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Topological edge solitons represent a significant research topic in the nonlinear topological photonics.
They maintain their profiles during propagation, due to the joint action of lattice potential and nonlin-
earity, and at the same time are immune to defects or disorders, thanks to the topological protection.
In the past few years topological edge solitons were reported in systems composed of helical waveguide
arrays, in which the time-reversal symmetry is effectively broken. Very recently, topological valley Hall
edge solitons have been demonstrated in straight waveguide arrays with the time-reversal symmetry
preserved. However, these were scalar solitary structures. Here, for the first time, we report vector
valley Hall edge solitons in straight waveguide arrays arranged according to the photonic lattice with
innate type-II Dirac cones, which is different from the traditional photonic lattices with type-I Dirac
cones such as honeycomb lattice. This comes about because the valley Hall edge state can possess both
negative and positive dispersions, which allows the mixing of two different edge states into a vector
soliton. Our results not only provide a novel avenue for manipulating topological edge states in the
nonlinear regime, but also enlighten relevant research based on the lattices with type-II Dirac cones.
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1 Introduction

Topological insulators originated in condensed matter
physics [1, 2] but speedily moved into other branches of
physics, such as mechanics [3, 4], acoustics [5, 6], opto-
electronics [7, 8], atomics [9, 10], and photonics [11–18].
In fact, the whole field of “topological photonics” [19–27]
has come into being recently and is becoming ever more
significant, both in basic science and applications. Af-
ter more than a decade in development, owing to unique
advantages of the photonic platform in marrying lattice
potentials and nonlinearity [28] and in fabricating non-
Hermitian configurations [29, 30], topological photonics is
fast claiming a prominent place among the new fields of
nonlinear science.

Recent progress in the subject indeed demonstrates an
increasingly important role that nonlinearity plays in op-
tics and has inspired the emergence of novel phenomena in
topological photonic systems. Typical examples include
topological insulator lasers [31–40], nonlinearity-induced
topological transitions [41], bistability [42, 43], and topo-
logical edge solitons. Owing to their topological nature,

∗ This article can also be found at http://journal.hep.com.
cn/fop/EN/10.1007/s11467-021-1149-7.

these solitons represent localized bound states that move
with constant speed along the edges of the sample. On
one hand, they are immune to the influence of defects or
disorders when propagating along the boundary, because
of the topological protection, and on the other hand, they
maintain their envelopes due to the nonlinear self-action.

In the photonic Floquet topological insulators, the time-
reversal symmetry, which is broken by the artificial mag-
netic field due to the helicity of waveguide arrays, topo-
logically closed currents in the bulk were first reported
in theory [44] and then in experiment [45]. Originat-
ing from the linear edge states, the topological edge soli-
tons in Floquet systems were first investigated in depth
in discrete [46–48] and then in continuous [49–55] models.
In polariton-based topological insulators, in which time-
reversal symmetry is broken by the authentic magnetic
field due to the spin-orbit coupling, the topological edge
solitons were also reported in theory [56–59]. In addition
to the aforementioned topological edge solitons, the Dirac
solitons [60], Bragg solitons [61], and valley Hall edge soli-
tons [62–64] have also been brought to close scrutiny in
various topological systems. However, experimental ob-
servation of topological edge solitons is still an open prob-
lem, since thus far only their non-topological counterparts
were experimentally realized [65], to the best of our knowl-
edge.

It is worth mentioning that among various topological
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edge solitons, the vector topological edge solitons have re-
ceived insufficient attention, except for those in photonic
Floquet insulators [52, 53]. The reason is rather obvious
— the difficulty in observing such complex structures. A
vector soliton generally contains more than one compo-
nent that closely couple together. Therefore, in compari-
son with scalar solitons, vector solitons are not only more
challenging in realization but also more inspiring for po-
tential applications.

The purpose of this paper is to demonstrate vector
topological edge solitons resulting from the valley Hall ef-
fect [66], which are important as the next building blocks
to scalar solitons, but were not explored before. As the
building platform we choose the photonic lattice with in-
nate type-II Dirac cones [67]. The overriding reason for
choosing such a lattice is that the dispersion of the val-
ley Hall edge state contains two distinct regimes, which
could support bright and dark solitons simultaneously.
This property is necessary but not sufficient for the con-
struction of vector solitons, and moreover it is seemingly
impossible to realize in the honeycomb lattice [63, 64].
Therefore, the honeycomb lattice [68] is not convenient for
the investigation of vector valley Hall edge solitons at the
current level of cognition. In addition, in the lattice with
type-II Dirac cones lacking C3 symmetry [69], one can-
not design a domain wall with sharp corners for checking
the topological protection of the valley Hall edge solitons.
As a result, one has to find a substitution — the large-
scale defect capable of demonstrating the robustness of
valley Hall edge solitons [62]. The next section introduces
a model that accommodates all the necessary conditions.

2 The model

The propagation dynamics of a light beam in a lattice is
governed by the dimensionless Schrödinger-like equation
with cubic focusing nonlinearity,

i∂ψ
∂z

= −1

2

(
∂2

∂x2
+

∂2

∂y2

)
ψ −R(x, y)ψ − |ψ|2ψ, (1)

in which the propagation distance z plays a role of time t.
Here ψ is the complex envelope wave function and R is the
lattice potential with type-II Dirac cones that is described
by the function

R(x, y) = −
∑
n,m

pinQ (x− xn, y − ym) , (2)

where the individual Gaussian potential wells, described
by Q(x, y) = exp[−(x2 + y2)/d2] with d = 0.5, are placed
at the nodes of the grid (xn, ym). This structure is periodic
in the y direction: R(x, y) = R(x, y + Y ) with the period
Y = a, where a = 1.4 is the lattice constant. To better
discern the lattice, we label the three different sites in one
unit cell as A, B and C, respectively, as shown in Fig. 1(c).

Fig. 1 (a) Band structure of the photonic lattice ribbon
with a domain wall shown in (c). Black curves correspond to
bulk states and the red curve is the topological edge state.
(b) The first-order b′ (solid curve) and the second-order b′′

(dashed curve) derivative of the edge state. The values of the
first-order derivative for the blue and green dots are ∼ 0.42,
while the second-order derivatives are ∼ 0.86 and ∼ −0.53,
respectively. (c) Photonic lattice with a domain wall compos-
ited by two inversion-symmetry-broken lattices. (d–e) Pro-
files of selected topological edge states at ky = −0.35K and
ky = −0.16K, corresponding to the blue and green dots in (a,
b).

The corresponding well depths are labeled as pA, pB and
pC . If pA = pB = pC = pin, the inversion symmetry of the
lattice is preserved, while if a detuning δ is introduced in
one of them, the inversion symmetry is broken. We choose
two arrays with broken inversion symmetry and combine
them within a domain wall, as shown in Fig. 1(c). On the
left-hand-side of the domain wall, pA = pB = pin = 8 and
pC = pin + δ = 10, while on the right-hand-side of the
domain wall, pB = pC = pin = 8 and pA = pin + δ = 10.

Assuming that waveguide arrays are prepared by us-
ing the femtosecond laser writing technique in fused sil-
ica [16, 41, 45, 70–72], the normalized parameters de-
scribed above can be substituted by experimental values.
Provided the laser radiation at the wavelength of 800 nm is
used and the characteristic transverse scale is set to 10 µm
that corresponds to dimensionless coordinates x, y = 1,
the array constant turns out to be 14 µm, the waveguide
width is 5 µm, and pin = 8 corresponds to the refrac-
tive index modulation depth of ∼ 8.8× 10−4. We believe
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that the findings in the following text can be experimen-
tally observed with the method and parameters mentioned
above.

An assumption behind Eq. (1) is that the influence
of nonlinearity is small. Therefore, one starts from the
energy band structure of the lattice without the nonlin-
ear term and builds the sought-for solutions from there.
By inserting an ansatz ψ(x, y, z) = ϕ(x, y) exp(ibz) with
ϕ(x, y) = u(x, y) exp(ikyy) into Eq. (1), one obtains the
following eigenvalue problem

bu =
1

2

(
∂2

∂x2
+

∂2

∂y2
+ 2iky

∂

∂y
− k2y

)
u+Ru, (3)

where u(x, y) = u(x, y + L) is the periodic Bloch wave
function, ky ∈ [−K/2,K/2) is the Bloch momentum in
the first Brillouin zone with K = 2π/L, and b is the prop-
agation constant of the linear mode that is a function of
ky.

Based on the plane-wave expansion method, the band
structure corresponding to the composite lattice is dis-
played in Fig. 1(a), in which there is one edge state in the
top (first) band gap according to the bulk-edge correspon-
dence principle [20], as indicated by the red curve. To seek
for more intricate properties of these edge states, the first-
order derivative b′ = db/dky and the second-order deriva-
tive b′′ = d2b/dk2y are explored, as shown in Fig. 1(b).
As is well known, −b′ estimates the velocity of the edge
state while b′′ is responsible for the acceleration, that is,
the dispersion of the wave. One finds that b′′ is positive
around the middle of the first Brillouin zone (BZ), and
negative around the edge of the first BZ.

According to the condition for constructing bright and
dark solitons, one may expect to find bright edge soli-
tons based on the edge states around the middle of the
first BZ and dark solitons around the edge of the BZ.
Hence, we choose two valley Hall edge states in two dif-
ferent regimes, as shown in Fig. 1(a), and display their
profiles in Figs. 1(d) and (e), with the Bloch momenta ex-
hibited in the right-bottom corner of each panel. Clearly,
edge states corresponding to the blue and green dots sup-
port dark and bright solitons, respectively. Since both
signs of the first-order derivatives of the two selected edge
states are positive with nearly equal values ∼ 0.42, the two
edge states as well as their bifurcated solitons will move
along the same direction synchronously — the negative y
axis — during propagation. In the following, all solitons
considered here are based on the two edge states marked
with blue and green dots. Based on these considerations,
one can not only construct scalar solitons but also vector
solitons.

To construct the vector solitons, we follow the approach
utilized in the previous literature [52, 53] and consider
bifurcation from the linear Bloch states. We are looking
for the vector topological edge solitons, so we assume a

solution in the form

ψ = Aα(Y, z)ϕα exp(ibαz) +Aβ(Y, z)ϕβ exp(ibβz),

where Aα,β are the slowly-varying amplitudes and Y =

y−vα,βz is the coordinate in the frame of reference moving
with velocity vα,β = −b′α,β for both components. The
evolution of the envelopes is then governed by the coupled
nonlinear Schrödinger-like equations

i∂Aα

∂z
=
b′′α
2

∂2Aα

∂Y 2
−
(
χα|Aα|2 + 2χ|Aβ |2

)
Aα,

i∂Aβ

∂z
=
b′′β
2

∂2Aβ

∂Y 2
−
(
χβ |Aβ |2 + 2χ|Aα|2

)
Aβ ,

(4)

where χν = ⟨|ϕν |2, |ϕν |2⟩ and χ = ⟨|ϕα|2, |ϕβ |2⟩.
The inner product ⟨f, g⟩ :=

∫
S
f∗gdxdy is performed

over the entire array area S. Numerically, Eqs. (4)
can be solved by using Newton method in the form
Aν(Y, z) = wν(Y ) exp(ibnl

ν z) with ν = α, β, where bnl
ν

is the nonlinearity-induced phase shift, which should be
sufficiently small to make sure that the profile wν(Y )
is broad and fulfills the slowly-varying envelope require-
ments. When χ = 0, the vector solitons reduce to the
scalar solitons, with the analytical solutions given by

Aν =

√
2
bnl
ν

χν
sech

(√
−2

bnl
ν

b′′ν
Y

)
exp

(
−ibnl

ν z
)

(5)

for bright solitons, and

Aν =

√
bnl
ν

χν
tanh

(√
bnl
ν

b′′ν
Y

)
exp

(
−ibnl

ν z
)

(6)

for dark solitons.

3 Results and discussion

3.1 Envelopes of valley Hall edge solitons

To start with, we discuss the scalar soliton envelopes,
based on the analytical solutions in Eqs. (5) and (6).
In Figs. 2(a) and (b), we display the envelopes of the
bright soliton and the dark soliton, with bnl = 0.004 and
bnl = 0.0016, respectively. The bigger the value of bnl, the
narrower the width of the soliton.

Different from the scalar solutions, the envelopes of vec-
tor solutions must be calculated numerically again, by us-
ing Newton method. In Fig. 2(c), we show one example of
the vector bright-dark soliton envelopes, with bnl

α = 0.004

and bnl
β = 0.0016. While in Fig. 2(d), another type of

vector soliton envelopes is exhibited, with bnl
α = 0.005 and

bnl
β = 0.002. Note that the envelope indicated by the black

curve is neither a dark soliton nor a gray soliton, the phase
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Fig. 2 (a) Envelope of the bright soliton with bnl = 0.004.
(b) Envelope of the dark soliton with bnl = 0.0016. (c) En-
velopes of the bright-dark vector soliton with bnl

α = 0.004 and
bnl
β = 0.0016. (d) Envelopes of the bright-anti-bright vector

soliton with bnl
α = 0.005 and bnl

β = 0.002.

of which possesses a π shift across y = 0. Unlike dark,
the gray soliton does not reach zero at y = 0. This is a
completely new component that is not reported before in
topological photonics, to the best of our knowledge. Here,
we call this component the anti-bright soliton.

Similar to the scalar solitons, the vector solitons also
depend on bnl

α,β . To quantify this dependence, we record
the peak amplitude of the bright component aα and the
background of the dark (or anti-bright) component aβ , by
fixing bnl

α = 0.005 and scanning the value of bnl
β . The re-

sults are shown in Fig. 3. When bnl
β = 0, the vector case

reduces to the scalar case, and the dark (anti-bright) com-
ponent disappears. With increasing bnl

β , the dark (anti-
bright) component emerges gradually and the background

Fig. 3 (a) Peak amplitudes of the bright soliton component
aα and of the background of the dark component aβ of the
vector edge soliton, as functions of bnl

β /bnl
α at bnl

α = 0.004. (b)
Same as (a) but for the bright-anti-bright vector edge soliton
at bnl

α = 0.005.

Fig. 4 Moving bright topological valley Hall edge soliton
with bnl = 0.004. (a) Peak amplitudes of the soliton input
during long propagation. Black curve shows the nonlinear
propagation of anlin which does not decay after a long dis-
tance, while the red one represents the linear propagation of
alin which decays quickly. (b) Profiles of the bright soliton at
selected propagation distances. (c) Profile of the same input
as in (b) after a linear propagation of z = 1500.

enlarges synchronously. At the same time, the peak am-
plitude of the bright component decreases slightly.

3.2 Propagation dynamics of valley Hall edge solitons

By superposing the envelopes onto the linear valley Hall
edge states, as shown in Figs. 1(d) and (e), the scalar as
well as the vector valley Hall edge solitons are established.

The propagation dynamics of the scalar bright valley
Hall edge soliton is shown in Fig. 4, and that of the scalar
dark valley Hall edge soliton is shown in Fig. 5. One finds
that both the bright soliton and the dark soliton move

Fig. 5 Moving dark topological valley Hall edge soliton with
bnl = 0.0016. Setup is as in Fig. 4.
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along the negative y direction during propagation. Af-
ter a long distance of z = 6000, the profile of the soli-
ton does not change and the peak amplitude anlin does
not reduce much [see the black curves in Fig. 4(a) and
Fig. 5(a)]. For comparison, we also depict the linear prop-
agation of the soliton input without including the nonlin-
earity in Eq. (1). During linear propagation, the bright
soliton input spreads quickly and decays fast; the profile
at z = 1500 is shown in Fig. 4(c). The peak amplitude alin
of the soliton input during linear propagation is shown by
the red curve in Fig. 4(a), and one can see that it reduces
quickly. Similar phenomenon can be observed for the dark
valley Hall edge soliton in linear propagation, as shown in
Fig. 5(c). With the notches of the dark valley Hall edge
soliton broadening, the background of the beam increases,
as shown by the red curve in Fig. 5(a).

As mentioned before, the dispersion of the edge state
in the lattice with type-II Dirac cones supports vector
solitons because the second derivatives of the edge state
can be either positive or negative, depending on the Bloch
momentum. We choose two states as indicated by the
blue and green dots in Fig. 1, with Bloch momenta being
ky = −0.35K and ky = −0.16K, respectively. The first-
order derivatives of the two states are almost equal with
the value of b′ ≈ 0.42. The second-order derivative of
the blue state is b′′ ≈ 0.86 and that of the green state
is b′′ ≈ −0.53. Superposing the envelopes in Fig. 2(c)
onto the linear valley Hall edge states, one obtains the
corresponding vector bright-dark valley Hall edge state.

The propagation of the bright-dark vector soliton is
shown in Fig. 6. During nonlinear propagation, the vector
soliton moves along the negative y direction with a con-
stant speed, and its profile as well as its peak amplitude
αnlin remain unchanged even after a long propagation dis-
tance [see the black curve in Fig. 6(a) and profiles at the
selected distances in Fig. 6(b)]. Without self-action from

Fig. 6 Bright-dark vector topological valley Hall edge soli-
ton with bnl

α = 0.004 and bnl
β = 0.0016. Setup is as in Fig. 4.

Fig. 7 Bright-anti-bright vector topological valley Hall edge
soliton with bnl

α = 0.004 and bnl
β = 0.0016. Setup is as in Fig. 4.

the nonlinearity, the vector soliton input will lose its soli-
ton property quickly. The corresponding peak amplitude
αlin is indicated by the red curve in Fig. 6(a), and an
exemplary profile of the vector soliton input at z = 800
during linear propagation is given in Fig. 6(c).

Finally, we turn to the propagation dynamics of the
bright-anti-bright vector valley Hall edge soliton. The re-
sults are shown in Fig. 7. One finds that the propagation
and phenomena connected with the bright-anti-bright val-
ley Hall edge vector soliton are quite similar to the bright-
dark vector soliton shown in Fig. 6. Therefore, the new
bright-anti-bright vector valley Hall edge soliton is also
demonstrated.

4 Conclusion

Summarizing, we have demonstrated the vector valley Hall
edge solitons for the first time. These results are ob-
tained in straight waveguide arrays that are arranged in
the lattice landscape with innate type-II Dirac cones. We
elaborately introduce refractive index detunings to lattice
sites, in order to break the inversion symmetry of the lat-
tice and establish a domain wall by combining two such
lattices. On the domain walls, there appear valley Hall
edge states. Superimposing soliton envelopes onto the
linear valley Hall edge states, the scalar and vector val-
ley Hall edge solitons are found, which include the bright-
dark vector solitons and the new bright-anti-bright vector
solitons. Since solitons have been reported in a variety
of systems [73–75], we believe that our results can also
be obtained in other systems in addition to the ordinary
waveguide array.
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