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Abstract
Introduction of controllable deformations into periodic materials that lead to disclinations in their structure opens
novel routes for construction of higher-order topological insulators hosting topological states at disclinations.
Appearance of these topological states is consistent with the bulk-disclination correspondence principle, and is due to
the filling anomaly that results in fractional charges to the boundary unit cells. So far, topological disclination states
were observed only in the linear regime, while the interplay between nonlinearity and topology in the systems with
disclinations has been never studied experimentally. We report here on the experimental observation of the nonlinear
photonic disclination states in waveguide arrays with pentagonal or heptagonal disclination cores inscribed in
transparent optical medium using the fs-laser writing technique. The transition between nontopological and
topological phases in such structures is controlled by the Kekulé distortion coefficient r with topological phase hosting
simultaneously disclination states at the inner disclination core and spatially separated from them corner-I, corner-II,
and extended edge states at the outer edge of the structure. We show that the robust nonlinear disclination states
bifurcate from their linear counterparts and that location of their propagation constants in the gap and, hence, their
spatial localization can be controlled by their power. Nonlinear disclination states can be efficiently excited by
Gaussian input beams, but only if they are focused into the waveguides belonging to the disclination core, where such
topological states reside. Our results open new prospects for investigation of nonlinear effects in topological systems
with disclinations and are relevant for different areas of science, including Bose-Einstein and polariton condensates,
where potentials with the disclinations can be created.

Introduction
Topological systems hosting topologically protected states

at their edges or in their corners are attracting considerable
attention in diverse areas of physics, including solid-state
physics1,2, mechanics3, acoustics4, physics of matter waves5,
exciton-polariton condensates6, and, particularly, in pho-
tonics7–9. This attention is connected, in part, with con-
siderable practical potential of topological systems for

construction of transmission lines, switching devices, rou-
ters, and lasers resilient to disorder and edge deformations.
With the development of topological photonics7–9, the class
of systems, where topologically nontrivial states can be
encountered has been substantially extended. While many
works on photonic topological insulators employed periodic
in the bulk structures for demonstration of topologically
protected edge states10–17, it is now realized that the
topological insulators can also be created using aperiodic
structures that possess discrete rotational symmetry, but
lack periodicity, such as quasi-crystals18, fractal struc-
tures19,20, and structures with disclinations21–23.
The concept of topological insulators with disclinations

originates from solid state physics24–28, where it was pre-
dicted that disclinations— crystallographic defects disrupting
lattice structure — can trap fractional “spectral” charges
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(connected with the local density of states21,29) and support
localized states of the topological origin. Such systems can
also be used30 for realization of the higher-order topological
insulators hosting so-called zero-dimensional states31. The
bulk-disclination correspondence principle proposed for
these systems that links the appearance of the disclination
states with the topological properties of the spectrum, illus-
trates the importance of fractional spectral charges as a probe
of “crystalline” topology of these systems21,22,32. Higher-order
topological disclination states typically form at the boundary
of the hollow disclination core of the structure. It has been
demonstrated that linear lattices with disclinations offer new
opportunities for the control of confinement and internal
structure of the field, not only in photonics33,34, but also in
acoustics35–37. Different from aforementioned achievements
reported only in linear media, the impact of nonlinearity on
photonic disclination states was addressed theoretically only
recently38, while experimental observation of nonlinear dis-
clination states has never been performed so far.
At the same time, nonlinear effects, such as self-action of

light, attract more and more attention in topological pho-
tonics9 because they enable all-optical control of the
properties of the topological states. New effects of topolo-
gical origin emerging due to self-action include topological
phase transitions39, nonlinear Thouless pumping40–43, for-
mation of the topological solitons44–53, development of the
modulational instabilities of the edge states54,55 and rich
bistability effects56,57, to name only a few. Nonlinear higher-
order topological insulators supporting corner solitons have
been also reported theoretically58 and in experiment59,60,
while the Floquet version of higher-order nonlinear topo-
logical insulator was proposed just recently61.
Disclination states appearing in aperiodic structures

obtained by specific deformations of periodic arrays, for-
mally belong to a class of higher-order topological states.
However, in contrast to the previously considered higher-
order insulator geometries with periodic bulk, disclination
systems may feature other types of discrete rotational
symmetries, not compatible with crystallographic sym-
metries and not attainable in usual higher-order insulators.
One can thus expect that such symmetry properties of the
disclination systems should find their manifestation in a
completely different structure of their linear eigenmodes,
properties of nonlinear self-sustained states bifurcating
from them, and in their excitation dynamics. Our work is
thus aimed at the exploration of the interplay of nonlinear
self-action effects and topology in the disclination struc-
tures with different discrete rotational symmetries.
Here we report on the first experimental observation of

the nonlinear topological states in disclination arrays with
both pentagonal and heptagonal cores, obtained by
removing or adding sectors into periodic honeycomb
structures, where topological phase arises due to the Kekulé
distortion12,16,21,23,29 introduced into positions of six sites in

each unit cell of the structure. Our disclination arrays are
inscribed in nonlinear fused silica, using the fs-laser direct
writing technique10,59,62–65. In contrast to the previously
observed disclination states in linear photonic crystals
constructed from the arrays of dielectric cylinders21, here
we study how the nonlinear response of fused silica, which
becomes pronounced for the pulsed excitations from high-
power laser, can strongly affect the properties and locali-
zation of the disclination states in laser-written structures,
thereby stressing that the nonlinearity offers a convenient
knob for control of excitations in the topological systems.
Moreover, we study here the disclination arrays with dif-
ferent discrete rotational symmetries, illustrating that the
topological solitons in them are universal and can emerge in
a wide variety of such structures. We observe that when
disclination arrays are in topological phase, one can excite
thresholdless disclination solitons existing in a broad range
of input powers by Gaussian beam focused into one of the
waveguides on the disclination core. The excitation of the
same waveguides in nontopological regime yields strong
diffraction at low powers, while formation of nontopological
self-sustained states occurs only above considerable power
threshold. We thus compare behaviour of nonlinear exci-
tations for different values of the distortion coefficient r.
The results obtained here are relevant for a broad class of
nonlinear physical systems, including matter waves, polar-
iton condensates, photonic crystals, atomic vapors, and
many others, where potentials with disclinations can be
created. They also highlight the potential of these topolo-
gical structures for realisation of higher-harmonic genera-
tion and lasing that may benefit from strong topological
state confinement and its resilience to disorder.

Results
Spectra of the arrays with disclinations
We consider paraxial propagation of a light beam along

the z axis of a medium with the focusing cubic non-
linearity and shallow transverse refractive index modula-
tion that can be described by the nonlinear Schrödinger-
like equation for the dimensionless light field amplitude ψ:

i
∂ψ

∂z
¼ � 1

2
∂2

∂x2
þ ∂2

∂y2

� �
ψ �Rðx; yÞψ � jψj2ψ ð1Þ

where x, y are the scaled transverse coordinates, z is the
propagation distance that plays the same role as time in
the Schrödinger equation describing a quantum particle
in a potential, and the function Rðx; yÞ describes
disclination array with the straight waveguides:

R ¼ p
X
m;n

e�ðx�xm;nÞ2=a2x�ðy�ym;nÞ2=a2y

where ax and ay are the widths of waveguides that are
elliptical due to the writing process, xm,n and ym,n are the
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positions of the waveguide centers (depending on the
particular type of introduced disclination), and p is the
array depth proportional to the refractive index contrast
δn in the structure (see “Methods” for adopted normal-
izations). To create topologically nontrivial arrays with
disclinations we use two-step process. We start from
usual periodic honeycomb waveguide array with identical
waveguide spacing d in the entire structure and first
introduce shift of the waveguides in the direction
perpendicular to the borders of the unit cell, whose
magnitude can be characterized by the Kekulé distortion
coefficient r= ℓintra/ℓinter, with ℓintra and ℓinter being intra-
cell and inter-cell spacing between waveguides after
shift12,16,21,23. Clearly, r= 1 corresponds to non-
deformed structure with ℓintra= ℓinter= d. As it will be
shown below, by changing the value of r one can achieve
the transition between topologically trivial and nontrivial
geometries. On the second step, to create the arrays with
disclination, we remove or add sectors into honeycomb
structure with shifted waveguides. At this step, after
removing of the sector we deform the unit cells in the
remaining structure such that they fill the entire 2π polar
angle, while to add the sector we compress unit cells
accordingly (see “Methods” for the description of the
deformation process).
In Fig. 1a, we display the microphotographs of the

arrays with pentagonal disclination core inscribed with fs-
laser in 10 cm long fused silica sample (total number of
waveguides in this structure is 90), obtained by removing
a sector from honeycomb array, with coordinates of the
waveguides obtained using the above two-step process for
three different values of the distortion coefficient r. Black
hexagons filled with different background colors are
superimposed on the microphotographs as guides for the
eye indicating different cells of the structure. The color of
the background is selected in accordance with position of
the cells, as indicated in the figure caption. Similar
microphotographs, but for the structure with the hepta-
gonal disclination core (total number of waveguides is
126) that was obtained by adding the sector into honey-
comb array are presented in Fig. 1d, also for three dif-
ferent r values. While the main focus of this work is the
interplay between the nonlinearity and topology in the
systems with disclinations, we consider experimentally the
systems with different symmetries. For instance, we also
consider heptagonal structures, where disclination states
were not reported experimentally so far, as mainly pen-
tagonal structures were employed in previous linear
experiments21.
Topological properties of these structures are controlled

by the distortion coefficient r. One can see that for r < 1
the inter-cell coupling becomes weaker than the intra-cell
one, while for r > 1 the situation is reversed, and the inter-
cell coupling becomes stronger than the intra-cell one,

indicating on the possible transition of the disclination
array into higher-order topological insulator phase. This
transition is manifested in qualitative modification of the
linear spectrum of eigenmodes supported by these
structures. To obtain such modes, we first use the ansatz
ψ= u(x, y)eibz, where b is the propagation constant and
u(x, y) is the real function, for Eq. (1) to get the equation

bu ¼ 1
2

∂2

∂x2
þ ∂2

∂y2

� �
uþRuþ u3 ð2Þ

We then omit last nonlinear term in Eq. (2) and calculate
all linear eigenmodes of the system numerically (see
“Methods” for description of the employed plane-wave
expansion method). The present system can also be
analyzed using the tight-binding model that is well-suited
for the description of light propagation in fs-laser written
waveguides66. At the same time, we would like to stress
that the continuous model adopted here enables more
accurate description of light propagation in array because it
accounts for real refractive index landscape in the sample,
i.e. ellipticity of the waveguides and coupling between all
sites of the structure, it takes into account radiation from
the waveguides and variation of the field inside the
waveguides that is not considered in discrete systems.
The transformation of linear spectrum of the array with

the pentagonal disclination core with increase of the dis-
tortion coefficient r is illustrated in Fig. 1b. While at r < 1 no
localized states are present in the gap between two bulk
bands, at r > 1 the spectrum changes qualitatively, with
several different types of localized states emerging in the gap.
The appearance of such states can be explained by the bulk-
disclination correspondence principle, which gives the link
between the fractional charge and topologically nontrivial
states (see “Methods” for discussion of the topological
invariants). Among these states, five states marked with
orange color (their number is dictated by the symmetry of
the structure) are disclination states residing at the dis-
clination core in the center of the array. Some of these states
can be degenerate depending on the value of r, but in
general they have different eigenvalues. These states have
different phase structure, their localization at the disclination
core increases with the increase of r. To describe the
structure of the spectrum in more details, we chose r= 1.68
[cyan dashed line in Fig. 1b] and show eigenvalues of all
modes in the interval 0.36 ≤ b ≤ 0.50 in Fig. 1c. Besides dis-
clination states, in the same gap there appear corner-I
(dark-green dots), edge (purple dots), and corner-II states
(green dots), but all of them emerge at the outer edge/cor-
ners of the structure due to its finite size and on this reason
they do not hybridize for sufficiently large r with orange
disclination states localized on the central disclination core.
Calculated intensity distributions of all eigenmodes forming
in the gap at r= 1.68 for the arrays with pentagonal and
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heptagonal disclination cores are presented in Supplemen-
tary Materials — to stress generality of these results, we
present them for even larger structures with 300 (420)
waveguides for pentagonal (heptagonal) cases — while in
experiments we use sufficiently large and most compatible
with writing technology structures from Fig. 1.
Similar transformation of linear spectrum with increase

of r is observed also in the array with heptagonal dis-
clination core, see Fig. 1d. In this structure seven dis-
clination states with different phase structures emerge in
the spectrum (some of them are nearly degenerate so that
there are seemingly five orange curves) shown in Fig. 1e.
Detailed structure of spectrum for this case is presented in
Fig. 1f for r= 1.68, where one can again see that dis-
clination states at the disclination core may coexist with
spatially separated from them corner-I (dark-green dots),
edge (purple dots), and corner-II states (green dots) at the
outer edge. The symmetry of the heptagonal array is dif-
ferent from that of the pentagonal array, therefore their
corresponding gap widths are different, and this is also the
reason why the corner states cross/overlap with edge
states in Fig. 1e when r > 1, but not in Fig. 1b.
We would like to note that the corner-II states present

in the spectrum have different internal structure from the
corner-I state which has intensity maximum in the very
corner site. In contrast, in corner-II state there is no light
in this site. In tight-binding models, the corner-II states
usually emerge at zero “eigenvalues”16, so they are

frequently named also “zero-energy states”. Here, for
convenience, we distinguish them by using notations
“corner-I” and “corner-II” states. Due to different parity of
corner-I and corner-II states only the former one is effi-
ciently excited by injecting a Gaussian beam into the
corner site, while the latter requires more sophisticated
excitation configurations, for example with two out-of-
phase beams. It is also worth noting that corner-II and
disclination states do not hybridize in topological regime
even though their propagation constants may cross at
certain r (they do not overlap for all r values). Hybridi-
zation is unavoidable only at r→ 1 because in this limit
the states substantially broaden, so that the coupling
between them may occur in finite-size structure.
The emergence of disclination states of topological

origin at the inner disclination core is consistent with the
bulk-disclination correspondence principle21,22,32 that
establishes the link between the fractional disclination
charge Q (see “Methods” for details of topological char-
acterization) and the localized states emerging at the
disclination core. For our arrays, Q ¼ 1=2 in topologically
nontrivial phase at r > 1 signalizing on the appearance of
disclination states, while Q ¼ 0 in nontopological regime,
when r < 1 and disclination states are absent.

Properties of nonlinear disclination states
We now address the properties of stationary nonlinear

disclination states, whose shapes are governed by the
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Fig. 1 Disclination arrays and their linear spectra. a Microphotographs of the fs-laser written waveguide arrays with a pentagonal disclination
core for different values of the distortion coefficient r. The orange, blue, and green dotted circles indicate the nodes 1, 2 and 3, that will be used
below for probing of excitation dynamics. Unit cells near the disclination core, at the edges or in the corners of the array are marked with orange,
purple and green colors, respectively. b Propagation constants b of the eigenmodes of pentagonal disclination array vs distortion coefficient r.
Orange curves are associated with states residing at the disclination core. c Spectrum at r= 1.68. The bands corresponding to the bulk states are
shown in gray, while propagation constants of corner-I, corner-II, edge and disclination states are represented by dots of different colors.
d–f Microphotographs and spectrum for the array with heptagonal disclination core. The arrangement of panels is the same as in (a–c)
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Eq. (2), where we keep the last nonlinear term. Such states
can be found using the Newton relaxation method (see
“Methods” for details). By analogy with corner solitons
encountered in higher-order topological insulators with
periodic bulk59,60, such nonlinear disclination states can
be called disclination solitons. For their theoretical
description we adopt the large-scale disclination arrays
schematically depicted in Fig. 2. In both pentagonal and
heptagonal arrays the families of the nonlinear disclina-
tion states bifurcate from linear modes localized at the
disclination core. We consider bifurcation from the dis-
clination state with the largest propagation constant (see
Supplementary Materials). With the increase of the pro-
pagation constant b the power U ¼ RR jψj2dxdy of non-
linear disclination state monotonically grows [see Fig. 2a
and c for pentagonal and heptagonal cases, respectively],
while the state first rapidly localizes and already at U ~ 0.1
concentrates practically on one side of the disclination
core [see representative intensity distributions in Fig. 2b
and d]. This clearly stresses solitonic nature of such state,
since without nonlinearity its power would be redis-
tributed between different sites at the disclination core
due to beating between several disclination states (notice
that this process may be slow because eigenvalues of
linear disclination states are close). The peak intensity
Ip ¼ maxfjψj2g of nonlinear disclination state [blue curve
in Fig. 2a and c] practically linearly increases with b. Even
though propagation constant of the nonlinear disclination
state crosses eigenvalues of linear edge (purple vertical
dashed lines) and corner-I (dark green vertical dashed
lines) states, no coupling with them occurs because they
are located at the outer edge of the array. However, when

the propagation constant of the nonlinear disclination
state penetrates into the bulk band, shown with gray color
in Fig. 2a and c, the coupling with bulk states occurs that
leads to strong expansion over entire array [see right
panels in Fig. 2b and d]. As a result, the power U in the
band rapidly increases with increase of b. These results
illustrate that nonlinear disclination states are the modes
of topological origin, whose position inside the gap and
localization degree strongly depend on their power. This
reveals one of the main advantages that nonlinearity offers
in this system: one can tune the location of the disclina-
tion state propagation constant in the forbidden gap by
changing its power. Stability of the nonlinear disclination
states was analyzed by adding a small-scale perturbation
(5% in amplitude) to them and propagating them in the
frames of Eq. (1) over a very long distance z ~ 4000 that by
several orders of magnitude exceeds available sample
length. The propagation was modelled using the split-step
fast Fourier transform method. This analysis shows that
all such states in the gap are stable in both pentagonal and
heptagonal arrays. Notice that we use different back-
grounds to distinguish unit cells in different regions only
on images showing arrays (see Figs. 1 and 6), while
intensity distributions, like those shown in
Fig. 2, will have the same background.
In Eq. (1), the nonlinearity is focusing, which corre-

sponds to our experiments performed with arrays written
in fused silica samples. At the same time, solitons on
disclinations are universal and can also be obtained in
defocusing materials. Thus, in Supplementary Materials,
we present an example of such soliton family obtained in
the frames of Eq. (1) with the opposite sign of the
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Fig. 2 The families of nonlinear disclination states. a Peak intensity Ip (blue solid curve) and power U (black solid curve) of the nonlinear
disclination states vs propagation constant b in the array with the pentagonal core at r= 1.68. Gray regions represent the bulk band, while the
vertical dotted color lines show propagation constants of linear corner-I, edge, corner-II, and disclination states. b Intensity distributions of selected
nonlinear disclination states with different propagation constants that correspond to circles in (a). c, d The families of nonlinear disclination states and
examples of their profiles in the array with heptagonal core. Intensity distributions in (b) are shown within the window −40 ≤ x, y ≤ 40, while those in
(d) are shown within the window −46 ≤ x, y ≤ 46
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nonlinear term. Moreover, such states can also be
potentially obtained in materials with saturable non-
linearities, typical for example for photorefractive crys-
tals52,60,67. The examples of such states in saturable media
are also included in Supplementary Materials.

Observation of nonlinear disclination states
For observation of nonlinear disclination states we

inscribed (see “Methods” for details of fabrication) the
arrays with pentagonal and heptagonal disclination cores
with different values of the distortion coefficient r= 0.8,
1.0 and 1.68, to be able to compare dynamics in topolo-
gically trivial and nontrivial structures. In experiments, we
employed single-waveguide excitations using femtose-
cond pulses of variable energy E from 1 kHz Ti:sapphire
laser at 800 nm central wavelength. Initially, short pulses

with a 40 fs duration and wide spectrum from a regen-
erative amplifier system Spitfire HP (Spectra Physics) first
pass through an active beam position stabilization system
(Avesta) and an attenuator, and afterwards are launched
into a 4f single-grating stretcher-compressor with a vari-
able slit. Spectra of such pulses are narrowed by a slit
down to 5 nm, which corresponds to the pulse duration of
280 fs. This increase in pulse duration allows to prevent
optical collapse and strong spectral broadening during
pulse propagation in the waveguides, i.e. it allows to
neglect the temporal effects. The pulses after stretcher-
compressor were focused into selected waveguides and
the output intensity distributions after propagation in the
sample were recorded using a Kiralux CMOS camera
(Thorlabs). The input peak power in the waveguide (for
each pulse in the 1 kHz sequence) was defined as a ratio of
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Fig. 3 Excitation of nonlinear modes in disclination arrays without distortion, at r = 1.0. Comparison of experimentally measured (maroon
background) and theoretically calculated (white background) output intensity distributions in pentagonal (a–c) and heptagonal (d–f) disclination
arrays for different input powers (pulse energies) of single-site Gaussian excitation. Results for beams focused into different nodes 1, 2 and 3 of the
structure [indicated by colored circles and corresponding to the circles in Fig. 1a and d] are additionally highlighted with the orange, blue, and green
backgrounds. Pulse energies E for the experimental outputs and dimensionless input powers U for theoretical outputs are indicated on each panel.
White and black lines are guides for the eye illustrating unit cells of the array. All theoretical panels are shown within the window −30 ≤ x, y ≤ 30 and
are obtained for the array depth p= 5.0
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the input pulse energy E to the pulse duration τ= 280 fs
and taking into account the losses for matching with the
focusing lens the input power can be evaluated as 2.5 kW
for each 1 nJ. For example, maximal excitation energy of
E= 600 nJ in experimental patterns shown in Figs. 3, 4, 5
corresponds to the peak power of 1.5MW. We compare
excitations of three different waveguides (nodes) num-
bered 1 (at the disclination core), 2 (in the bulk), and 3 (in
the outer corner) indicated by colored circles in Fig. 1a
and d. The purpose of the excitation of node 2 in the
experiment is twofold. First, we would like to show that
there are no localized linear states in the bulk of dis-
clination lattice (node 2 formally belongs to the bulk of
the structure) and that the localization in the bulk occurs
only above certain power threshold. In clear contrast,
corner-I and disclination states are thresholdless and can
be easily excited in the topological regime even by low-
power beams launched in nodes 3 and 1, respectively.
Second, we would like to stress that to excite the dis-
clination state, one has to launch a Gaussian beam directly

into the site belonging to the disclination core. One
cannot excite it efficiently by focusing light into neigh-
boring site to the disclination core.
In Fig. 3 we present comparison of the output intensity

distributions for these three types of excitations calculated
theoretically (images with white background) using Eq. (1)
and measured experimentally (images with maroon
background) for both pentagonal and heptagonal dis-
clination arrays without distortion, i.e. with r= 1. In this
“borderline” case between topological and nontopological
phases, no localized states are present in spectra of the
arrays. On this reason the excitation of any of the nodes 1,
2, or 3 is accompanied by strong diffraction in the linear
regime for E= 10 nJ pulses (in Fig. 3 the position of
excitation in each case is marked by colored ring), which
is well visible also at intermediate propagation distances
inside the sample. Increasing pulse energy (power in
theoretical simulations) results in gradual contraction of
light towards the excited waveguide. For excitation of
node 1 at disclination core one can observe the formation

E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ

E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ

E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ

U = 0.01 U = 0.20 U = 0.65 U = 0.73 U = 0.01 U = 0.30 U = 0.40 U = 0.78

U = 0.01 U = 0.20 U = 0.75 U = 0.78 U = 0.01 U = 0.20 U = 0.40 U = 0.77

U = 0.01 U = 0.20 U = 0.60 U = 0.65 U = 0.01 U = 0.20 U = 0.40 U = 0.55

no
de

1
no

de
2

no
de

3

no
de

1
no

de
2

no
de

3

pentagonal case: r = 0.8 heptagonal case: r = 0.8

a d

b

c

e

f

Fig. 4 Excitation of nonlinear modes in nontopological disclination array with r = 0.8. Comparison of the output theoretical and experimental
output intensity distributions for different input powers in pentagonal (a–c) and heptagonal (d–f) arrays in topologically trivial phase. The
arrangement of panels is similar to Fig. 3. The array depth is p= 4.9 in (a–c) and p= 5.0 in (d–f)
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of well-localized soliton at highest shown pulse energy
E ~ 600 nJ, i.e. above considerable threshold [Fig. 3a and
d]. The same pulse energy level in general is not sufficient
for soliton formation for excitation in the bulk [Fig. 3b
and e] and at the outer corner [Fig. 3c and f], since at this
energy level the tendency for light contraction to the
excited waveguide only begins. To achieve good locali-
zation in these cases one has to increase the pulse energy
even further, approximately to E ~ 900 nJ level. In this
regime, the localization occurs because the beam creates
self-induced defect in the lattice due to nonlinearity when
its power exceeds certain threshold, and the resulted
nontopological solitons can appear only in semi-infinite
gap (above all allowed bands).
In Fig. 4 we consider the same three types of excitations

in the trivial insulator phase, when distortion coefficient
r= 0.8. According to the Wannier center analysis in each
unit cell, the filling anomaly does not occur in this case,
and, consequently, no localized corner-I, edge or dis-
clination states can appear in the linear spectrum of the

system, despite the fact that forbidden gap opens for this
value of r [see Fig. 1b and e], i.e. all linear eigenmodes are
delocalized bulk modes. Thus, one again observes dif-
fraction in the linear regime for E= 10 nJ pulses, for both
pentagonal Figs. 4a–c and heptagonal Figs. 4d–f dis-
clination arrays for all three types of excitations. More-
over, now localization does not occur for excitation at the
disclination core even for pulse energies E ~ 600 nJ that
was sufficient for nonlinear localization at r= 1.0. Thus,
there exists the tendency for increase of the pulse energy
required for localization at the disclination core with
decrease of r. For depicted pulse energies localization was
not observed neither for bulk nor for corner excitations (it
occurs only around E ~ 900 nJ).
The picture changes qualitatively at r= 1.68 in topolo-

gically nontrivial phase. In this case, the disclination core
supports topologically nontrivial localized disclination
states, thus the input beam focused into node 1 excites
localized states even at the lowest pulse energies E ~ 10 nJ
in both pentagonal [Fig. 5a] and heptagonal [Fig. 5d]

pentagonal case: r = 1.68 heptagonal case: r = 1.68

E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ

E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ

E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ E = 10 nJ E = 200 nJ E = 400 nJ E = 600 nJ

U = 0.01 U = 0.20 U = 0.40 U = 0.70 U = 0.01 U = 0.20 U = 0.30 U = 0.68

U = 0.01 U = 0.30 U = 0.40 U = 0.80 U = 0.01 U = 0.20 U = 0.40 U = 0.63

U = 0.01 U = 0.20 U = 0.30 U = 0.50 U = 0.01 U = 0.27 U = 0.32 U = 0.50

a d

b

c

e

f
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1
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2
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3
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1
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de
2
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Fig. 5 Excitations of nonlinear modes in topological disclination arrays with r = 1.68. Comparison of experimental and theoretical outputs in
pentagonal (a–c) and heptagonal (d–f) arrays in the topological phase illustrating the formation of disclination solitons (a), (d) and corner solitons (c),
(f) existing for a broad range of powers, and considerable diffraction at all power levels for excitation of node 2. In all cases the array depth p= 5.0
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arrays. Notice that even though in this quasi-linear regime
single-site excitation leads to simultaneous population of
several localized disclination eigenmodes, the beating
between them occurs on the scale much larger than
sample length (due to small difference of propagation
constants b of such eigenmodes, see Supplementary
Materials) and is therefore not visible in experiment at
10 cm of propagation. Even weak nonlinearity suppresses
this beating leading to the formation of well-localized
disclination solitons that exist over broad range of input
pulse energies (powers), as long as propagation constants
of such states remain in the forbidden gap of the spectrum
[Fig. 5a and d]. Notice that because for r= 1.68 the gap is
already wide, in experiment we do not reach power levels
(below optical damage threshold), at which strong cou-
pling with bulk states occurs. In contrast, when node 2 in
the bulk is excited, one observes diffraction, and nonlinear
localization does not occur even for pulse energies
E ~ 600 nJ [see Fig. 5b and e]. Visual slowdown of dif-
fraction for excitation of node 2 at r= 1.68 can be
explained by the emergence of many close pairs of
waveguides in the array, so that diffraction involves rapid
light switching between such pairs, accompanied by
slower gradual power transfer between neighbouring
pairs. An interesting situation is encountered for excita-
tion of the node 3 [Fig. 5c and f]. This excitation has the
largest overlap with the corner-I states that are also well-
localized for this value of r at the outer edge of the array,
and it does not excite corner-II states (because the latter
have different symmetry, see Supplementary Materials).
As a result, in this case one observes the formation of
nonlinear corner-I states in both pentagonal and hepta-
gonal disclination arrays, whose localization degree only
weakly changes in the considered range of input powers.
Theoretical simulations fully support these observations.

Discussion
In conclusion, we have reported on the experimental

observation of nonlinear disclination states in disclination
lattices inscribed in transparent nonlinear optical med-
ium. Such states form when Kekulé distortion of wave-
guide positions drives the array into the topological phase,
where several different types of localized states appear:
disclination states residing at the disclination core and not
overlapping with them spatially corner-I, corner-II and
edge states at the outer edge of the structure. The non-
linearity enables strong light localization on one side of
the disclination core. Our findings are reported for the
pentagonal and heptagonal structures, with symmetry
different from previously considered higher-order insu-
lators with periodic bulk (such as C3, C4, C6 ones). They
pave the way for the development of new types of topo-
logical lasers on disclination states, efficient harmonic
generation in topologically protected states, and

observation of new interesting topological objects, such as
topological Floquet disclination bound states in the
continuum68.
We would like to state that the disclination states are

rather compact, and they are characterized by small mode
area that is beneficial for the enhancement of nonlinear
effects and for realization of stable lasing. In addition,
disclination lattices with different discrete rotational
symmetries may be potentially used for realisation of
lasing in states with different vorticity, limited by the
discrete rotational symmetry of the structure. Finally,
because in these systems disclination states coexist with
topological corner-II states (having distinct propagation
constants), one can potentially observe switching between
lasing in these two different topological modes.

Materials and methods
Fs-laser inscription of the waveguide arrays
The waveguide arrays shown in Fig. 1a, d were inscribed

in 10 cm-long fused silica glass samples (JGS1) using
focused (with an aspheric lens with NA= 0.3) fs-laser
pulses at the wavelength of 515 nm with the duration
280 fs, repetition rate 1MHz, and energy 320 nJ under the
surface of sample at the depth range of 550~1050 μm near
the preselected optimal depth of 800 μm. Translation of
the sample during the writing process of each waveguide
was performed by the high-precision air-bearing posi-
tioner (Aerotech) with identical for all waveguides velocity
of 1 mm/s. All such waveguides are single-mode, have
almost identical elliptical shapes and exhibit the propa-
gation losses not exceeding 0.3 dB/cm at λ= 800 nm. The
structures are written in the depth range near the optimal
depth, where optical aberrations contribute negligibly and
no additional correction is used. This is achieved by using
a focusing lens with low NA. In the Supplementary
Materials, we show the linear diffraction patterns for the
arrays written at different depths. They clearly illustrate
nearly identical shapes of the waveguide modes in dif-
ferent arrays and nearly identical diffraction rates. After
the waveguide arrays were inscribed, the input/output
facets of the sample were optically polished, so that the
sample length was shortened to 99mm.

Numerical simulations and normalizations
For numerical simulations of evolution and excitation of

the nonlinear disclination states, we used dimensionless
continuous nonlinear Schrödinger-like Eq. (1), in which
the transverse coordinates x, y are normalized to the
characteristic scale r0= 10 μm, the propagation distance z
is normalized to the diffraction length kr20 � 1:14mm,
k= 2πn/λ is the wavenumber in the medium with the
background refractive index n (for fused silica n ≈ 1.45),
and λ= 800 nm is the working wavelength. The dimen-
sionless intensity ∣ψ∣2 corresponds to the intensity I ¼
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njψj2=k2r20n2, where n2 is the nonlinear refractive index of
the material (in fused silica n2 ≈ 2.7 × 10−20 m2/W).
Relation between the total beam power and the dimen-
sionless power U is given by

Z Z
IdXdY ¼ n

k2n2

Z Z
jψj2dxdy ¼ n

k2n2
U

(here X, Y are the dimensional transverse coordinates).
Since we work with the normalized quantities the results
are applicable to materials with various nonlinear coeffi-
cients. Our waveguides are single-mode and elliptical due to
the writing process, the dimensionless widths of the
waveguides are ax= 0.25 and ay= 0.75 (corresponding to
2.5 and 7.5 μm, respectively), but the eigenmode of such
waveguides is only slightly elliptical. The waveguide spacing
in structure without distortion is d= 3.2 (corresponding to
32 μm). The array depth p ¼ k2r20δn=n is proportional to
the refractive index contrast δn in the structure. For
instance, p= 1.0 corresponds to δn~ 1.1 × 10−4. In the
majority of presented results (unless specifically stated in
the caption), we use the depth p= 5.0 that provides the best
agreement between experiments and theory.
Pentagonal and heptagonal disclination arrays were

obtained from regular honeycomb arrays using two-step
process described in the main text, when at the first stage
by shifting the waveguides one introduces controllable
Kekulé distortion, quantified by the distortion coefficient
r= ℓintra/ℓinter, where ℓintra and ℓinter is the intra-cell and
inter-cell spacing between waveguides after shift [see
notations in Fig. 6a], while at the second stage one
removes or inserts Frank sector into the array, and then
expands or contracts unit cells such as to obtain the
resulting disclination structure [Fig. 6b and c]. While
deforming the structure we keep the longer axes of all
elliptical waveguides parallel to the y axis.

Seeking for the spectrum presented in Fig. 1, we solve
the linear version of Eq. (2) by using the plane-wave
expansion method in which one expands u andR into the
Fourier series with the sufficient number of harmonics:

u ¼ P
m;n

cm;neiKmxþiKny

R ¼ P
l;s

vl;seiK lxþiK sy
ð3Þ

where cm,n and vl,s are the Fourier coefficients, Km,l= 2(m,
l)π/Dx, Kn,s= 2(n, s)π/Dy, Dx,y are the sizes of the
calculation window along the x, y axes, and (m, n, l, s)
are integers. Plugging Eq. (3) into the linear version of Eq.
(2), after simple algebraic transformations one obtains a
series of linear equations with different (m, n, l, s):

� 1
2

K2
m þ K2

n

� �
cm;n þ

X
l;s

vl;scm�l;n�s ¼ bcm;n ð4Þ

Rewriting Eq. (4) in matrix format and diagonalizing the
matrix, one obtains the eigenvalues b (i.e. the spectrum) and
the corresponding eigenvectors cm,n that allow to construct
the eigenmodes u of the array according to Eq. (3).
To obtain the families of the nonlinear states, we adopt

the Newton relaxation method. In this method we
transform Eq. (2) with included nonlinear term into a
series of nonlinear equations fm,n= 0 using the finite-
difference approximation of derivatives:

f m;nðuÞ ¼ 1
2

umþ1;n � 2um;n þ um�1;n

dx2 þ
um;nþ1 � 2um;n þ um;n�1

dy2

 !

þRm;num;n þ u3m;n � bum;n

ð5Þ

where u is a vector containing the values of the function
um,n on numerical grid, and (dx, dy) are the transverse
steps. For each nonlinear equation, one finds the

√3d

lintra
2�
6

a b c
linter

Fig. 6 Construction of the disclination array from honeycomb structure. a Original honeycomb array with intra-cell separation ℓintra and inter-

cell separation ℓinter. The Kekulé distortion coefficient r= ℓintra/ℓinter. Each unit cell is indicated by white hexagons.
ffiffiffi
3

p
d denotes the length of one

side of the hexagonal unit cell. b Disclination array with the pentagonal core obtained by removing the sector with the Frank angle 2π/6 from array
in (a) and gluing the cutting edges. c Disclination array with the heptagonal core obtained by inserting the sector with the Frank angle 2π/6 into
array (a) and subsequent compression of the unit cells. All arrays are shown within the window −30 ≤ x, y ≤ 30
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corresponding element of the Jacobi matrix J through

J ðm;nÞ;ðp;qÞ ¼
∂f m;nðuÞ
∂up;q

ð6Þ

The method consists in generating solution of corre-
sponding system of nonlinear equations using the iterative
procedure

unew ¼ uold � J�1f ð7Þ

where f is the vector with the elements given by Eq. (5).
The iterations are stopped when the difference between
solutions unew and uold reduces below the required level,
typically below 10−10.

Topological indices
The topological properties of disclination arrays can be

discussed by analyzing the fractional “charge” that is
carried by each unit cell, that is employed in established
bulk-disclination correspondence principle21. Note that
the “charge” here is spectral charge that can be defined
through the local density of states. It is an analog of the
real charge in electric systems, and it can be used to
evaluate the number of states in the unit cell with states
considered below the topological band gap29. The spectral
charge Q bound to a disclination with a Frank angle Ω is
defined by16,21–23,27,28

Q ¼ Ω

2π
3
2
χM � χK

� �
modulo 1 ð8Þ

where the high symmetry indicators are χM ¼ #Mð2Þ
1 �

#Γð2Þ1 and χK ¼ #Kð3Þ
1 �#Γð3Þ1 that should be calculated

directly in the honeycomb array before removing or inserting
the Frank sector. Here #ΠðnÞ

q is the number of bands below
the forbidden gap at a high-symmetry pointΠ= Γ, M, K with
the eigenvalue of the Cn rotation matrix ei2π(q−1)/n(q= 1, ⋯,
n)27, and Ω= 2π/6 for the disclination arrays adopted in this
work. For the topological nontrivial case with r > 1, one can
find that (χM, χK)= (2, 0) for both the pentagonal disclination
array and the heptagonal disclination array. While for the
topological trivial case with r < 1, (χM, χK)= (0, 0). Thus, the
fractional charge is Q ¼ 1=2 for r > 1 and Q ¼ 0 for r < 1.
The fractional charge can be also obtained by counting the
number of the Wannier centers occupied by each unit cell.
The Wannier centers are located at the edges of the unit cell
if r > 1 and at its center if r < 1. The unit cell around the
pentagonal disclination core has five bulk Wannier centers if
r > 1, which give a 5/2 charge per unit cell. If r < 1, the charge
per unit cell around the disclination core is 3. See also the
Supplementary Materials.
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