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Abstract. A Dirac point is a linear band crossing point originally used to describe unusual transport properties
of materials like graphene. In recent years, there has been a surge of exploration of type-II Dirac/Weyl points
using various engineered platforms including photonic crystals, waveguide arrays, metasurfaces, magnetized
plasma and polariton micropillars, aiming toward relativistic quantum emulation and understanding of exotic
topological phenomena. Such endeavors, however, have focused mainly on linear topological states in real or
synthetic Dirac/Weyl materials. We propose and demonstrate nonlinear valley Hall edge (VHE) states in laser-
written anisotropic photonic lattices hosting innately the type-II Dirac points. These self-trapped VHE states,
manifested as topological gap quasi-solitons that can move along a domain wall unidirectionally without
changing their profiles, are independent of external magnetic fields or complex longitudinal modulations,
and thus are superior in comparison with previously reported topological edge solitons. Our finding may
provide a route for understanding nonlinear phenomena in systems with type-II Dirac points that violate the
Lorentz invariance and may bring about possibilities for subsequent technological development in light field
manipulation and photonic devices.
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1 Introduction
Loosely speaking, topological insulators in condensed matter
physics refer to materials that only allow electrons to conduct
along the surface but not in bulk.1,2 The concept was introduced
into the realm of photonics about a dozen years ago, and
has since led to the burgeoning development in photonic topo-
logical insulators (PTIs)3–13 and topological photonics in
general.14,15

Recently, nonlinear topological photonics has attracted in-
creasing attention,16 as nonlinearity exists inherently in many
photonic topological systems such as topological insulator
lasers17–21 and nonlinearity-induced topological insulators.22,23

Topological solitons, for example, have been proposed in sev-
eral photonic settings,24–31 which typically require breaking of
the time-reversal-symmetry (TRS) by applying external mag-
netic fields or equivalently the z-reversal symmetry by nontrivial
longitudinal modulation. Indeed, topological bandgap solitons
were recently observed in the bulk of an anomalous PTI,32 which
relied on a Kerr nonlinearity and periodic driving of anoma-
lously coupled waveguide arrays.33,34

It is natural to ask if topological edge solitons can exist in a
TRS-preserved system, or systems without complex modulation
or external magnetic fields, which is essential for practical ap-
plications. For instance, coupling and locking of semiconductor
laser arrays to produce coherent high-power laser sources is one
of the key motivations behind the development of topological
insulator lasers.17–21 The most promising approach could rely on
PTI symmetry design,35 such as using the valley Hall effect36–39

without breaking the TRS. Relevant progress on photonic valley
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Hall effect can be found in a recent review.40 Indeed, it
has been demonstrated that valley Hall edge (VHE) states
can be used in topological laser fabrication41 and on-chip
communications.42,43 Even though gap solitons were found in
the Dirac model,44 VHE solitons have never been realized as
they are completely different from all previously investigated
solitons: the topological VHE soliton is an inheritor of the
linear VHE state, so its appearance does not feature power
threshold, in sharp contrast to those standard photonic bandgap
solitons.45–52

A general consensus is that many topological and valley Hall
effects are mediated by materials with nontrivial degeneracy in
momentum space, characterized by Dirac/Weyl cones. In the
two-dimensional case, a well-celebrated example is graphene,
in which electrons around the Dirac cones behave as massless
Dirac fermions. Different from type-I Dirac cones in graphene
where the corresponding Fermi surface is a point, there are also
so-called tilted type-II Dirac cones with the Fermi surface being
a pair of crossing lines.53–64 Type-II Dirac cones violate the
Lorentz symmetry, thus allowing for quasi-particle-mediated
phenomena that do not exist in high-energy physics analogically
investigated in condensed matter physics. In photonics, for ex-
ample, type-II Dirac cones are expected to bring new features
due to their nonisotropic transport properties arising from the
distinctive dispersions. Photonic lattices can be readily designed
to possess such Dirac cones,54,57 making them attractive for
investigation of nontrivial topological phenomena.61

In this work, as one typical example, we propose and dem-
onstrate experimentally a scheme to establish type-II Dirac
photonic lattices in a nonlinear medium and, more importantly,
to reveal the existence of topologically protected nonlinear VHE
states. Such nonlinear VHE states in Dirac systems have inher-
ited topological features from their linear counterparts,65 thus
benefiting from easy implementation without any need of
“time” modulation or external magnetic fields.

2 Principles and Methods
The propagation of a light beam in a photonic lattice is de-
scribed by the Schrödinger-like paraxial wave equation:

i
∂ψðξ; η; ζÞ

∂ζ ¼ − 1

2k0

� ∂2

∂ξ2 þ
∂2

∂η2
�
ψðξ; η; ζÞ

− k0Δnðξ; ηÞ
n0

ψðξ; η; ζÞ; (1)

where k0 ¼ 2n0π ∕λ0 is the wave number in the crystal with
refractive index n0. Note that ζ in Eq. (1) plays the role of time
in the quantum mechanics Schrödinger equation.5 For the spe-
cific photorefractive strontium barium niobite (SBN) crystal
used in our experiment, we take

Δnðξ; ηÞ ¼ − 1

2
n30γ33E0

1

1þ Iðξ; ηÞ ; (2)

with Iðξ; ηÞ being the intensity pattern of the lattice beam that
is measured in units of the background illumination.66 The
parameters corresponding to experiment are λ0 ¼ 532 nm,
n0 ¼ 2.35, the bias field E0 ¼ 1 kV∕cm, and the electro-optic
coefficient γ33 ¼ 280 pm∕V.47,51 The refractive index change
reaches typically Δn ∼ 1.82 × 10−4. In experiment the lattices

are written point by point; the corresponding lattice intensity
pattern can be considered as an appropriate superposition of
Gaussian beams Iðξ; ηÞ ¼ jPl¼fA;B;Cg;m δl expf−½ðξ − ξmÞ2þ
ðη − ηmÞ2�∕w2gj2 in which δl represents the beam amplitude,
ðξm; ηmÞ is the beam center, A; B; C represent the lattice sites,
and m is an integer. The distance between two nearest-neigh-
bor sites is set to be d ¼ 30 μm and w ¼ 0.32d. The diffraction
length is Lζ ¼ k0ρ20, with ρ0 ¼ 12 μm representing the typical
width of the experimental incident beam. If we replace ξ; η; ζ
by ρ0x; ρ0y; Lζz, one obtains the dimensionless version of
Eq. (1), which is

i
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the solution of which can be written as ψðx; y; zÞ ¼
uðx; yÞ expð−iβzÞ with β being the propagation constant and
uðx; yÞ being the Bloch function. We would like to note that
there is a minus sign in the solution, so that the sign of β is
completely opposite if the solution without the minus sign
is adopted. When nonlinearity is considered, the refractive
index change is written as

Δnðx; y; zÞ ¼ − 1

2
n30γ33E0

1

1þ Iðx; yÞ þ jψðx; y; zÞj2 ; (4)

which is dependent on the beam intensity jψðx; y; zÞj2 upon
propagation. With the nonlinear refractive index change, the
solution can be written as ψðx; y; zÞ ¼ uðx; yÞ expð−iμzÞ with
μ being the nonlinear propagation constant.

An exemplary type-II Dirac photonic lattice is displayed in
Fig. 1(a) with δl ¼ 4, and its Brillouin zone (BZ) spectrum is
shown in Fig. 1(b) in which the first BZ is indicated by the
shaded hexagon. The design process of type-II Dirac photonic
lattices can be found in the Supplementary Material. There are
three sites in each unit cell of the type-II lattice, and they are
labeled as A, B, and C in Fig. 1(a). Such a lattice can be con-
sidered as the direct outcome from properly stretching a dislo-
cated Lieb lattice in the vertical direction.67 The experimental
lattice structure and measured BZ spectrum shown in Figs. 1(c)
and 1(d) match perfectly with the numerical results in Figs. 1(a)
and 1(b). Moreover, we calculate the band structure of the
type-II lattice as shown in Fig. 1(e) based on the plane-wave
expansion method. Evidently, under proper lattice design, the
bands are tilted and connected at some points—the type-II Dirac
points, which are induced solely by the spatial geometry of the
lattice.67 To see more clearly, we zoom in on one Dirac cone
indicated by a red circle in Fig. 1(e), and let one horizontal plane
(corresponding to the Fermi surface) go across the Dirac point.
The intersection at the Dirac cone forms a pair of crossing lines
in the momentum space [see the inset in Fig. 1(f)]—the char-
acteristic feature of the type-II Dirac cone.61

3 Results

3.1 Linear Valley Hall Edge States

In Fig. 1(a), the lattice is uniform, but if we intentionally in-
troduce a detuning to one site in the unit cell, the inversion
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symmetry of the lattice will be broken. In Fig. 2(a), we inten-
tionally increase the depth of site C from δC ¼ 4 to δC ¼ 4.5,
and in Fig. 2(b), we increase the depth of site A from δA ¼ 4 to
δA ¼ 4.5, while keeping that of other sites still at δl ¼ 4. The
band crossings in the band structure indeed disappear as the
gap opens, as shown in Fig. 2(c). We also display the calcu-
lated Berry curvature Ω of the first band in the ðkx; kyÞ plane
shown in Fig. 2(d), with the red and blue colors representing
the positive and negative values. The valley Chern number
Cv ¼ 1

2π

RR
valley Ωðkx; kyÞdkx dky can be numerically obtained

for each valley, which is Cv ¼ �1∕2. One finds that the Berry
curvatures of the first band corresponding to Figs. 2(a) and
2(b) are opposite. Therefore, a domain wall (DW) can be es-
tablished between two lattices with different index detunings,
as shown in Fig. 2(e), where the DW is outlined by a rectangle.
Crossing the DW in the y direction, the difference of the valley
Chern numbers is jΔCvj ¼ j � 1∕2 − ð�1∕2Þj ¼ 1, which in-
dicates that a topologically nontrivial edge state emerges along
the DW. Note that the lattice in Fig. 2(e) is periodic along the x
direction. The corresponding band structure βðkxÞ is displayed
in Fig. 2(f). The black curves in the band structure represent
the bulk states, whereas the red curve in the bandgap is the
VHE state that distributes along the DW. We would like to note
that the edge state may also appear in the bandgap between the
second and third bulk bands if different inversion symmetries
are applied, as discussed in detail in the Supplementary
Material.

3.2 Nonlinear Valley Hall Edge States and
Quasi-Solitons

The appearance of topological edge solitons inherited from their
linear counterparts strongly depends on the dispersion condition
of the linear topological edge states.27 One may obtain bright
solitons or dark solitons depending on the different dispersions
for given self-focusing nonlinearity. Indeed, the inversion-
symmetry-breaking perturbation lifts the degeneracy at Dirac
points. However, the bands do not lose their symmetry proper-
ties around the Dirac points and affect the dispersions of the
VHE states. According to our numerical analysis, the VHE
states arising from type-II Dirac cones fulfill the dispersion con-
dition (β00 > 0, i.e., the normal dispersive regime), which is a
necessary condition for the existence of bright VHE solitons,
but such a condition is not satisfied for the type-I Dirac photonic
lattices. However, we do not claim that VHE solitons are not
supported in lattices with type-I Dirac cones. In fact, the reali-
zation of VHE solitons from type-I Dirac cones is still an open
question and merits further exploration. We thus solve for the
first-order derivative β0 (group velocity of the edge state) and the
second-order derivative β00 of the linear VHE state in Fig. 2(f),
and the results are displayed in Fig. 3(a). Here the VHE state
with β0 > 0 moves along the positive x direction. Notedly, as
shown in Fig. 3(a), the normal dispersion (β00 > 0) region is
−0.235 ≤ kx∕K ≤ 0.235, where K ¼ 2π∕d defines the width
of the first BZ. By adopting the Newton method, we found a

Fig. 1 Photonic lattices with type-II Dirac cones. (a) Numerically designed lattice structure with
A, B, and C marked as the three sites in a unit cell indicated by a hexagon. Red spots represent
the lattice sites. (b) BZ spectrum of (a) with the red dashed lines contouring the first BZ (shaded
region). (c), (d) Experimental realization of the lattice and its BZ spectrum measured with the
white-light BZ spectroscopy technique, corresponding to (a) and (b). In panel (c), bright spots
represent the lattice sites. (e) Band structure of the photonic lattice in which type-II Dirac points
exist due to the tilted band-touching between the first and second bands, and second and third
bands. The projected BZ is shown in the ðkx ; ky Þ plane. (f) Projection of the band structure in the
ðkx ; βÞ plane. The inset is a zoom-in plot of the type-II Dirac cone indicated by circles with arrows.
The gray horizontal plane in ðkx ; ky Þ coordinates goes across the Dirac point and intersects
with the Dirac cone to form a pair of crossing lines—a direct manifestation of the type-II Dirac
cone.
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family of such nonlinear solutions: the peak amplitude
a ¼ maxfjψ jg and power P ¼ RR jψ j2dx dy of the nonlinear
VHE states at kx∕K ¼ 0.1 are plotted in Fig. 3(b) as a function
of the nonlinearity-dependent propagation constant μ. One finds
that both aðμÞ and PðμÞ decrease as μ increases, reducing to
nearly zero at μ ∼ 2.741 where the nonlinear localized states
resemble or reduce to the linear ones.

Let us now examine the modulational instability (MI) of non-
linear VHE states under the action of self-focusing nonlinearity,
which is possible since β00 > 0 at kx∕K ¼ 0.1. To do so, we
add a random noise to the nonlinear VHE state obtained at
μ ¼ 2.736, with a noise amplitude about 5% of the nonlinear
edge state shown in Fig. 3(c). Representative propagation of
the peak amplitude a ¼ maxfjψ jg of the perturbed state is
shown in Fig. 3(d). The amplitude profiles of the nonlinear edge
state at two selected distances [marked by two red dots in
Fig. 3(d)] are displayed in Fig. 3(c), showing growth of MI
during propagation which leads to formation of quasi-soliton
filaments along the DW. The larger the noise amplitude is (e.g.,
10% of the nonlinear edge state), the faster the growth of the
MI is, and the quicker the formation of quasi-soliton filaments.
These MI-induced soliton filaments are considered as precursors
for the formation of optical solitons,26 but here they also benefit
from the topological protection inherited from the correspond-
ing linear VHE states. Without loss of generality, we take out
one of such bright filaments at z ¼ 1750 [indicated by a red
circle in Fig. 3(c)] as the input and investigate its long-distance
propagation dynamics. To this end, we introduce another
physical quantity—the barycenter of the filament defined as

xc ¼ P−1 RR xjψ j2dx dy—to record its movement during propa-
gation. We first shift the selected filament in Fig. 3(c) to the
center of the window (x ¼ 0) and then track its propagation.
The peak amplitude and barycenter of the filament are displayed
in Fig. 3(e), showing the stability of a moving VHE quasi-sol-
iton. Even over an extremely long propagation distance
(z ∼ 32,000), the peak amplitude remains nearly invariant and
the barycenter exhibits a saw-tooth-like oscillating behavior.
The appearance of the saw-tooth behavior in the center of mass
of the wavepacket is mainly due to the simulation method (the
split-step Fourier method) we adopted: for a chosen window
along x, part of the transporting VHE quasi-soliton appears
at the left end of the numerical window when it reaches the right
end, resulting in an apparent periodic jump of the barycenter
between two ends. The same reason holds for the panel with z ¼
1000 in Fig. 3(g). In Fig. 3(f), snapshots of the quasi-soliton
taken at different propagation distances are displayed. We ob-
serve clearly that the quasi-soliton moves along the positive x
direction with a constant speed (it is same as β0), and it remains
localized with negligible radiation loss either along the DW or
into the bulk—a result of interplay between nonlinearity and
topological protection. For direct comparison, we propagate
the same input filament in the linear lattice, i.e., removing the
nonlinear term jψðx; y; zÞj2 in Eq. (4). As expected, without the
balance from the nonlinearity, the filament spreads quickly
along the DW because of diffraction [see Fig. 3(g)], yet remains
localized in the direction perpendicular to the DW. Here we only
discuss the case of VHE solitons with μ ¼ 2.736, but the ap-
proach and analysis also apply to other parameter cases.

(a) (b) (e) (f)

(c)
(d)

Fig. 2 Linear topological VHE states at the DW between two type-II Dirac cone photonic lattices.
(a) and (b) Inversion-symmetry-broken photonic lattices with the depth of site C and site A in-
creased, respectively. (c) Band structure corresponding to the lattice in (a) [which looks the same
for the lattice in (b)]. (d) Berry curvature of the first band displayed in the ðkx ; ky Þ plane. The top
panel corresponds to (a); the bottom panel, which is opposite, corresponds to (b). The dashed
hexagon represents the first BZ. (e) A DW is established by combining (a) and (b) with an interface,
highlighted by a green rectangle. The lattice is periodic along the x direction but has boundaries
along the y direction. (f) Band structure of the lattice in (e); the red curve represents the topologi-
cally protected VHE state along the DW. In panels (a), (b), and (e), blue and red spots represent
the lattice sites with different detunings.
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Since there is no power threshold for the nonlinear VHE state [see
the continuous peak amplitude and power curves in Fig. 3(b)], the
corresponding quasi-soliton possesses a higher intensity if it
bifurcates from the nonlinear VHE state with a larger amplitude.
Since the nonlinearity can induce a defect in the topological struc-
ture, the topological property will be broken if the strength of the
defect is larger than the bandgap width. From this point of view,
one cannot seek for the VHE solitons with very high intensity. In
the region with μ > 2.736, the obtained solitons have a smaller
peak amplitude and intensity. It is impossible to design corners
for the DW of type-II Dirac photonic lattices due to the spatial
symmetry, yet artificial corners can play a role of disorder but
would result in intervalley scattering due to weak valley protec-
tion. Such issues are further addressed in the Supplementary
Material, where we use a large-scale random disorder to check
the robustness of the VHE solitons.68–70

3.3 Experimental Observation of Nonlinear Valley Hall
Edge States

In the experiment, an inversion-symmetry-broken type-II Dirac
photonic lattice with a DW [corresponding to Fig. 2(e)], as
shown in Fig. 4(a1), is established by employing the CW-
laser-writing technique (similar for writing the uniform lattice in
Fig. 1(c) but with a judiciously controlled writing process).71–73

The technique relies on writing the waveguides site-by-site in
a 10-mm-long nonlinear photorefractive crystal (SBN:61 with
cerium doping: 0.002% CeO2). The experimental setup (more
details about the setup can be found in the Supplementary
Material) involves a continuous wave laser beam (λ ¼ 532 nm)
to illuminate a spatial light modulator, which creates a quasi-
non-diffracting writing beam with variable input positions.
Because of the noninstantaneous photorefractive “memory” ef-
fect, all waveguides remain intact during the writing and the
subsequent probing processes. After the writing process, the lat-
tice structure can be examined by sending a broad beam (quasi-
plane-wave) to visualize the whole lattice. Once the structure is
established, the probe beam is used to excite the lattice along the
DW, and it can undergo either linear propagation (when the bias
field is turned off) or experience a self-focusing nonlinearity
under a positive bias field. Of course, the probe beam can locally
change the index structure of the lattices due to its self-action
during nonlinear propagation—the ingredient needed to study
the nonlinear effects experimentally.72,73

To appreciate the formation of nonlinear VHE states pre-
sented in Fig. 3(e), two out-of-phase elliptical Gaussian beams
(due to the property of the VHE state that has a staggered phase
structure along the y axis) are superimposed as a probe beam
with an input power of only 3 μW, whose position is marked
by the white dashed oval in Fig. 4(a1). The linear and nonlinear

(a)

(d)

(e)

(b) (c)

(f)

(g)

Fig. 3 Numerically obtained nonlinear topological VHE states and robust transport of quasi-
solitons from MI. (a) Dispersion spectrum of the linear edge state in Fig. 2(f). Solid curve is
for β0 and dashed curve for β00. VHE quasi-solitons are found only in the region with β00 > 0.
(b) Plots of amplitude a and power P of the nonlinear edge states at kx ¼ 0.1K versus μ. The
red dotted line corresponds to μ ¼ 2.736. (c) Profiles of a typical nonlinear edge state (superimposed
with 5% random noise) found at μ ¼ 2.736 at z ¼ 0 and z ¼ 1750. (d) Amplitude of the nonlinear
state in (c) versus propagation distance. (e) Amplitude a (red curve) and barycenter xc (blue curve)
of a quasi-soliton filament [marked by the red circle in (c)] resulting from MI, showing the robustness
of the quasi-soliton over extremely long distances, as seen also in the intensity pattern snapshots
(f) during transport. (g) Spreading of the same input at z ¼ 0 as in (f) along the DW during linear
propagation for comparison. (Here, z ¼ 1000 corresponds to a physical distance 4 m.)
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output intensity patterns in real space and their corresponding
spectra in momentum space for three different excitation con-
ditions (e.g., with Bloch momentum kx∕K ¼ −0.3; 0;þ0.3)
are shown in Figs. 4(b)–4(d). When the bias field is off, the
probe beam itself does not exhibit nonlinear self-action, but
it is localized in the vertical direction without spreading into
the bulk due to the excitation of the linear VHE states, although
somewhat extended along the DW after 1 cm of propagation.
However, the probe beam undergoes self-focusing when the bias
field is turned on (0.7 kV∕cm) and, as a result, the correspond-
ing nonlinear output also becomes more localized along the DW
direction [Figs. 4(b2)–4(d2)]. This can be seen more clearly
from the overall beam width [full width at half maximum
(FWHM)], which decreased approximately from 100 μm
(linear case) to 80 μm (nonlinear case) [Figs. 4(e2)–4(e4)].
Interestingly, we found that the output pattern moves slightly
to the left (right) even in the linear condition for the Bloch mo-
mentum kx∕K ¼ −0.3 ðþ0.3Þ, thanks to the initial transverse
velocity of the VHEs, while that for kx ¼ 0 remains invariant
[Fig. 4(e1)]. Due to the nonlinear action, an appreciable portion
(about 20%) is “diminished” from the initial position of the
probe beam (marked by a solid ellipse) as compared with the
linear case. This is a direct signature of nonlinearity-induced
transport of the VHEs. Indeed, by using the barycenter of the
beam defined earlier, and plotting the superimposed linear and

nonlinear output profiles along the x direction [Figs. 4(e2)–
4(e4)], we can see clearly that the center is further shifted away
from the initial input position under nonlinear propagation.
Furthermore, nonlinearity-induced spectral reshaping is evident
due to formation of nonlinear VHEs by comparing nonlinear
[Figs. 4(b4)–4(d4)] with linear [Figs. 4(b3)–4(d3)] output spec-
tra. Our results indicate that self-trapped nonlinear VHE states
indeed exist in type-II Dirac photonic lattices. Due to the limited
crystal length, it is not feasible to experimentally show the long-
distance transport of the quasi-solitons as demonstrated in our
theoretical analysis. However, these experimental results in
Fig. 4 are corroborated by numerical simulations, as detailed
in the Supplementary Material. Here we would like to note that
the waveguide is assumed uniform without appreciable losses
along the propagation direction. Thus the transmission effi-
ciency is nearly invariant for the probe beam.

4 Discussion and Conclusion
We have proposed and experimentally demonstrated photonic
lattices exhibiting type-II Dirac points, thereby unveiling the
existence of nonlinear VHE states and the formation of topo-
logical quasi-solitons. We have shown theoretically that it is
crucial to have the type-II Dirac dispersion and a DW between
two lattices of opposite Berry curvatures in order to achieve self-

(a1) (b1) (c1) (d1) (e1)

(b2) (c2) (d2)

(b3) (c3) (d3)

(b4) (c4) (d4)

(e2)

(e3)

(e4)

Fig. 4 Experimental observation of nonlinear topological VHE states. (a1) Experimentally estab-
lished type-II Dirac lattices with a center DW (marked by the white line), where the inset (bottom-
right) shows discrete diffraction from single-site excitation. (b)–(d) Linear (first and third rows)
and nonlinear (second and fourth rows) outputs in real (first and second rows) and momentum
(third and fourth rows) space obtained from excitation by two superimposed out-of-phase elliptical
beams (circled by the dashed ellipse). The initial Bloch momenta of the probe beam are
(b) −3π∕5d , (c) 0, and (d) 3π∕5d , as marked by colored triangles in the spectra, where the white
dots mark the BZ center for reference. The first two rows are presented under the same color scale
as shown in (d1) and (d2). Solid ellipses in the top two rows mark the portion in the input beam that
is “diminished” by nonlinearity. (e) Dashed (linear) and solid (nonlinear) curves illustrate the rel-
ative position of normalized intensity profiles of the output beam along the x axis, and vertical lines
mark the corresponding center position of the beam. White dashed curve in (e1) corresponds to
the input beam for reference. Shifting of the beam position in (b2) [e(2)] and (d2) [(e4)] signals the
nonlinearity-induced transport of the VHEs, as analyzed in our theory and corroborated by
numerical simulations.
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trapping of the VHE solitons in the TRS-preserving topological
systems. We would like to note that the nonlinear experiments
with topological VHE states may also be implemented in femto-
second laser writing photonic lattices,74 now that optical non-
linearity has been demonstrated in such a platform.22,32,75 We
believe that our results may prove relevant to other type-II
systems such as nonlinear effects and high-frequency rectifica-
tion in type-II topological semimetals76 and may also enlighten
new ideas in nonlinear non-Hermitian topological systems.77

Moreover, there is still a plethora of interesting topics yet to be
explored in nonlinear systems that could involve type-II Dirac
points, including higher-order topological phases,73,75,78 new
physics arising from engineered longitudinal modulation,79,80

synthetic dimensions,81 and even the innovation of topological
semiconductor laser technologies.17–20 Thus, our work on non-
linear VHE states in engineered type-II lattices will surely
stimulate further interest in topological photonics–an area that
will continue to grow in the next decade.82
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