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Abstract Thanks to the topological protection, pho-
tonic topological edge states can move along the edges
of photonic crystals without radiating into the bulk
or reflecting when encountering disorders or defects.
The valley Hall effect helps obtain topological edge
states without breaking the time-reversal symmetry
but breaking the inversion symmetry of the system,
which means that the valley Hall edge state is inde-
pendent of the magnetic field. Thus, with two inver-
sion symmetry-broken photonic lattices, a domain wall
that supports valley Hall edge states can be established.
Generally, the zigzag-type domain wall is likely to sup-
port topological valley Hall edge states. However, in
thisworkwe investigate thevalleyHall edge state on the
armchair-type domain wall in a honeycomb lattice and
demonstrate that armchair-type valley Hall edge states
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can also circumvent sharp corners with tiny reflection.
The armchair-type domain wall, with the refractive
index change being staggered, supports not only the
bright but also the dark valley Hall edge solitons, and
even the vector valley Hall edge solitons. Our results
deepen the understanding of topological valley Hall
edge states on different types of domain walls and may
find applications in developing techniques of manipu-
lating light fields for fabricating on-chip optical func-
tional devices.

Keywords Valley Hall effect · Honeycomb lattice ·
Edge state · Soliton

1 Introduction

Topological insulator is a new phase of matter in which
only the surface of the sample is allowed to conduct
electrons, with the bulk being completely insulating
[1,2]. This peculiar property of the topological insula-
tor is associated with its band structure, where there are
edge states distributed in the band gap that connect the
bulk bands. Todate, the concept of topological insulator
has been introduced into other physical branches, such
as acoustics [3–8], mechanical systems [9,10], ultra-
cold atoms [11,12], polaritons in microcavities [13–
15], electrical circuits [16–21], and photonics [22–31].
In particular, in photonics the “topological insulator”
refers to the photonic structure in which light propa-
gates along the edges of the structure, while the bulk
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remains in dark. The new field “topological photon-
ics” [32–41] is becoming more and more significant,
both in basic science and potential applications, after
beingmore than 10 years in development. The photonic
crystal platform offers unique advantages compared to
other fields, for example, by introducing nonlinearity
[35] and fabricating non-Hermitian configurations, or
simply by offering enormous versatility in the choice of
various one-, two- and even three-dimensional lattice
geometries [36,39,42].

Recent progress in this field indeed demonstrates
that the nonlinearity plays an important role and has
inspired the emergence of new phenomena in topolog-
ical photonic systems. Typical examples include topo-
logical insulator lasers [43–50], nonlinearity-induced
topological transitions and edge solitons [30], and
bistability [51,52]. Topological edge solitons are local-
ized bound states moving with constant transverse
speed that are only confined to the boundary of the
sample, owing to their topological nature. On the one
hand, they are immune to defects or disorders when
they move along the boundary, because of the topolog-
ical protection, and on the other hand, they can main-
tain their envelopes due to nonlinear self-action. How-
ever, in the photonic Floquet topological insulators the
time-reversal symmetry is broken by the artificial mag-
netic field, due to the helicity of the waveguide arrays.
Hence, the topological closed currents in the bulk origi-
nating from the edge states were first reported in theory
[53] and then in experiment [29]. The topological edge
solitons in Floquet systems were first investigated in
depth in discrete [54–56] and then in continuousmodels
[57–60]. In polariton topological insulators, in which
the time-reversal symmetry is broken by the authentic
magnetic field due to the spin–orbit coupling, the topo-
logical edge solitons were also reported first in the-
ory [61–64]. Besides the aforementioned topological
edge solitons, Dirac solitons [65], Bragg solitons [66],
and valley Hall edge solitons [67–69] have also drawn
close scrutiny in various topological systems. Thus far,
topologically trivial edge solitons were experimentally
realized [70], and the experimental observation of their
topological counterparts is still to be explored, even
though there were some beneficial attempts [29,67].

Although the valley Hall topological edge solitons
have been reported previously, the domainwall adopted
in the honeycomb lattice [68] was only of a zigzag
type. It is therefore of interest to consider valley Hall
edge solitons along other types of domain walls, e.g.,

in an armchair-type domain wall. This is especially
because the edge states appearing along the armchair-
type domain are not admitted to be topological [71],
since they do not emerge in the bulk band but reside
totally in the gap. Thus, the edge states on the armchair-
typedomainwall are expected to show inter-valley scat-
tering without topological protection. Hence, the pur-
pose of this paper is exactly to investigate and demon-
strate valleyHall edge solitons resulting from the valley
Hall effect [72] along the armchair-type domain wall.

Nevertheless, we do notwant to subvert the accepted
opinion that the inter-valley scattering is inexcusable
when it comes to circumventing sharp corners. Some
radiation still occurs and the topological protection is
not provided completely, but it plays a significant part.
In addition, this work will show that the edge states on
the armchair-type domain walls are not always com-
pletely in the bandgap—they may emerge from the
bulk bands by adjusting the detuning. Last but not the
least, the valleyHall edge solitons on the armchair-type
domain wall are investigated here in a detailed way that
includes both the bright and dark solitons. We believe
this investigationwill broaden the understanding of val-
ley Hall edge states on the armchair-type domain wall
and enlighten the discussion on potential applications.
Therefore, if one chooses an edge statewith good local-
ization, the topological propertywill be sacrificed to the
appearance of some inter-valley scattering.

2 Results

2.1 Band structure and linear modes

The propagation of the valley Hall edge state along the
longitudinal z axis of thewaveguide arraywith focusing
cubic nonlinearity can be described by the dimension-
less nonlinear Schrödinger-like paraxial wave equa-
tion,

i
∂ψ

∂z
= −1

2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − R(x, y)ψ − |ψ |2ψ,

(1)

where ψ is the field amplitude, x and y are the normal-
ized transverse coordinates, and z is the normalized
propagation distance. The potential function R stands
for thewaveguide array that is arrangedwithin a honey-
comb landscape without any modulation along the lon-
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gitudinal coordinate. The profiles of individual waveg-
uides in the array are described by Gaussian functions
of width σ :

R(x, y) = pA,B

∑
m,n

exp

[
−

(
x − xm,n

)2 + (
y − ym,n

)2
σ 2

]
, (2)

where pA,B ∼ δnA,B stands for the depths of waveg-
uides in two sublattices, and (xm,n, ym,n) are the coor-
dinates of the nodes in the honeycomb grid. We con-
sider a configuration that is periodic along the y axis
and is limited along the x axis, with outer bound-
aries located far away from the domain wall, so that
R(x, y) = R(x, y + L) with L = 3d and d being the
array constant, i.e., the distance between two nearest
sites. Representative parameter values for these quan-
tities are d = 1.4 and σ = 0.5. The average refractive
index modulation depth is set to be pin = 10.3, while
the detuning is δ = 0.55.

The setup is shown in Fig. 1. For the honeycomb
array on the left side of the domain wall in Fig. 1c,
we set pA = pin + δ and pB = pin − δ, while
for the array on the right side of the domain wall we
assume an inverted detuning, so that pA = pin − δ and
pB = pin + δ. The domain wall emerging between
these two arrays is characterized by the staggered
refractive indices, see the red rectangle in Fig. 1c.
Assuming that waveguide arrays are prepared by using
the femtosecond laser writing technique in fused sil-
ica [22,27,29,30,73,74], the normalized parameters
described above can be switched to experimental val-
ues. Provided the laser radiation at the wavelength of
800 nm is used and the characteristic transverse scale is
set to 10μm that corresponds to dimensionless coordi-
nates x, y = 1, the array constant is 14μm, the waveg-
uide width is 5 μm, and pin = 10.3 corresponds to the
refractive index modulation depth of ∼ 1.1 × 10−3.

By inserting the ansatz ψ(x, y, z) = φ(x, y)
exp(iβz) with φ(x, y) = u(x, y) exp(iky y) into Eq.
(1) and without considering the nonlinear term, one
obtains the eigenvalue problem

βu = 1

2

(
∂2

∂x2
+ ∂2

∂y2
+ 2iky

∂

∂y
− k2y

)
u + Ru, (3)

whereu(x, y) = u(x, y+L) is the periodicBlochwave
function, ky ∈ [−Ky/2,Ky/2) is the Bloch momen-
tum in the first Brillouin zone with Ky = 2π/L , and

Fig. 1 a Band structure of the composite honeycomb lattice
with an armchair-type domain wall displayed in (c). Green and
red curves are the edge states, and the black curves are the
bulk states. b First-order β ′ (solid curves) and second-order β ′′
(dashed curves) derivatives of the edge states. c Composite hon-
eycomb latticewith broken inversion symmetry. The domainwall
is of the armchair-type, with staggered refractive index change.
d, e Edge states corresponding to the red and green dots, respec-
tively. The values of ky are shown in the right-bottom corner of
each panel. Parameters are: pin = 10.3, δ = 0.55, a = 1.4, and
σ = 0.5

β is the propagation constant of the linear mode that
is a function of ky . Based on the plane-wave expan-
sion method, the band structure corresponding to the
composite honeycomb lattice with an armchair-type
domain wall is displayed in Fig. 1a, in which there
are two edge states in the band gap, as indicated by
the red and green curves. The appearance of two edge
states is due to the refractive index distribution on the
domain wall, which is staggered. The edge states on
the red curve mainly localize on the sites with bigger
refractive index, and those on the green curve mainly
on the sites with smaller refractive index [more details
can be found in Fig. 1d and e].

To seek for more intricate properties of these edge
states, the first-order derivative β ′ = dβ/dky and the
second-order derivative β ′′ = d2β/dk2y are explored,
as shown in Fig. 1b. As is well known, β ′ estimates
the velocity of the edge state, while β ′′ is responsible
for the dispersion. Around the middle of the first Bril-
louin zone, one finds that β ′′ is positive for the edge
states on the red curve and negative for those on the
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green curve. According to the condition for construct-
ing bright and dark solitons, one may expect to find
bright edge solitons based on the edge states on the
green curve and dark solitons based on the edge states
on the red curve. We choose two states from the red
and green curve, respectively, as shown in Fig. 1, and
display their profiles in Figs. 1d and e, with the Bloch
momenta exhibited in the right-bottom corner of each
panel. Since both signs of the first-order derivatives of
the two selected edge states are positive, the two edge
states as well as their bifurcated solitons will move
along the same direction—the negative y axis—during
propagation.

2.2 Analysis of the inter-valley scattering

As shown in Fig. 1a, the two edge states are com-
pletely in the band gap without emerging from the bulk
bands. As a result, they are generally classified into
defect states rather than the topological edge states, and
the inter-valley scattering is predicted when they face
defects or disorders during propagation. It is of interest
to discuss this “flaw” of the armchair-type valley Hall
edge states, answer why the inter-valley scattering hap-
pens, and check how strong the inter-valley scattering
actually will be.

To this end, we change the detunings and obtain the
corresponding band structure, as shown in Fig. 2. One
finds that the two edge states are indeed connected with
the bulk bands in Fig. 2a, where the detuning is δ =
0.1. But with increasing detuning, the edge states get
away from the bulk bands gradually, which is different
from those on the zigzag-type domain wall [68] that are
always connected with the bulk bands and unaffected
by the detunings. Figure 2b shows the band structure
with δ = 1 and indeed demonstrates that the edge states
are more localized in the band gap than those in Fig.
1a.

Since the edge states seemingly emerge from the
bulk bands with small detuning, one question is posed
directly—why not use the edge states with small detun-
ings? Before offering an explanation, we first give the
answer: the localization of the edge state along the
direction that is perpendicular to the domainwall direc-
tion is bad.

In Figs. 3a–3c, we show the edge states along the
armchair-type domain wall at ky = −0.09Ky , corre-
sponding to detunings δ = 0.1, δ = 0.55, and δ = 1,

(a) (b)

δ δ=1.0

Fig. 2 Band structure of the composite honeycomb lattice with
δ = 0.1 a and δ = 1 b. Other parameters are the same as those
adopted in Fig. 1a. Bloch momentum is indicated by the green
dots as ky = −0.09Ky

respectively. Note that the edge state in Fig. 3b is same
as that in Fig. 1e. Indeed, the localization of the edge
state in Fig. 3a is theworst. The bigger the detuning, the
better the localization of the edge state, and the farther
the separation between the edge states and the bulk
states. The dilemma for edge states on the armchair-
type domain wall is that the system cannot simulta-
neously guarantee both good localization of the edge
states and tight connection between the edge and bulk
states.

To display this contradiction more clearly, we also
display edge states in the inverted space, as shown by
the results in the second row of Fig. 3. The dashed
hexagons elucidate the extended first Brillouin zones,
in which K and K′ are the high-symmetric points that
are the locations of the “valleys”. For the case with δ =
0.1, one finds that the edge state ismainly at theK point
but hardly at the K′ point. However, with increasing
detuning, the portion of the energy of the edge state
on K′ point also increases. So, for the cases with δ =
0.55 and δ = 1, one observes large amount of energy
distributed at the K′ point, which implies that the inter-
valley scattering of the edge state can happen easily.

The mixture of the edge state on both K and K′
points can also be understood in the following way.
Since the domain wall is periodic along y axis, only ky
is a good quantum number and the horizontal axis of
the band structures in Figs. 1a and 2 is ky . According
to the profile of the first Brillouin zone in Fig. 3, K and
K′ points overlap with each other if one projects the
band structure along ky axis. Ergo, the edge state at a
certain Bloch momentum will carry information from
bothK andK′ points. For the zigzag-type domain wall,
K and K′ points do not overlap. In this work, we take
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Fig. 3 Amplitude profiles
in the real space (first row)
and the Fourier space
(second row) of linear edge
states at ky = −0.09Ky but
with detunings being
δ = 0.1 (a), δ = 0.55 (b),
and δ = 1 (c), respectively

Fig. 4 a Ratio of power in
the K valley versus Bloch
momentum ky . b–d Profiles
of selected valley Hall edge
states at certain Bloch
momenta that are shown in
the right-bottom corner in
each panel, corresponding
to the red dots in (a)

(a)

(b) (c) (d)

the case with δ = 0.55 as a generic example, taking
into account the localization of the edge state in both
real and inverted spaces.

Investigations also demonstrate that the mixture
of the edge states on K and K′ valleys is also
dependent on the Bloch momentum. The power of
the edge state in three K valleys is denoted as
PK = ∫∫

K|F{ψ}|2dkxdky , while the total power
in the first Brillouin zone (BZ) is denoted as P =∫∫

BZ|F{ψ}|2dkxdky . Here,F means the Fourier trans-
form operation. In Fig. 4a, we show the ratio PK/P as
a function of Bloch momentum ky with fixed δ = 0.55.
One finds that the power of the edge state is mainly res-
ident in the K valley if ky < 0, and in the K′ valley if
ky > 0. If ky = 0, the power is equally distributed in K

andK′ valleys. InFig. 4b–d,wedisplay exemplary edge
states in the inverted space at ky = −0.2Ky , ky = 0,
and ky = 0.2Ky , respectively. Clearly, K valley com-
ponent is dominant in Fig.4b, K′ valley is dominant
in Fig. 4d, and the two components are equal in Fig.
4c. All in all, if detuning and Bloch momentum are
properly chosen, the valley Hall edge state along the
armchair-like domain wall can be well topologically
protected.

2.3 Valley Hall edge solitons

Even though the edge state on the armchair-type
domain wall lies totally in the bandgap, it is interest-
ing to see whether the edge state is reflected by sharp
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corners or not. In this section, we first construct soli-
tons based on these “defective” valley Hall edge states
and then investigate their propagation dynamics and
topological protection.

Following the methods developed in Refs. [60,75],
the envelope equations corresponding to Eq. (1) can be
written as:

i
∂A

∂z
= β ′′

2

∂2A

∂Y 2 − χ |A|2A, (4)

where A is the slowly-varying envelope, χ = ∫ +∞
−∞

dx
∫ L
0 |φ|4dy, and Y = y + β ′t . The soliton solution

can bewritten in the formψ(x, y, z) = A(Y, z)φ(x, y)
exp(iβz) in which φ(x, y) exp(βz) is the linear Bloch
state. Bright solitons exist in the region β ′′ < 0, while
dark solitons exist in the region β ′′ > 0. Owing to
this reason, edge states corresponding to the green and
red dots support bright and dark solitons, respectively.
Numerically, Eq. (4) can be solved by using New-
ton method in the form A(Y, z) = w(Y ) exp(iβnlz),
whereβnl is the nonlinearity-inducedphase shift,which
should be sufficiently small tomake sure that the profile
w(Y ) is broad and fulfils the slowly-varying require-
ment. There are also analytical solutions of Eq. (4):

A =
√
2
βnl

χ
sech

(√
−2

βnl

β ′′ Y
)
exp (−iβnlz) (5)

for bright solitons and

A =
√

βnl

χ
tanh

(√
βnl

β ′′ Y
)
exp (−iβnlz) (6)

for dark solitons.
In Fig. 5a, we show the propagation dynamics of the

bright valley Hall edge soliton constructed by the linear
valley Hall edge state at ky = −0.09Ky [see Fig. 1e,
and corresponding β ′′ ≈ −1.5503] superimposed with
the envelope atβnl = 0.005. Launching this soliton into
the domain wall of the waveguide array, one finds that
it moves along the negative y axis during propagation,
without radiating into the bulk. When it propagates to
z = 6000, its shape is still well maintained. If the non-
linearity in Eq. (1) is lifted, the same incident pulse
spreads quickly, and a case in point is the profile at
z = 3000 shown in Fig. 5b, which almost entirely fills

(a)

(b)

(c)

Fig. 5 Propagation dynamics of the bright valley Hall edge soli-
ton. a Amplitude profiles of the soliton at selective distances. b
Amplitude profile of the same input as in (a) at z = 3000, after
linear propagation. The value ofβnl is 0.005 andβ ′′ is∼ −1.5503

(a)

(b)

(c)

Fig. 6 Same as Fig. 5 but for dark valley Hall edge solitons. The
value of βnl is 0.0015 and β ′′ is ∼ 0.9231

the domain wall. In addition to the profile, the peak
amplitude a = max{|ψ |} in Fig. 5c, which does not
reduce upon propagation distance, also demonstrates
the self-action (due to nonlinearity) on the valley Hall
edge state.

Similar to Fig. 5, we also investigate the dark valley
Hall edge soliton based on the valley Hall edge state at
ky = 0.1Ky , and the propagation dynamics is shown in
Fig. 6. One finds that the dark valley Hall edge soliton
moves along the negative y direction and maintains its
profile unchanged during propagation. As a compari-
son, the linear propagation of the same input is also
checked, and the profile at z = 3050 is shown in Fig.
6b. One finds that the width of the pulse increases in
the absence of nonlinear self-action. For the dark val-
ley Hall edge soliton, we record the peak amplitude of
the background a = max{|ψ |} during propagation, as
shown in Fig. 6c. It also stays nearly unchanged, even
after a long propagation distance.
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(a) (b)

(d)(c)

Fig. 7 a Amplitude profile of the bright soliton in Fig. 5 at x = 0
versus propagation distance z. The slope of the white line shows
the moving speed of the soliton along the domain wall, which
is −β ′. b Setup is as (a), but for the dark soliton in Fig. 6. c
Propagation of the envelope given in Eq. (5) according to Eq.
(4). d Setup is as (c), but for the dark envelope in Eq. (6)

Since the solitons in Figs. 5 and 6 are constructed
based on the analytical envelopes in Eqs. (5) and (6),
it is reasonable to have a direct propagation of the
envelopes according to Eq. (4) and have a compari-
son with the results in Figs. 5 and 6. To better show the
whole propagation of bright aswell as dark solitons, we
record the amplitude of the soliton in the plane x = 0,
and the corresponding results are shown in Fig. 7a and
b. The white line shows the analytical movement of the
solitons, with the slope being the moving speed −β ′.
Propagations of bright and dark envelopes are exhibited
in Fig. 7c and d, in which the coordinate is transformed
from y to Y . In consequence, adopting the envelopes
to construct edge solitons is valid.

To trace the inter-valley scattering of the edge
solitons, an 
-shaped armchair-type domain wall is
established, as shown in Fig. 8a, which displays four

sharp corners. A bright soliton is launched into the
domain wall, and selective profiles of the edge soli-
ton during propagation are displayed in Fig. 8b. One
finds that the bright valley Hall edge soliton can
navigate the sharp corners without radiation into the
bulk. However, there is some reflection when the soli-
ton circumvents each corner. The transmittance t =∫∫ |ψout|2dxdy/

∫∫ |ψin|2dxdy > 80% shows that
most of the energy can go through sharp corners, which
is much higher than that of a topologically trivial state.
Not only the bright soliton but also the dark soliton
can circumvent sharp corners. In Fig. 9, we exhibit the
capability of the dark soliton to navigate an 
-shaped
armchair-type domain wall. Hence, we believe that it
is not accurate to dogmatically classify the edge state
on armchair-type domain walls as topologically trivial
one.

3 Discussion

Until now, we have analyzed the topological proper-
ties of the valley Hall edge state on an armchair-type
domain wall and obtained both bright and dark soli-
tons. Actually, the first-order derivatives of the edge
state corresponding to the green dot and the red dot in
Fig. 1b are nearly equal: β ′ ∼ 0.346, so it makes sense
to look for bright-dark vector valley Hall edge solitons
along the armchair-type domain walls. In other words,
onemayobtain both scalar valleyHall edge solitons and
vector valley Hall edge solitons, on the armchair-type
domain wall. This is an interesting proposition, since
one can only obtain scalar solitons if domain wall is
zigzag-type [68]. Due to the limitation of the purpose
of the work, vector valley Hall edge solitons will be
presented in more detail in our future work.

Fig. 8 Topological
protection of the bright
valley Hall edge soliton. a
Honeycomb lattice with an

-shaped domain wall that
is indicated by a red curve.
b Amplitude profiles of the
soliton at selective distances
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Fig. 9 Setup is as Fig. 8,
but for the dark valley Hall
edge soliton

(a) (b)

4 Conclusion

Summarizing, we have investigated valley Hall edge
states along the armchair-type domain wall established
in a composite inversion symmetry-broken honeycomb
lattice. Valley Hall edge solitons are discussed, and
their topological properties are also analyzed. Our
results demonstrate that armchair-type valleyHall edge
states are neither fully topologically protected, nor
completely topologically trivial. They can navigate
sharp corners without radiating into the bulk, but with
some tiny reflection. Last but not least, the honeycomb
lattice with an armchair-type domain wall can serve as

an ideal platform for investigating different photonic
solitons [76–78].
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