesting phenom-
ena that are not available in purely linear systems, and significantly en-
riches tools for control of transport, localization, and internal structure
of excitations. Typical examples of such nonlinear phenomena include
nonlinearity-induced topological transitions [11], nontrivial coupling
of light into topological system [12], bistability effects in pumped dissi-
pative systems [13,14], lasing in topological edge states [15–25], and to-
pological edge solitons [26–38]. Topological edge solitons are specific
states that bifurcate from linear topological edge states. They have prop-
agation constant belonging to topological forbidden gap. On this reason
they benefit from topological protection in the presence of defects or
disorder. Nonlinearity provides localization of such states along the
edge of the insulator in addition to localization across the edge due to
their topological nature, allowing such solitons to travel along the
edge without broadening. Topological edge soliton has been reported
in Floquet systems [26–34,39,40], in polariton microcavities [41–44],
see also first realization of polariton topological insulator [45], and in
valley Hall systems [35–38]. In addition, topological solitons bifurcating
from corner states in higher-order topological insulators [46,47], inter-
face states in truncated dimer and trimer topological chains [12,
48–51], and edge solitons in truncated lattices induced in atomic vapors
[52] have been reported.

Among all these topological systems, the systems relying on the val-
ley Hall effect [53,54] are very promising for experimental realization of
topological edge solitons, since they do not require sophisticated longi-
tudinal modulations of the refractive index landscapes leading to addi-
tional losses as in Floquet systems [26–34,55] or external or artificial
magnetic fields as in structured polariton microcavities [41–44]. In val-
ley Hall systems edge states emerge on the domain wall between two
lattice regions due to breaking of the inversion symmetry of the lattice.
This symmetry breaking can be achieved, for example, by introducing
different detuning into depths of lattice channels at both sides of the do-
main wall [53,54]. So far, only scalar bright and dark [35–37,56] or
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specific Dirac [57] edge solitons were encountered in valley Hall pho-
tonic systems. However, such systemsmay also offer unique conditions
for realization of vector edge solitons, characterized by more than one
components that simultaneously make their construction more chal-
lenging. Among the requirements for the existence of such solitons is
the presence of two (or more) edge states with equal group velocities
at a given domain wall.

While domainwalls between twonon-strained detunedhoneycomb
lattices possessing C3 symmetry do not support more than one edge
state with the same group velocity [36,37], such states may form at
the domain walls between strained honeycomb lattices [58] (such
lattices are characterized by large valley Chern numbers and support
more than one valley Hall edge state in a given gap according to the
bulk-edge correspondence principle [3]), or at the domain walls be-
tween so-called superhoneycomb (or edge-centered honeycomb) lat-
tices [59,60]. Spectra of lattices of the latter type possess two sets of
pseudospin-1/2 Dirac cones between first two and last two bands in
the 5-band spectrum. Thus, domainwall between two such detuned lat-
tices may support two different coexisting valley Hall edge states,
whose group velocities can coincide. In addition, such superhoneycomb
lattices still possess C3 symmetry allowing design of the domain walls
with sharp corners.

In this work, we introduce a rich variety of vector valley Hall edge
solitons available on the domain wall between two superhoneycomb
lattices with broken inversion symmetry due to properly adjusted re-
fractive indices of different waveguides. We report on the existence of
bright-dipole, bright-tripole, dark-bright, and dark-dipole vector valley
Hall edge solitons. Such solitons exist as exceptionally robust objects
maintaining their internal structure upon collisions and passage
through sharp bends of the domain wall.

2. Band structures and valley Hall edge states

Propagation of a light beam in a mediumwith focusing Kerr nonlin-
earity and imprinted shallow lattice is governed by the continuous di-
mensionless nonlinear Schrödinger equation
Fig. 1. Superhoneycombphotonic latticeswith identical or detuned sites (first row) and corresp
where all sites have the same depth. There are 5 sites (labeled as A, B, C, D and E) in one unit ce
metry-broken superhoneycomb lattice with the depth of sites B being p−δ and depths of all oth
where sites B have depth p+δ and all other sites have depth p−δ, with δ=0.55. Here and belo
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Here ψ is a complex-valued envelope of the electric field, while lattice
potential is described by the function

R x, yð Þ ¼ p∑
n,m

exp � x � xnð Þ2 þ y � ymð Þ2
d2

 !
ð2Þ

where d is thewidth of individual lattice channels (sites) and (xn,ym) are
the positions of sites with index n,m in a superhoneycomb grid. The
profile of such superhoneycomb lattice is presented in Fig. 1(a). The
primitive lattice vectors are v1 ¼ ½3a,

ffiffiffi
3

p
a� and v2 ¼ ½3a,�

ffiffiffi
3

p
a�, where

a is the distance between two nearest-neighbor channels. The
superhoneycomb lattice has 5 sites in one unit cell that are labeled as
A, B, C, D and E in Fig. 1(a). If one removes sites C, D and E, the
superhoneycomb lattice transforms into a simple honeycomb lattice.

In the top row of Fig. 1 we show examples of superhoneycomb lat-
tices. Corresponding two-dimensional band structures are shown in
the bottom row. In the lattice shown in Fig. 1(a), all sites have the
same depth p=9.5. In the inversion-symmetry-broken lattice from
Fig. 1(b) the depth of sites B, pB=p−δ, is smaller than depths of all
other sites, pA, C, D, E=p+δ, where δ is the refractive index detuning. In
the lattice from Fig. 1(c) the depth of sites B, pB=p+δ, is instead
larger than depths of all other sites pA, C, D, E=p−δ. Generally
speaking, since superhoneycomb lattice has five sites in the unit cell,
its inversion symmetry can be broken in several different ways,
beyond the one that we use here. At the same time, Dirac cones
visible in Fig. 1(a) between the 1st and 2nd bands and between 4th
and 5th bands, which are crucial for the appearance of the edge states,
are affected mostly by modulations of sites A and B, while detuning of
sites C, D and E does not lead to desirable transformations of the band
structure. In the bottom row of Fig. 1 one can see how introduction of
detuning leads to simultaneous opening of two gaps between former
Dirac points.
onding band structures (second row). Panel (a) shows the latticewith inversion symmetry,
ll. The inter-site spacing is a=1.4 and the depth of this lattice is p=9.5. (b) Inversion-sym-
er sites being p+δ, with detuning δ=0.55. (c) Similar inversion-symmetry-broken lattice,
w we set d=0.5.
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Next we define “conjugate” lattices to the structures depicted
in Fig. 1(b), (c). For example, the lattice with pA=p−δ and pB, C, D, E=
p+δ is the conjugate one to the lattice from Fig. 1(b). By combining
the original superhoneycomb lattice and its conjugate counterpart, we
created two different types of interfaces or zigzag-zigzag domain walls
depicted in Fig. 2(a) and (d) (domain walls are highlighted by the
rectangles). Such composite lattice structures are periodic along the y-
direction, R(x,y)=R(x,y+Y), with the period Y ¼ 2

ffiffiffi
3

p
a, and are

constrained in the x direction [to ensure that states at the domain wall
are not affected by outer lattice edges, we consider very wide structures
in the x-direction extending far beyond windows depicted in Fig. 2
(a) and (d)].

In the linear limit the stationary eigenvalue problem corresponding
to Eq. (1), can be written as

bðkyÞu ¼ 1
2

∂2

∂x2
þ ∂2

∂y2
þ 2iky

∂
∂y

� k2y

 !
uþRu, ð3Þ

where we used the Bloch ansatz ψ ¼ ϕðx; yÞexp½ibðkyÞz�, where ϕ(x,y)
=u(x,y)exp(ikyy) with u(x,y) =u(x,y+Y), and ky∈[−Ky/2,Ky/2) is the
Fig. 2. (a) A superhoneycomb lattice composed of the lattice shown in Fig. 1(b) and its
conjugate, with the domain wall highlighted by the rectangle. (b) The corresponding
projected band structure. Red and blue curves are the valley Hall edge states, while the
black curves correspond to the bulk states. (c) First-order (solid curves) and second-
order (dashed curves) derivatives (b' and b″) of the valley Hall edge states shown in (b).
(d,e,f) Setup is as (a,b,c), but the composited superhoneycomb lattice composed of lattice
in Fig. 1(c) and its conjugate.

3

Bloch momentum in the first Brillouin zone of width Ky=2π/Y. Since
we consider large, but finite in x lattices, the function u(x,y)→0 when
x→ ±ℓ∕2, where ℓ≫a is the size of integration window in x. Eq. (3)
was solved numerically using plane-wave expansion method. The so-
obtained “projected” band structure is depicted in Fig. 2(b) for the struc-
ture produced by combination of lattice from Fig. 1(b) and its conjugate,
where the red and blue curves correspond to the valley Hall edge states
and black curves correspond to the bulk states. Both types of the valley
Hall edge states (shown by the red and blue lines) are localized at the
same domain wall, thus creating the necessary conditions for bifurca-
tion of the families of vector valley Hall edge solitons. The first-order,
b′=db∕dky, and second-order, b″=d2b/dk2y , derivatives of the propaga-
tion constants of the valley Hall edge states are shown in Fig. 2(c). For
this type of the domain wall b″<0 for both edge states, as required for
the construction of bright solitons in the focusing Kerr medium. If the
domain wall is created by the superhoneycomb lattice from Fig. 1
(c) and its conjugate [Fig. 2(d)], one also obtains two valley Hall edge
states, shown by the red and blue lines in Fig. 2(e). However, the disper-
sion coefficients for these edge states depicted in Fig. 2(f) are now pos-
itive b″>0 nearly in the entire first Brillouin zone. Thus, the domainwall
from Fig. 2(d) may support dark solitons. These results confirm that
superhoneycomb lattices may serve as an excellent platform for the
construction of various vector solitons and it offers conditions for the
existence of such solitons that are hard to meet for other lattice types.

Superhoneycomb lattices considered here can be realized experi-
mentally using well-established method of direct fs-laser writing in
transparent dielectrics, such as fused silica [11,39,46,61–63]. Assuming
wavelength of laser radiation of 800 nm and introducing the character-
istic transverse scale of 10 μm corresponding to dimensionless values x,
y=1, one obtains that propagation distance z=1 corresponds to 1.14
mm, while lattice considered above has separation of 14 μm between
neighbouring waveguides, 5 μm widths of the individual waveguides,
and depth p~9.5 corresponding to real refractive index modulation
10−3.

3. Envelopes of vector solitons

To construct vector topological edge solitonswe consider bifurcation
of the nonlinear families of solutions from the linear Bloch states [32,33]
characterized by equal group velocities b0α=b0β≕ −v (here α,β are the
indices of the edge states on which we construct solitons). To describe
their envelopes we introduce the following ansatz:

ψ ¼ AαðY , zÞϕα,ky,αexpðibα,ky,α zÞ þ AβðY , zÞϕβ,ky,βexpðibβ,ky,β zÞ, ð4Þ

where Aα,β are the slowly-varying envelopes and Y=y−vz is the coordi-
nate in the reference framemovingwith velocity v. The evolution of the
envelopes is then governed by the coupled nonlinear Schrödinger equa-
tions that can be derived using a variant of themultiple-scale expansion
procedure described in [32]:

i
∂Aα

∂z
¼ b

00
α
2
∂2Aα

∂Y2 � ðχα jAα j2 þ 2χjAβ j2ÞAα ;

i
∂Aβ

∂z
¼ b

00
β

2
∂2Aβ

∂Y2 � ðχβ jAβ j2 þ 2χjAα j2ÞAβ ;

ð5Þ

whereχ ¼ RS ϕαj j2 ϕβ
�� ��2dxdy andχν ¼ RS ϕνj j4dxdywithν= α,β are the

effective nonlinearity coefficients, where Blochwaves are normalized asR
S ϕνj j2dxdy ¼ 1, S is the entire area of the array. Solutions of Eq. (5) can
be written in the form AνðY ; zÞ ¼ wνðYÞ expðibnlν zÞ , where bnlν is the
nonlinearity-induced propagation constant shift, which should be suffi-
ciently small to guarantee that the profilewν(Y) is broad and fulfills the
requirement of slowly varying envelope. For dispersion coefficients of
the same sign, the system Eq. (5) admits the simplest possible



Fig. 3. (a) Envelopes of the components of bright-dipole vector soliton. (b) Existence do-
main bβ

low<bβ
nl<bβ

upp of the bright-dipole vector soliton obtained for different bαnl. (c,d)
Envelopes and existence domain for bright-tripole vector soliton. Parameters for the
component based on the red valley Hall edge state from Fig. 2(b,c): ky, α=0.31Ky, bαnl=
0.0014 and b00β=−0.6013. Parameters for the component based on the blue valley Hall
edge state from Fig. 2(b,c): ky,β=0.102Ky, bβnl=0.003 and bβ″=−1.8188. The dashed line
in (b,d) implies that the envelope is unstable at a given border, while solid lines mean
that the envelope is stable. Effective nonlinear coefficients for this choice of ky,α and ky,β
are χα=0.1061, χβ=0.1369 and χ=0.0637.
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solutions with similar functional profiles (like bright-bright solitons for
negative b00α , b

00
β or dark-dark ones for positive b00α ,b

00
β). Being the simplest

possible solutions of the system, such states are stable and show behav-
iour similar to that of scalar solitons. Therefore, further wewill be inter-
ested in construction of solutions with different functional profiles
(different symmetries) in two components. The profiles wν(Y) of such
solutions for the parameters of our model can be obtained numerically
from Eq. (5) using Newton method.

First, we construct the envelopes for edge solitons on the domain
wall depicted in Fig. 2(a) that supports two valley Hall edge states
with negative second-order derivatives. For their construction we
choose two edge states from Fig. 2(b) from the red branch at ky,α=
0.31Ky and blue branch at ky,β=0.102Ky with equal group velocities
b0α , b

0
β . Corresponding dispersion and effective nonlinear coefficients

are given in the caption to Fig. 3. The examples of numerically
obtained from Eq. (5) envelopes of bright-dipole and bright-tripole vec-
tor solitons are shown in Fig. 3(a) and (c), respectively. For a fixed non-

linear shift of propagation constant bnlα such solitons existwithin limited

interval of bnlβ values, bβlow≤bβnl≤bβupp, that nearly linearly expands with
increase of bαnl. The domains of existence for bright-dipole and bright-
tripole solitons are shown in Fig. 3(b) and (d), respectively. Notice
that in the frames of envelope Eq. (5) these domains can be formally
continued to much larger values of bαnl and bβ

nl, where the borders of
the domain may depart from linear functions, but in reality the
considered domain should be consistent with the assumption that
envelope soliton is broad and covers many y-periods of the array. On
the upper edge of the existence domain α component disappears and
soliton transforms into scalar state with only β component being non-
zero. Close to the lower edge of the existence domain solitons transform
into several well-separated bright-bright states, whose β components
gradually vanish. We have also checked stability of such envelope soli-
tons by adding a small-scale perturbation into input field distributions
with an amplitude up to 10 % of soliton's amplitude and propagating
them over large distance. In Fig. 3(b) and (d), the unstable solutions
are indicated by the dashed lines, while solid lines correspond to stable
states. All such vector states are stable close to the upper border of the
existence domain, where bell-shaped β component dominates.

Second, we construct the envelopes for the case of the domain wall
depicted in Fig. 2(d). Now we use edge states from Fig. 2(e) from the
red branch at ky,α=0.344Ky and blue branch at ky,β=0.14Ky with equal
group velocities bα′ , bβ′ and positive second-order derivatives. Associ-
ated dispersion and effective nonlinear coefficients are given in the cap-
tion to Fig. 4. Examples of the dark-bright and dark-dipole vectors
solitons numerically obtained from Eq. (5) are shown in Fig. 4(a) and
(c), respectively. Such solitons exist for positive bα

nl, bβ
nl values,

similarly to solitons from Fig. 3. Even though β component in such
states has nonzero asymptotics, typical for dark solitons, the other α
component features localized shape. For such states the width of the
existence domain in bβ

nl also increases with increase of bαnl, see Fig. 4
(b) and (d). Similarly to localized states discussed in Fig. 3, α
component disappears close to the upper edge bβ

upp of the existence
domain and solitons transform into scalar dark states. In contrast, when
bβ
nl approaches lower edge of the existence domain, α component

substantially broadens and develops flat-top shape expelling β compo-
nent from the spatial region,whereα component is nonzero, so that sol-
iton state effectively delocalizes at bβnl=bβ

low. Dark-bright vector states
obtained here also can be stable (in particular, they are always stable
close to the upper border of the existence domain), as indicated by
solid lines at the borders of the existence domain.

4. Propagation dynamics of the valley Hall edge solitons

To demonstrate the formation of topological edge solitons in full
two-dimensional (2D) valley Hall system and to confirm that envelope
Eq. (5) indeed accurately describe envelopes of such solitons, we
4

constructed input 2D field distribution in accordance with Eq. (4), by
superimposing the envelopes Aν(Y,z=0)=wν(Y) obtained from Eq. (5)
on corresponding linear valley Hall edge states ϕν,ky,ν. The so-
constructed initial distribution ψ(x,y,z=0) that simultaneously contains
contributions from two edge states with different Bloch momenta
ky,ν (reflecting its vector nature) was propagated using full 2D Eq. (1).
Notice that we work here with sufficiently broad states covering many
array periods to minimize higher-order dispersion and to ensure valid-
ity of the envelope equations, hence diffraction length for such states
is determined by the width of their envelopes and to make it obvious
we propagate over sufficiently large distances. We found that in all
cases the so-constructed initial state maintains its initial profile over
huge propagation distances, even though it moves along the domain
wall because it is constructed on the edge states with nonzero group ve-
locity. This fully confirms the accuracy of our approach, as illustrated
below.

At the first step, we inspect the propagation of the bright-dipole vec-
tor valley Hall edge soliton. For selected Bloch momenta of the compo-
nents on which we construct vector edge soliton, the first-order
derivatives of the edge states are equal to bν' = −0.1033. This means
that such vector soliton will move in the positive y direction upon
propagation. In Fig. 5(a), we display field modulus distributions for
vector soliton at different selected propagation distances. Notice that
due to its hybrid nature, the constructed soliton is strongly elongated
in one direction, along the domain wall. One can see that the soliton
propagates with the same velocity, while its profile remains nearly
unchanged even after considerable displacements along the domain
wall. The dependence of the peak amplitude of the soliton mnlin= max
{|ψ| } on propagation distance z in Fig. 5(c) reveals only small
oscillations at distances up to z=10,000. This confirms stability of this
composite state involving contribution from two edge states. To
illustrate the crucial role of nonlinearity that suppresses diffraction
broadening, we checked linear propagation for the same input by
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removing the nonlinear term in Eq. (1). Already at z=2000 such beam
strongly diffracts along the domain wall (but not across it, because it
is constructed on topological edge states), as shown in Fig. 5(b).
Corresponding peak amplitude mlin displayed in Fig. 5(c) also notably
decreases. We also investigated the propagation of the bright-tripole
vector valley Hall edge solitons (see Fig. 6) on the domain wall from
Fig. 2(a). The field modulus distributions for such states plotted in
Fig. 6 clearly reveal considerable contribution from tripole component.
Nevertheless, such solitons show stable propagation up to large dis-
tances z.

Among the representative properties of the valley Hall systems is
that topological excitations in them can circumvent sharp corners with-
out backward reflection or radiation into the bulk [36,37]. Here we aim
to studywhether topological edge solitons show similar level of protec-
tion. To this end, we designed a Z-shaped domain wall in the
superhoneycomb lattice, as marked by the red line in Fig. 7(a). We
launched a bright-dipole vector valley Hall edge soliton on the straight
segment of the domain wall, so that it propagates towards Z-shaped re-
gion and recorded field modulus distributions at different distances as
illustrated in Fig. 7(b). One can see that soliton follows all bends of the
domain wall and circumvents two 60∘ corners without any appreciable
backward or bulk reflection.Moreover, the solitonmaintains its internal
structure after passage of the Z-shaped region, as one can clearly see by
comparing distributions at z=0 and z=900. The capability to circum-
vent sharp corners demonstrates that vector valley Hall edge solitons
are indeed topologically protected.

We now turn to the dynamics of the dark-bright and dark-dipole
vector solitons at the domain walls depicted in Fig. 2(d). In contrast to
bright-dipole and bright-tripole states discussed before, the solitons
with one dark component feature nonzero background. The propaga-
tion dynamics of the dark-bright vector valley Hall edge soliton is illus-
trated in Fig. 8, while propagation of the dark-dipole edge soliton is
shown in Fig. 9. The field modulus distributions at different distances
shown in Figs. 8(a) and 9(a) confirm that such solitons also move
with a constant velocity in the negative direction of the y-axis, while
Fig. 4. (a,b) Example of envelopes and existence domain on the bα
nl, bβnl plane for dark-

bright vector soliton. (c,d) Example of envelopes and existence domain on the bα
nl, bβnl

plane for dark-dipole vector soliton. Parameters of the component based on the red
valley Hall edge state from Fig. 2(e,f): ky,α=0.344Ky, bαnl=0.0045 and b00α=0.1551.
Parameters of the component based on the blue valley Hall edge state from Fig. 2(e,f):
ky,β=0.14Ky, bβnl=0.0035 and bβ″=1.458. Effective nonlinear coefficients are χα=0.2006,
χβ=0.1010 and χ=0.0865.
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maintaining their shapes. If nonlinearity is switched off, one immedi-
ately observes strong broadening of the dark notch in soliton profile
[see Figs. 8(b) and 9(b)]. The amplitude of soliton mnlin (that here
characterizes the amplitude of the background) shows only small
oscillations in the course of propagation [Figs. 8(c) and 9(c)]. One
can also clearly see that background in such solitons remains
modulationally stable.

It is necessary to mention that dark topological edge solitons show
somewhat weaker protection that depends crucially on the position of
the momenta of the edge state on which soliton is constructed with re-
spect to K or K′ valleys. Here we verify the degree of protection by
studying passage of the scalar dark valley Hall edge soliton via Z-
shaped domain wall illustrated in Fig. 10. We use here truncated dark
soliton to clearly see the outcome of passage. One can see that the
notch of the dark soliton remains practically unaffected after passage
through Z-shaped region, i.e. soliton is not destroyed and follows the
domain wall. At the same time, small backward reflection can be seen
in Fig. 10(b), which was practically absent for bright states.

5. Collisions of the valley Hall edge solitons

Solitonic properties of localized beams ideally imply not only preser-
vation of their shapes upon propagation, but also elasticity of interac-
tions of two such wavepackets. This last aspect of solitonic dynamics
has received much less attention than the very existence of solitons. In
the case of topological systems, this is partially due to the fact that the
velocity of the edge solitons is determined by the group velocity of the
respective carrier waves and in the majority of cases such velocity has
the same sign along a given branch of the edge states. The use of the val-
ley Hall edge states allows creation of envelope solitons moving in
the opposite directions along the edge and, on this reason, it allows
to study their interactions upon collisions. In this section we consider
several examples of collisions of scalar and vector edge solitons in this
system.

Starting with the collision of scalar solitons, we recall that Eq. (5)
with b″α,βχα,β<0 possesses a one-component bright soliton solution

Aα,β ¼

ffiffiffiffiffiffiffiffiffiffiffi
2bnlα,β
χα,β

vuut sech

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2bnlα,β
b

0 0
α,β

vuut x� vα,βt
� �2

4
3
5expðibnlα,βzÞ, ð6aÞ

Aβ,α ¼ 0, ð6bÞ
where the sign of bα,β″ is chosen to ensure real square roots.
Fig. 5.Propagation dynamics of the bright-dipole vector soliton. (a) Selected fieldmodulus
distributions for soliton at different propagation distances. (b) Diffraction of the same
input state as in (a) at z=2000 in the absence of nonlinear term in Eq. (1). (c) Peak ampli-
tude of the beam during nonlinear (mnlin) and linear (mlin) propagation. Panels in (a) and
(b) are shown in the window −20≤x≤20 and −242.5≤y≤242.5. Parameters of the
component based on the red valley Hall edge state in Fig. 2(b,c): ky,α=0.122Ky, bαnl=
0.002 and bα″= −0.6486. Parameters of the component based on the blue valley Hall
edge state in Fig. 2(b,c): ky,β=0.04Ky, bβnl=0.004 and b00β= −1.9742. The velocity of
soliton is v~0.1033.



Fig. 6. Setup is as Fig. 5, but for the bright-tripole vector soliton. Parameters of the compo-
nent based on the red valley Hall edge state in Fig. 2(b,c): ky,α=0.31Ky, bαnl=0.0014 and
b00α=−0.6013. Parameters of the component based on the blue valley Hall edge state in
Fig. 2(b,c): ky,β=0.102Ky, bβnl=0.003 and b00β=−1.8188. The velocity of soliton is v~0.2564.

Fig. 8. Propagation dynamics of the dark-bright vector solitons. Field modulus distribu-
tions at different distances are shown in (a), panel (b) shows result of linear propagation
of the same input state as in (a), while peak amplitude during nonlinear propagation is
shown in (c). Parameters of the component based on the red valley Hall edge state in
Fig. 2(e,f): ky,α=0.068Ky, bαnl=0.004 and b00α=0.9236. Parameters of the component
based on the blue valley Hall edge state in Fig. 2(e,f): ky,β=0.04Ky, bβnl=0.004 and b00β=
1.6209. The velocity of soliton is v~−0.0845.
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Notice that unlike in the ansatz Eq. (4) exploring a common frame
defined by the running variable Y, one formally cannot introduce such
a frame for two solitons with vα≠vβ. Since the group velocities of the
carrier modes define the velocities of solitons in the laboratory frame,
the envelopes given by Eqs. (6a) and (6b) must be considered in
different frames. Thus, being far from each other such solitons are
described by the nonlinear Schrödinger equations in different frames.
Such description fails during the interaction time, when the envelopes
strongly overlap, and thus, experience nonlinear interactions
(i.e., cannot be considered separately). In the interaction interval analyt-
ical descriptions based on slowly varying amplitudes is not applicable
anymore, and the dynamics must be studied numerically.

We first simulate the collision of scalar bright solitons bifurcating
from two different points of the red valley Hall edge branch in Fig. 2
(b) using the envelope Eqs. (6a) and (6b) to generate the input solitons.
The respective states will be denoted by ψ1 and ψ2. Collision dynamics
was simulated using fully two-dimensional Eq. (1). Concentrating on
the frontal collisions, we consider two solitons with different (by mod-
ulus) velocities in Fig. 11(a), while collision of solitons with equal by
modulus, but opposite by sign velocities is shown in Fig. 11(b). In each
subfigure (a)–(d) the left outermost panel shows two-dimensional
input field distribution, while right outermost panel shows the output
Fig. 7. Dynamics of bright-dipole vector soliton passing Z-shaped region of the domain
wall. Parameters of the component based on the red valley Hall edge state in Fig. 2(b,c):
ky,α=0.31Ky, bαnl=0.002 and b00α=−0.6013. Parameters of the component based on the
blue valley Hall edge state in Fig. 2(b,c): ky,β=0.102Ky, bβnl=0.0019 and b00β=−1.8188.
All panels are shown within the window −10≤x≤40 and −194≤y≤194.
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field distribution. To illustrate the dynamics of the collision, in the mid-
dle panels in each subfigure we show the evolution of the fieldmodulus
|ψ| in the cross section along the domain wall (indicated by the dashed
while line on the left panels). In both subfigures (a) and (b) we observe
nearly elastic collision of solitons. The total amplitude of the field in-
creases in the collision regions. After collision the solitons keep moving
with nearly the same group velocities as before collision. It is relevant to
note that when the relative π-phase shift is introduced into one of the
colliding solitons, the interference fringes in the interaction region
change considerably, but the output field modulus distributions ob-
served well beyond collision point remain practically unaffected.

The frontal collision dynamics changes dramatically if the solitons
have sufficiently small initial velocities, corresponding to ky=±0.01Ky,
as illustrated in Fig. 11(c,d). Such collision can be formally described
by the scalar limit of themodel Eq. (5)with zero carrier-wave group ve-
locity v=0, but with nonzero initial velocities of the colliding solitons: a
sufficiently small group velocity can be accounted by the second order
of the multiple-scale expansion. As a result, such collision becomes
strongly dependent on the phases of solitons. In close similarity to the
interactions of conventional solitons described by the nonlinear
Schrödinger equation [64,65], initially in-phase solitons pass through
each other acquiring relative shifts of the output trajectory with respect
to the input one. One can observe this by comparing the linear trajecto-
ries before and after the collision in Fig. 11(c). The out-of-phase solitons
Fig. 9. Setup is as Fig. 8, but for the dark-dipole vector soliton. Parameters of the compo-
nent based on the red valley Hall edge state in Fig. 2(e,f): ky,α=0.068Ky, bαnl=0.0055
and b00α=0.9236. Parameters of the component based on the blue valley Hall edge state
in Fig. 2(e,f): ky,β=0.04Ky, bβnl=0.004 and b00β=1.6209.



Fig. 10. Passage of the scalar dark valley Hall edge soliton through Z-shaped domain wall.
The structure of the domainwall corresponds to configuration considered in Fig. 7. Param-
eters for the only component on which such soliton is constructed are ky=−0.3Ky, bnl=
0.0015 and b″=0.2808.
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repel each other as clearly seen in Fig. 11(d). It should be stressed that
even for small collision velocities no radiation emission is observed in
the collision process.

For the sake of completeness, in Fig. 12(a) and (b), we show colli-
sions of two in-phase and out-of-phase vector bright-dipole solitons, re-
spectively, with the sameparameters as in Fig. 5. One observes that such
vector solitons maintain their profiles and internal structure after the
collision, as one can see from the structure of intensity dips in soliton
profile. However, one can also observe that radiative losses are stronger
upon collisions of vector solitons, whose envelopes are described by the
nonintegrable model in Eq. (5) [see Fig. 12(a,b)]. Radiation typically ap-
pears between vector edge solitons after the collision event and it al-
ways remains at the domain wall. These radiative losses can be
considerably suppressed by increasing the relative velocities of the col-
liding edge solitons, as shown in Fig. 12(c,d) for vector bright-tripole
solitons with the same parameters as those adopted in Fig. 6. Thus, sol-
itons in Fig. 12(c,d) have velocities ∣v∣~0.2564 in contrast to solitons
Fig. 11. Frontal collision of two bright valley Hall edge solitons ψ1 and ψ2 bifurcating from the re
being ψ1 and the bottom one being ψ2. Dashed line shows the cross-section at x=0 along whic
panel: output soliton profiles. Parameters for ψ1 are: ky=−0.3Ky, b′=0.2487, b″=−0.605, and
(b) The same as in (a), but solitons bifurcate from the edge states at ky=±0.3Ky, with bnl=0.
velocities. (c) The same as in (b), but solitons bifurcate from the edge states at ky=±0.01Ky. (
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from Fig. 12(a,b) with ∣v∣~0.1033. No obvious radiation is visible after
collision of such bright-tripole states indicating on practically elastic col-
lision regime at sufficiently high velocities.
6. Conclusions

Summarizing, we have reported on the existence of a rich variety of
topological vector edge solitons in valley Hall system, at the domain
wall between two superhoneycomb lattices. Such solitons are con-
structed as envelope solitons on two coexisting topological edge states
from different gaps and with different Bloch momenta. The states that
we are using for construction of the envelope solitons not only provide
equal signs of the effective dispersion coefficients, but can also be se-
lected to have equal group velocities, that is a necessary requirement
for the formation of vector solitons, whose components remain always
bound to each other in the course of propagation. The families of soli-
tons that we obtained include bright-dipole, bright-tripole, dark-
bright, and dark-dipole vector solitons. Despite their complex internal
structure and rapid displacement along the domain, such states demon-
strate remarkable robustness upon propagation and maintain their in-
ternal structure even upon passage of the sharp bends of the domain
wall. This illustrates topological nature and protection of the respective
solutions. Valley Hall system proposed here allowed us to study colli-
sions of both scalar and vector edge solitons. It was found that collisions
of scalar solitons are nearly elastic, while collisions of vector solitons are
elastic for large velocities, but can be accompanied by the emission of
radiation for small collision velocities (radiation nevertheless remains
at the domain wall). Our results illustrate considerable potential of val-
ley Hall topological systems for realization of previously unknown non-
linear topological states and phenomena.
Funding
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d valley Hall edge states in Fig. 2(b). (a) Left panel: two input solitons with the top soliton
h we show collision dynamics. Middle panel: collision dynamics in the cross section. Right
bnl=0.002. Parameters forψ2 are: ky=0.01Ky, b′=−0.0085, b″=−0.6567, and bnl=0.005.
005 for both solitons, and they have opposite by sign and equal by modulus propagation
d) The same as in (c), but with a relative initial π-phase shift between two solitons.



Fig. 12. (a) Collision of two vector bright-dipole valleyHall edge solitonsψ1 (top) andψ2 (bottom). Parameters forψ2 are same as those adopted in Fig. 5. Blochmomenta and b′ adopted for
ψ1 are opposite to those for ψ2, but other parameters are the same. (b) Setup is as (a), but there is a π-phase shift between two solitons. (c,d) Setup is as (a,b) but for two vector bright-
tripole valley Hall edge solitons. The input parameters for ψ2 are same as in Fig. 6.
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