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Topological states in the super-SSH model
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Abstract: The topological edge state distributes along the edge of a topological insulator which
has advantages in prohibiting radiation and reflection in the evolution dynamics because of the
topological protection property. The Su-Schrieffer-Heeger (SSH) model provides the simplest
lattice configuration that supports topological edge states. Here, we investigate the properties of
an extended SSH model – super-SSH model – with three sites in a unit cell for one-dimensional
case and nine sites in a unit cell for two-dimensional case. Theoretical analysis and numerical
simulation demonstrate that topological edge states and topological defect states are supported
in the super-SSH model. This work extends the form of SSH model and may serve as a novel
platform for developing photonic techniques based on topological phase transition.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The topological insulator is a new kind of matter that supports current conduction only on the
surface with the bulk being completely insulated [1,2]. Due to its fascinating properties and
potential applications, investigations on topological insulators have been attracting increasing
interest and exhibiting a prosperous development. Among the various theoretical research models
of topological insulators, perhaps the simplest model is the well established one-dimensional
Su-Schrieffer-Heeger (SSH) model [3]. The SSH model considers a periodic array with two sites
in one unit cell, and the coupling between intracell sites alternates with the coupling between
intercell sites. As a result, the SSH structure exhibits two topologically different phases, one
being topological trivial and the other being nontrivial. At the interface between two topologically
different chains or at the truncated edge of the topologically nontrivial chain, localized interfacial
or edge mode exists. Thus far, the SSH model has been implemented in various physical
branches such as in photonics [4–15], in acoustics [16,17], in ultracold matters [18–20], and in
quantum information [21,22]. In addition, the SSH model is also discussed in the non-Hermitian
[23–28] and nonlinear [29–33] regimes, as well as in the fabricating and elucidating higher-order
topological insulators [34–37].

Above-mentioned works were all concerned with structures with two sites in a unit cell, and
here we propose a variant of SSH model in which there are three sites in a unit cell. To distinguish
this novel SSH model from the standard SSH model, we name it as a super-SSH model. The
purpose of the establishment of such a super-SSH model is two folded. First, there are a variety
of advanced lattices such as Lieb lattice, Kagome lattice and lattice with type-II Dirac cone
[38–40] that possess three sites in one unit cell. These lattices are useful and play important roles
in promoting development of photonic techniques. Another reason is that the one-dimensional
super-SSH model itself may exhibits interesting properties that are distinct from those of the
standard SSH model and yet to be explored. Recently, we find similar work about extended
SSH model [41,42], in which the super-SSH model is involved. However, the distinction here
is also evidently: Firstly, we only consider the case with equal intracell and intercell couplings
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that are much simpler. Secondly, we carry out our investigation based on both discrete model
and continuous model that is much closer to the real world. Last but not least, we extend our
discussion to two-dimensions which may provide a novel platform for generating corner laser
[36,43–45].

2. Analytical analysis based on the tight-binding method

2.1. One-dimensional case

The super-SSH model considered here is schematically shown in Fig. 1(a): a period array
composed of coupled trimers, the coupling between neighboured trimers being w while the
coupling between sites inside trimers being v1 and v2 respectively. However, for the simplicity we
let v1 = v2 = v. Obviously, when such trimer structure is truncated, the resultant structure may
have three different cases [Figs. 1(b)–1(d)]. In the following we start from the tightly-binding
method to analyze analytically the super-SSH model, and then go to its optical realization.

Fig. 1. Scheme of super-SSH model. Hopping strength is staggered: intracell hopping v
(blue thick lines) is different from intercell hopping w (orange double lines). (a) A super-SSH
chain with periodic boundary condition. (b)-(d) Super-SSH chains with open boundary
conditions.

With reference to the schematic structure shown in Fig. 1(a), the momentum-space Hamiltonian
of the periodic super-SSH chain can be written as the following 3 × 3 matrix,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 v we−ik

v 0 v

weik v 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

The corresponding eigenvalues of Eq. (1) is given explicitly as,
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with p = (2v2 + w2)/3 and q = v2w cos(k). Here, k is the wavenumber that takes values from the
first Brillouin zone (BZ). In Fig. 2(a), we display eigenvalues εi (i = 1, 2, 3) versus k, for some
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typical values of v and w. Note that, if the intercell hopping is equal to the intracell hopping (viz.
v = w), the whole array is simplified into a homogeneous periodic structure, for which the first
and the second bands interact at k = ±π, and the second the third band interact at k = 0. As soon
as the intercell couplings differs from the intracell ones (viz. v ≠ w), the gap between the band 1
and 2, and that between the band 2 and 3, opens. This situation is quite similar to the standard
SSH model [3], although the trimer array considered here involves three bands and two gaps.
Note, however, in contrast to the standard SSH model that respects the chiral symmetry, that is,
the band structure is exactly the same when reflected about the mid-point of the gap or swap the
role of w and v, the trimer model obviously lacks the chiral symmetry, and the band structure
changes when w and v is exchanged. The latter point is readily clear by considering two opposite
cases at the extreme, (v = 0, w = 1) versus (v = 1, w = 0). The former yields top and bottom
bands at ε = ±1 while the latter at ε = ±

√
2 .

Fig. 2. (a) Dispersion relation of the one-dimensional super-SSH model, Eqs. (2)-(4), for
five settings of hopping amplitude that are given at the right-bottom corner of each panel.
From top to bottom, the eigenvalues are ε1, ε2 and ε3, respectively. (b) Winding number of
the three bands by scanning v and w.

We characterize the topological property of the super-SSH model by calculating the winding
number of each band, which is defined as [46]

γ =
i

2π

∫
BZ

⟨u(k)|∂k |u(k)⟩dk, (5)

where |u(k)⟩ represents the eigenstate of a particular band of the bulk momentum-space
Hamiltonian (1). By changing the values of v and w between 0 and 1, we obtain the winding
number of the first three bands, as shown in Fig. 2(b). Same to the case of the standard SSH
model the winding number of the first and the third band of the super-SSH model is also either
0 or 1: it is 1 if w>v and 0 if w<v. In addition, here we have a middle band, whose winding
number is either 2 ( w>v) or 0 ( w<v).
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2.2. Two-dimensional case

We generalize the 1D super-SSH model into 2D, for which one sees a 1D super-SSH model in
both horizontal and vertical directions (Fig. 3). This 2D super-SSH structure has nine sites in
each unit cell, thus, its bulk Hamiltonian can be written as

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 v we−ikx v 0 0 weiky 0 0

v 0 v 0 v 0 0 weiky 0

weikx v 0 0 0 v 0 0 weiky

v 0 0 0 v we−ikx v 0 0

0 v 0 v 0 v 0 v 0

0 0 v weikx v 0 0 0 v

we−iky 0 0 v 0 0 0 v we−ikx

0 we−iky 0 0 v 0 v 0 v

0 0 we−iky 0 0 v weikx v 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where kx,y is the wavenumber taking values in the first BZ of the lattice, −π ≤ kx,y ≤ π. As done
in the one-dimensional case, here we also show the band structure at five sets of v and w (Fig. 4).
As expected, due to the dimension of the Hamiltonian (6), the system has nine bands (labelled
as ε1 ∼ ε9 from top to bottom). For either v or w being zero, all the nine bands are flat, and
in addition, bands ε2 and ε3, bands ε4, ε5 and ε6, as well as bands ε7 and ε8 are degenerated,
respectively. If v ≠ w>0, the bands are not flat, and there are nodal lines due to the band crossing.
While if v = w = 1 as shown in Fig. 4, all the bands coalesce with each other and band gaps
disappear.

Fig. 3. Two-dimensional super-SSH model under periodic boundary condition.

For the two-dimensional case, the topological property of the system could be described by
the polarized indices (px, py) [34], which are defined as

px =
i
S

∬
BZ

⟨u(kx, ky)|∂kx |u(kx, ky)⟩dkxky,

py =
i
S

∬
BZ

⟨u(kx, ky)|∂ky |u(kx, ky)⟩dkxky,
(7)
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Fig. 4. Dispersion relation of the two-dimensional super-SSH model along high symmetric
points, for five settings of hopping amplitude that are given at the right-bottom corner of
each panel.

where S = 4π2 is the area of the first BZ. Numerical integration on Eq. (7) reveals that the values
of px and py of the top and the bottom bands (i.e., ε1 and ε9) are always 1/2 for v<w and 0 for
v>w. The result is quite similar to those of the traditional two-dimensional SSH model [45,47,48].
Therefore, one expects to have topological corner states under the condition v<w. However, for
the case v>w, there may be topological defect states too that localize at the corners.

3. Optical realization of the super-SSH model

3.1. One-dimensional case

We provide a possible realization of the super-SSH model in optics/photonics, where the lattice
sites can be prepared by using the refractive index change. A light beam ψ(x, y, z) propagating
in a certain photonic lattice, R(x, y) , is described by the well-known Schrödinger-like paraxial
wave equation:

i
∂ψ

∂z
= −

1
2

(︃
∂2

∂x2 +
∂2

∂y2

)︃
ψ − R(x, y)ψ, (8)

where the transverse (x, y) and longitudinal z-coordinates are normalized to the characteristic
transverse scale r0 and the diffraction length Ldif = kr2

0, respectively; k = 2πn0/λ is the
wavenumber with n0 being the background refractive index and λ the wavelength. The lattice
potential R(x, y) = p

∑︁
n Q(x−xn, y) is composed of super-Gaussian waveguides Q = e−(x2+y2)2/σ4

with p being the depths of two sublattices, σ waveguide widths, and (xn, 0) the transverse
location of each waveguide channel. Such photonic lattices can be created in silicon by using the
femto-second laser writing technique [37,49], and typical values for the parameters are n0 = 1.45,
λ = 600 nm, r0 = 10 µm, and p = 10 (corresponding to a refractive index change ∼ 6.3 × 10−4).

Thus, the three super-SSH chains as shown in Figs. 1(b)–1(d) can be optically mimicked by
the waveguide arrays as shown in Figs. 5(a)–5(c). The required variation of coupling coefficient
is achieved by controlling the spatial separation between the waveguides. To be specific, we
fix a, the length of the unit cell that contains three waveguides within it, and characterize the
distance between two adjacent wavgudies to be r. Obviously, for r = 0.5a one has v = w,
while for r = 0.6a and r = 0.4a one has v>w and v<w, respectively. As predicted above, for
r = 0.4a, there should exist topological edge states, and this is indeed confirmed by rigorously
solving the resultant eigen-equation by substituting ψ(x, y, z) = u(x, y)eiεz into Eq. (8), and the
obtained eigenvalue spectrum is shown in Fig. 5(d) in the region 0.4 ≤ r/a ≤ 0.6. Clearly,
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for r<0.5a, topological edge states appear within two band gaps, as indicated by the red and
magenta curves in Fig. 5(d), and exemplified in Fig. 5(a). Such edge modes cover mostly the
two outermost waveguides, with modes from the red branch being in-phase between the two
occupied waveguides while the modes from the magenta branch being out-of-phase. Note that
this property is absent for standard SSH model.

Fig. 5. (a) Two finite photonic super-SSH lattices with complete unit cell with r = 0.6a
and r = 0.4a. Topological edge states supported in the lattice with r = 0.4a, which are
corresponding to the red and magenta curves in the band structure shown in (d). (b) One
finite photonic super-SSH lattice with r = 0.6a and one site of two boundary unit cells
eliminated. Supported topological defect states, which are corresponding to the red and
magenta curves in the band structure shown in (e). (c) One finite photonic super-SSH lattice
with r = 0.6a and two sites of two boundary unit cells eliminated. Supported topological
defect state, which is corresponding to the red curve in the band structure shown in (f).
Parameters: p = 10, a = 2.5 and σ = 0.5.

It is worth mentioning that the unit cell in the photonic super-SSH lattices in Fig. 5(a) is
complete. Ergo, it is interesting to ask what will happen if it is incomplete, namely, some
sites at the boundary unit cell are removed? We display such incomplete photonic super-SSH
lattices in Figs. 5(b) and 5(c), which corresponds respectively, to the finite super-SSH chains
of different boundaries shown in Figs. 1(c) and 1(d). Apparently, one cannot use the winding
number predicted by Eq. (5) to characterize the topological phase for these cases any longer.
Thus, similar to Fig. 5(d), we calculate directly the eigenvalue spectrum corresponding to the two
incomplete super-SSH lattices, and the results are given in Figs. 5(e) and 5(f), respectively. Now,
in sharp contrast to the complete unit cell case, for incomplete case, even with r>0.5a, topological
edge states are fount to exist in the boundaries [see the red and magenta curves in Figs. 5(e)
and 5(f)]. It should be mentioned, however, the localized modes appearing in the region of the
incomplete unit cell are topological defect modes (rather than topological boundary modes),
and similar situation occurs too in a standard SSH lattice. It should be also mentioned that for
the incomplete array Fig. 5(b), topological defect modes appear in both bandgaps [exemplified
in lower panels of Fig. 5(b)], while for the incomplete array Fig. 5(c), only the lower bandgap
accommodates localized modes.
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3.2. Two-dimensional case

We turn to the two-dimensional case with boundaries as shown in Fig. 6, where the lattice potential
is given by R(x, y) = p

∑︁
n,m Q(x − xn, y − ym). As analyzed previously, if v<w there will be

topological corner state since the polarization indices are nonzero. Therefore, there should exist
topological corner states for the lattice in Fig. 6 if r<0.5a. The lattice with r = 0.4a is displayed
in Fig. 6(a), while the lattice with r = 0.6a shown in Fig. 6(c). The two lattices corresponding
to the cases with v<w and v>w, respectively, and the corresponding eigenvalue spectra of the
two lattices are shown in Figs. 6(b) and 6(d), respectively. In accordance with previous analysis,
there are corner states in Fig. 6(b) (indicated by red circles), but none in Fig. 6(d). Further, In
Fig. 6(b), there are three types of corner states (labelled with numbers 1,2, and 3). The modes of
the type 1 and 3 reside within the band gaps and are four-folded degenerated, while modes of the
type 2 is immersed in the bulk band and are eight-folded degenerated. Typical mode profiles for
such three types are presented in Fig. 6(a), just at the right side of the lattice landscape: one from
the type 1, one from the type 3, and two from the type 2, as the second type has two difference
profiles. One finds that the energy of the corner state from both type 1 and 3 distributes equally
on the four corner sites, with the four main humps of the type 1 are in-phase and those of the type
3 are out-of-phase. As to the two different corner states of type 2, they are orthogonal each other,
and dipole-like, thus, one can construct vortex-like modes from them [50].

Fig. 6. Two-dimensional super-SSH model (a,c) with different r and corresponding spectra
(b,d). Corner states in the spectrum (b) are classified into three types and indicated by red
circles. The first and third types have four degenerated corner states, and the second type has
eight degenerated corner states that include two orthogonal cases. The corner states from
different types are shown in (a).

The lattice in Fig. 6 is complete in the sense that there is no defect and each unit cell has nine
sites, and of course one could also have its incomplete versions by removing a few outermost
waveguides from the boundaries, expecting the occurrence of the topological defect modes.
Taking into account the one-dimensional case where topological defect modes only appear when
r>0.5a, here for incomplete two-dimensional lattices we also only consider the r>0.5a case.
Such lattice landscapes, the respective eigenvalue spectra and the associated corners states are
illustrated in Fig. 7. Let us first consider the incomplete lattices by removing the sites along the
outermost boundary from the complete structure of Fig. 6(c), which leading to the formation
of lattice shown in Fig. 7(a). The corresponding spectrum is shown in Fig. 7(b). One finds
that there are indeed topological corner states, which can be also classified into three types, as
indicated by red circles. These topological states are quite similar to those shown in Fig. 6. If we
further remove the sites along the outer boundary from the lattice shown in Fig. 7(a), the resultant
super-SSH model is shown in Fig. 7(c), and the corresponding spectrum is given in Fig. 7(d). In
Fig. 7(d), topological corner states are indicated by red circles, but they are in the bulk band.
Different from the corner states in the bulk shown in Figs. 6(b) and 7(b), the corner states are not
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four-fold degeneration – the first two are degenerated and the last two are degenerated; the four
corner states are exhibited in Fig. 7(c).

Fig. 7. (a) Two-dimensional super-SSH model with the outer boundary sites of the lattice in
Fig. 6(c) eliminated. (b) Spectrum of the lattice in (a) with corner states classified into three
types and indicated by red circles. (c) Two-dimensional super-SSH model with the outer
boundary sites of the lattice in (a) eliminated. (d) Spectrum of the lattice in (c) with corner
states indicated by red circles. Besides the lattice landscape, corner states are also displayed
in (a,c). For all the cases, r = 0.6a.

4. Conclusion

Summarizing, we have developed the super-SSH model and discussed its topological properties
theoretically and numerically. By adjusting the intracell and intercell hopping amplitudes through
changing the separation between neighbored sites, we find that either the topological edge state
or the topological defect state can be generated in the super-SSH model, and the appearance
of the latter one depends how the lattice at the boundary is truncated. The topological edge
state appears if the intracell hopping is weaker, however the topological defect states appears
if the intracell hopping is stronger. We also extend the super-SSH model into two-dimension,
and the nonzero polarization indices indicate that topological corner states will appear in the
two-dimensional super-SSH model. Based on the degenerated topological corner dipole-like
states, one can produce corner vortex states. We believe that our work may provide a promising
platform for fabricating higher-order topological insulators and optical functional devices such as
corner lasers [36,43,45]. In addition, the super-SSH model may also serve as a novel candidate
for nonlinear topological photonics investigations in different systems [28,31–33,37,51–53].
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