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We report on the existence and stability of π -mode solitons in both one-dimensional (1D) and two-dimensional
(2D) nonlinear Su-Schrieffer-Heeger (SSH) arrays with periodic longitudinal modulation that mimics temporal
periodic driving in Floquet systems. The SSH array is a paradigmatic example of the topological insulator, where
edge states appear for the proper ratio of the intra- and intercell couplings. When the SSH array is additionally
periodically driven due to longitudinal oscillations of waveguide centers, so that for half of the driving cycle it
is in trivial phase, while on other half it is in topological phase, a new type of anomalous topological π -mode
emerges at the edges of the driven lattice. We consider π -mode solitons with propagation constants in the gap of
this equivalent Floquet system bifurcating under the action of nonlinearity from anomalous linear π -mode states.
In the 1D case such periodically oscillating solitons become more robust with an increase of the amplitude of
oscillations of waveguide positions and survive over hundreds of longitudinal lattice periods. We also found that
they can be very robust in the 2D equivalent Floquet SSH arrays. Furthermore, we show that π -mode solitons
can be directly excited by Gaussian beams launched into the array at the proper distance. Our results suggest a
framework for experimental observation of the π -mode solitons, including in higher-order topological Floquet
systems.
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The concept of photonic topological insulators [1–11] that
substantially develops the ideas about the existence of topo-
logical edge states formulated in solid-state physics [12,13]
has received increasing attention in the past decade. Various
schemes for observation of photonic topological insulators
have been proposed [14–26]. The first realization of a topo-
logical Chern insulator at optical frequencies—a photonic
Floquet topological insulator—was demonstrated using heli-
cal waveguides arranged into a honeycomb array [20], where
the gauge field resulting from waveguide rotation breaks the
effective time-reversal symmetry of the system. The Floquet
mechanism arising from periodic driving in the temporal
domain [27] can be mimicked in such systems by periodic
modulation of the waveguide array along the propagation
direction [28–31], which has been used for demonstration
of anomalous topological phase transitions [32,33], perfect
subwavelength self-imaging [34], edge-state coupling [35,36],
and tunneling inhibition [37].

Several special designs are of particular interest that allow
one to generate so-called anomalous Floquet topological π -
modes which can be depicted by the π -gap invariant [38–42].
Such localized but strongly oscillating states can be observed,
for example, when periodic modulation in the evolution vari-
able is introduced into the Su-Schrieffer-Heeger (SSH) array
to affect inter- and intracell couplings [43]. Until now, anoma-
lous Floquet topological π -modes have been experimentally
observed in the ultrathin metallic arrays of coupled corrugated
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waveguides [44], in non-Hermitian and conservative waveg-
uide arrays [45,46], and in evanescently coupled plasmonic
structures [47]. However, all such π -mode states have been
studied so far only in the linear regime. Recently, linear π/2-
modes were reported in an acoustic Floquet system [48].

On the other hand, nonlinearity may be crucial for ma-
nipulation, control, and sometimes even for the existence
of the topological edge states [49]. A plethora of intrigu-
ing phenomena appearing due to nonlinearity have been
reported in topological systems, including modulational in-
stability [50] and bistability of the unidirectional edge states
[51], topological transitions [52–54], formation of topologi-
cal solitons [55–62], and breakdown of topological transport
[63–65]. The question of whether π -mode states can ex-
ist in nonlinear Floquet systems remains unaddressed not
only in one-dimensional (1D) systems but especially in two-
dimensional (2D) systems. In the presence of nonlinearity it is
unclear whether such self-sustained states can avoid radiation
and, in 2D cases, collapse. Even though Floquet solitons have
been reported here and there [56,66], π -mode solitons are still
open for exploration.

In this Letter, we report on the 1D and 2D π -mode soli-
tons. We carry out our analysis using a continuous model,
accounting for the exact shape of the longitudinally modulated
waveguide array. Using a self-consistent iterative procedure
[55], we find solitons showing exactly periodic evolution
on one driving period and determine the range of ampli-
tudes, where such solitons show robust propagation over
multiple longitudinal periods when they are perturbed. We
show that nonlinearity allows one to control the location of
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FIG. 1. (a) Straight 1D SSH waveguide array. (b) Spectrum of static array versus ρ = α − a/2. The array depicted in panel (a) corresponds
to α = 0.4a, i.e., ρ = −0.1a. (c) Dynamic 1D SSH array, where waveguides in each unit cell oscillate out of phase. (d) Floquet spectrum of
the array from panel (c) for various r values. The π -mode is highlighted by the red color. The yellow region between two dashed lines indicates
the first longitudinal Brillouin zone. π -modes at different distances for r = 0.1 (e) and r = 0.25 (f). All modes are shown within the windows
−32 � x � 32 and −1.6 � y � 1.6.

quasienergies of such solitons within the gap and strongly
affects their spatial localization. Moreover, we found that such
solitons can exist in both focusing and defocusing materials
and that they are robust and survive even in the presence of
defects in the array.

We consider the propagation of a light beam in a modulated
waveguide array described by the dimensionless Schrödinger-
like paraxial wave equation with cubic nonlinearity:

i
∂ψ

∂z
= −1

2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − R(x, y, z)ψ − σ |ψ |2ψ. (1)

Here, ψ is the light field amplitude, x and y are the normal-
ized transverse coordinates, z is the propagation distance that
plays in Eq. (1) the same role as time in the Schrödinger
equation describing a quantum particle in a potential, the
function R(x, y, z) describes the array with longitudinal mod-
ulation, and σ = 1 (σ = −1) corresponds to the focusing
(defocusing) nonlinearity. In the 1D case, the function de-
scribing the array structure can be written as R(x, y, z) =
p
∑

m e−(x2
1m+y2 )/d2 + e−(x2

2m+y2 )/d2
, where x1m = xm − a/4 −

r sin(ωz) and x2m = xm + a/4 + r sin(ωz) with ω = 2π/Z , Z
is the modulation period, xm = x + ma with m being an in-
teger, r is the amplitude of waveguide oscillations, a is the
unit cell size (separation between two next-nearest-neighbor
channels), and d is the waveguide width. The separation be-
tween two guides in the unit cell (intracell separation) varies
dynamically and is given by a/2 − 2r sin(ωz).

We use parameters a = 3.2 (∼32 µm), d = 0.5 (∼5 µm),
Z = 10 (∼1.1 cm), and p = 10 (∼1 × 10−3), representative
of femtosecond-laser-written waveguide arrays and experi-
ments at λ = 800 nm [61,67,68]. In the 2D array (Fig. 4) four
waveguides in the unit cell are allowed to oscillate along the
diagonal of the unit cell [69]. Note that the system considered
here is equivalent to the Floquet system, since driving in
time is mimicked here by the periodic modulation along the
propagation direction z.

Neglecting the nonlinear term in Eq. (1) and introducing
the ansatz ψ = u(x, y, z)eibz, with b being a quasipropa-
gation constant and u(x, y, z) being a Z-periodic complex
field, we obtain the problem bu = (∂2

x + ∂2
y )u/2 + Ru+i∂zu,

which can be solved numerically using propagation and
the projection method adopted in Refs. [59,70,71]. If the
array represents the standard “static” 1D SSH structure,
as shown in Fig. 1(a), where α is the adjustable intracell
separation, it supports edge states only in the topolog-
ical regime with α > a/2, as indicated by the red line
in the spectrum displayed in Fig. 1(b). To make sure that the
forbidden gap is fully developed, here we use a large array
with 34 waveguides. If, however, the array is periodically
modulated with a period Z , as shown in Fig. 1(c), it spends
half of the driving cycle in the topological phase (when in-
tercell coupling is stronger than the intracell one and edge
states should be present) and half in the trivial one (where
edge states would not exist in the static case). Still, regardless
of the sign of r, which in our case determines the phase of
waveguide oscillations, a modulated array supports topolog-
ical anomalous π -mode edge states for a broad range of |r|
values, as indicated by the red lines in the quasipropagation
constant spectrum in Fig. 1(d) [72], where the spectrum is
periodic in b with the first Brillouin zone (BZ) illustrated by
the yellow region between the two dashed lines. Anomalous
π -modes exhibit strong shape variations upon propagation,
but remain exactly Z-periodic. This is seen from Figs. 1(e) and
1(f), where we display |ψ | distributions at selected distances
for r = 0.1 and r = 0.25, respectively. Since the mode at
r = 0.1 is closer to the bulk band, it is less localized than the
mode at r = 0.25. Although the field modulus distributions
are identical at distances z = Z/2 and z = Z , the profiles at
z = Z/4 and z = 3Z/4 are different, indicating the fact that
the full period is Z .

Next we consider π -mode solitons that bifurcate from lin-
ear anomalous π -modes. Remarkably, such solitons exist for
both focusing and defocusing nonlinearities [72]. We display
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FIG. 2. (a) Quasipropagation constant b versus averaged peak
amplitude Ā and power P showing the π -mode soliton family at r =
0.1. Dashed lines represent unstable solitons, solid lines represent
stable ones, and the shaded regions are bulk bands. |ψ | distribu-
tions at different distances in π -mode solitons with P = 0.05 in the
focusing medium (b) and with P = 0.2 in the defocusing medium
(c), corresponding to dots 1 and 2 in panel (a), respectively. Profiles
are shown within the 0 � x � 32 and −1.6 � y � 1.6 windows.
(d) π -mode soliton family at r = 0.25.

the relation between the quasipropagation constant b and the
power P of the π -mode soliton and between b and the av-
eraged peak amplitude Ā = ∫ Z

0 Adz/Z , where A = |ψ |max, in
Fig. 2(a) at r = 0.1. One can see that the power P of the π -
mode soliton exhibits a linear behavior with b which departs
from the value corresponding to the linear π -mode (where
Ā, P → 0), while the averaged amplitude shows nonlinear
behavior. Thus, nonlinearity allows one to tune the localiza-
tion of states by changing the location of b in the gap. At
sufficiently high powers, when b is close to the bulk band, the
soliton couples with the bulk modes and acquires long tails for
both focusing and defocusing nonlinearities [this tendency is
clear in Fig. 2(c) corresponding to dot 2 in Fig. 2(a)].

The stability of π -mode solitons was examined by adding
a small-scale noise with an amplitude up to 0.1A into in-
put states and propagating them over a large distance, e.g.,
z ∼ 4000. Stable and unstable families are shown in Fig. 2(a)
by solid and dashed lines, respectively. At r = 0.1, soli-
tons become unstable when their power exceeds P ≈ 0.07.
Examples of π -mode solitons in focusing (P = 0.05) and
defocusing (P = 0.2) media are shown in Figs. 2(b) and 2(c),
respectively. By increasing the amplitude of waveguide oscil-
lations to r = 0.25, as shown in Fig. 2(d), we were able to
substantially extend stability domains for π -mode solitons.
Surprisingly, in the focusing case with the increase of P
the π -mode soliton first becomes unstable within a small
range of powers and then stabilizes again. For this r, the
π -mode soliton is always stable in the defocusing medium.
Propagation dynamics of unstable [dot 3 in Fig. 2(d)] and
stable [dot 4 in Fig. 2(d)] solitons in the focusing medium
are depicted in Figs. 3(a) and 3(b), respectively. In Fig. 3(c),
peak amplitudes of the solitons in the focusing medium from
Figs. 3(a) and 3(b) as well as of stable solitons in the de-
focusing medium [dot 5 in Fig. 2(d)] during propagation
are exhibited. The unstable state radiates into the bulk upon

FIG. 3. Panels (a) and (b) show propagation dynamics in z (cross
section at y = 0) of π -mode solitons corresponding to dots 3 (un-
stable state with P = 0.17) and 4 (stable state with P = 0.35) in
Fig. 2(d), respectively, while panel (c) shows corresponding peak
amplitudes of the states marked with dots 3–5. (d)–(g) Propagation
dynamics in z for Gaussian inputs with different powers. Here r =
0.25.

propagation with the radiation rate decreasing with z [see
Fig. 3(a) and the magenta curve in Fig. 3(c)]. In contrast,
stable π -mode solitons show persistent oscillations without
any sign of radiation over very long distances [see blue and
yellow curves in Fig. 3(c)]. Thus, nonlinearity not only allows
one to control the localization of π -mode states but it may also
cause spontaneous emission that shifts unstable states into
stable domains. Importantly, we also found that the π -mode
solitons presented here are robust and survive even in the
presence of defects in the array [72].

To stress the experimental relevance of our findings, we
show that π -mode solitons can be excited by injecting a single
Gaussian beam into the edge waveguide. Different propaga-
tion scenarios were encountered depending on the power P
of the input beam. At power levels not exceeding powers of
π -mode solitons in the gap, we observe efficient soliton ex-
citation after some reshaping (sometimes with weak radiation
into the bulk) at the initial stages of propagation [Fig. 3(d)]. At
somewhat larger powers nonlinearity leads to strong coupling
with bulk modes and we observe the formation of irregularly
oscillating moderately extended states in the vicinity of the
edge [Fig. 3(e)]. When power increases even further, the exci-
tation of traveling into the bulk well-localized soliton occurs
[Fig. 3(f)]. For r = 0.25, this happens when 1.8 � P � 2.4.
Finally, the propagation dynamics in Fig. 3(g) corresponds
to a very strong nonlinearity, when all light remains in the
excited channel. This regime is reminiscent of excitation of
high-power solitons from a semi-infinite gap in the static
array.

We now consider π -mode solitons in a 2D SSH array. The
schematic illustration of such a “static” array [73–75], where
nontrivial topology can be introduced by changing intercell
separation α between four waveguides in the unit cell, is
shown in Fig. 4(a). Its static spectrum as a function of the
parameter ρ = α − a/2 is depicted in Fig. 4(b). The red line
corresponds to corner states appearing at α > a/2 (or ρ > 0).
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FIG. 4. Properties of linear π -mode states in 2D SSH arrays. Panels (a) and (b) show the static 2D SSH array and spectrum of its modes,
respectively. Panels (c) and (d) show the modulated 2D SSH array and its quasipropagation constant spectrum, respectively. Mode profiles in
panel (e) are shown within −10 � x � 10 and −10 � y � 10 windows for r = 0.25.

They may partially overlap with the bulk band at ρ < 0.16
as observed also in Ref. [62]. When this array is periodi-
cally driven, so that waveguide positions oscillate periodically
along the diagonal of the unit cell, 2D linear π -modes emerge.
The periodically driven structure that we consider in this
Letter is schematically depicted in Fig. 4(c), while its linear
quasipropagation constant spectrum is displayed in Fig. 4(d)
as a function of the oscillation amplitude r. First the longi-
tudinal BZ is highlighted by the yellow color; its boundaries
are indicated by the dashed lines. Linear π -modes localized
in the corners of this structure are shown by the red lines
in the spectrum. Due to band folding [59,70,71] π -modes
may overlap with bulk states, but there are also oscillation
amplitudes r, when such states appear in the gap (this gap
remains practically unchanged with increase of the array size).

FIG. 5. (a) Family of 2D π -mode solitons and (b) examples of
their profiles at z = 0 corresponding to dots in panel (a). Gray regions
in panel (a) represent bulk bands. (c) Peak amplitude of the perturbed
π -mode solitons corresponding to dots 1 and 2 in panel (a) versus z.
In all cases r = 0.25.

In Fig. 4(e) we show the profile |ψ | of the well-localized
π -mode at different propagation distances for r = 0.25 that
illustrates its exact Z-periodic behavior. Localization of the
linear π -mode for r = 0.1 (not shown here) is substantially
weaker. It should be stressed that array images in Figs. 4(a)
and 4(c) schematically show only several unit cells of the
structure, while the entire structure used for simulations con-
tains 100 waveguides.

The families of 2D π -mode solitons in both focusing and
defocusing media bifurcating from the linear π -mode state
at r = 0.25, which is completely in the band gap [72], are
displayed in Fig. 5(a). Despite considerable but periodic os-
cillations that such nonlinear 2D states undergo in the process
of propagation, they remain stable for selected r values. Fig-
ure 5(b) displays two representative π -mode solitons at z = 0
that correspond to dots 1 and 2 in Fig. 5(a). Note the con-
siderable shape transformation of the π -mode caused by the
nonlinearity. For our parameters such nonlinear states, when
perturbed by small-scale noise, show stable propagation for
both signs of nonlinearity, as illustrated by the dependence of
the peak amplitude A on the distance z in Fig. 5(c).

Summarizing, we have shown that periodically driven SSH
arrays can support stable π -mode solitons in both 1D and 2D
settings. Our results may be promising for observation of vari-
ous nonlinear phenomena in Floquet higher-order topological
insulators [76–78]. They may be also extended to various
nonequilibrium Floquet systems [27], for example, for the
design of lasers based on π -modes.
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by the National Natural Science Foundation of China (Grants
No. 12074308 and No. U1537210) and the Russian Science
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