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Deterministic bulk-boundary correspondences for skin and edge modes in a general
two-band non-Hermitian system
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In isolated Hermitian systems, the bulk-boundary correspondence is generally thought of as a compelling
principle guiding the occurrence of robust edge states through the topological invariants of the bulk. However,
in open non-Hermitian systems that support non-Hermitian skin effects, the universality of the bulk-boundary
correspondence has so far remained disputable in spite of being subjected to intensive studies. Here we provide
analytical and numerical evidence of bulk-boundary correspondences for both skin and edge modes in 1D two-
band non-Hermitian systems within the framework of a prototypical non-Hermitian Su-Schrieffer-Heeger model.
Two different topological winding numbers, one on a Brillouin zone and the other on a generalized Brillouin
zone, are defined to fully characterize the topological phases of matter and to understand such deterministic
correspondences. In addition to the exact solutions for bulk states, we also obtain explicit solution forms for edge
modes along with analytical conditions for their existence and localization, all exhibiting remarkable agreement
with numerical results. Our results solve the elusive non-Hermitian topology and may facilitate experimental
investigations of bulk-boundary correspondence in a wide range of non-Hermitian systems.
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I. INTRODUCTION

While Hermiticity enjoys a prominent status in quan-
tum mechanics, non-Hermitian physics has attracted growing
interest in both theoretical and experimental studies [1–8]
intended for a wide range of classical [9–14] and quan-
tum [15–19] systems. Particularly, when non-Hermiticity
meets the concept of topology [20–28], there are emerg-
ing fruitful results such as non-Hermitian topological
phases of matter [29–33], non-Hermitian topological insu-
lators [34,35], non-Hermitian bulk-boundary correspondence
(BBC) [36–40], and others [41–48]. Among them, the non-
Hermitian skin effect [49–56] is an exotic phenomenon that
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has no Hermitian counterparts, where the eigenstates of the
bulk could be mostly localized at boundaries under the open
boundary condition (OBC) [57–59]. Obviously, because of
this intrinsic skin effect, the observation of the edge states,
which, as the name implies, host largely on the boundary as
well [60–62], becomes extremely challenging from an exper-
imental point of view [54,63].

When dealing with non-Hermitian topological phases,
there is also a tough problem in that both the eigenvalues
and eigenvectors can coalesce at an exceptional point (EP)
(also known as branch-point singularity) [64,65]. As a result,
the non-Hermitian Hamiltonian matrix becomes defective and
nondiagonalizable at EPs [8], thus hindering the accurate nu-
merical calculation of its eigenvalues and the corresponding
eigenvectors near EPs, not to say of the precise identification
of the bulk topological invariants [66–69]. In the vicinity of
EPs, the non-Hermitian system behaves as if it loses its dimen-
sionality [64] and thus brings about many nontrivial effects
such as unidirectional lasing [70], enhanced sensing [71],
formation of a bulk Fermi arc [13], and so on [7,11,27].

Considering these difficulties, the BBC, which has related
robust edge states to bulk topological invariants with success
in closed systems, is hard to verify for open non-Hermitian
systems both in theory [72,73] and in experiments [37,38].
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Up to now, it has still been debated whether the BBC
works in non-Hermitian systems [42–44,74]. Nevertheless,
to consummate the existing theory, there is research putting
forward the concept of a generalized Brillouin zone (GBZ)
on which a generalized or non-Bloch BBC is established for
exploring edge states in non-Hermitian systems [49,68]. Re-
cently, similar correspondence between the emergence of skin
modes under OBC and the winding of the energy under pe-
riodic boundary condition (PBC) was proposed, revealing the
topological origin of the non-Hermitian skin effect [52,58].
These investigations shed fresh light on identifying the non-
Hermitian topological phases of matter, but how to precisely
apply the related ideas to two-band non-Hermitian systems is
still an open question worthy of further study.

In this paper, we consider a prototypical model for study-
ing two-band non-Hermitian topological physics, namely, the
one-dimensional (1D) non-Hermitian Su-Schrieffer-Heeger
(SSH) model, which was widely used to mimic such
systems as polyacetylene [75], photonic lattices [76,77],
resonator arrays [78–80], electrical circuits [43,81,82], and
nitrogen-vacancy centers in a diamond [83]. Within this SSH
framework, we present the analytical and numerical evidence
of deterministic BBCs for both skin and edge modes in 1D
two-band non-Hermitian systems. Note here that we have
generalized the terminology BBC to designate the correspon-
dence between the states that host primarily on the boundary
(say, edge modes or skin modes) and the topological invariants
of the bulk that are obtained under the OBC or PBC. The
BBCs will be referred to as being deterministic if the existence
domain and localization for the edge or skin modes can be
read from the topological invariants only. The subtlety of these
two BBCs is that the topological winding number for skin
modes is defined on the BZ, while the one for edge modes
is defined on the GBZ, both of which have been improved
distinctively as compared to previous studies [49,52,58,72].
In particular, to confirm the BBC that governs the nontrivial
behaviors of edge states, we derive explicit edge-mode solu-
tions and the conditions for their existence and localization,
which agree well with the numerical results. It turns out that
our analytical solutions could give one a clear picture of the
non-Hermitian skin effect and topologically protected edge
states. In this regard, the current paper helps probe deeply
into the essence of the BBC and may solve once and for all
the topology in two-band non-Hermitian systems.

II. NON-HERMITIAN SSH MODEL AND ANALYTICAL
SOLUTIONS

We start with considering the following Hamiltonian of the
non-Hermitian SSH model under the OBC

Ĥ =
N∑

n=1

(t1Lĉ†
nAĉnB + t1Rĉ†

nBĉnA) +
N−1∑
n=1

[t2Lĉ†
nBĉ(n+1)A

+ t2Rĉ†
(n+1)AĉnB + t3Lĉ†

nAĉ(n+1)B + t3Rĉ†
(n+1)BĉnA], (1)

which describes an open tight-binding chain of N cells in-
volving asymmetric long-range hoppings [see Fig. 1(a)]. Here
ĉnA(B) is an annihilation operator of a particle on sublattice
A (B) of the unit cell n, tsL,R ∈ R are imbalanced hopping
amplitudes in the same cell (s = 1) or between adjacent

FIG. 1. (a) Geometry of a 1D non-Hermitian SSH model consist-
ing of N cells, with t1L(R) (red double line), t2L(R) (cyan line), and t3L(R)

(blue double line) being nonreciprocal hopping parameters between
sublattices A and B in the same cell or in adjacent cells. (b) and
(c) show, respectively, the energy spectra and eigenfunctions of the
Hamiltonian Eq. (1) with N = 40 for given parameters t1L = 3/8,
t1R = 1/8, t2L = 10/9, t2R = 8/9, t3L = 2/9, and t3R = 8/45. Red
dots: analytical solutions; blue circles or lines: numerical results.

cells (s = 2, 3). For the sake of simplicity, we have ignored
the non-Hermitian gain and loss on the A and B sublattice
sites and let t2L(R), t3L(R) � 0. Obviously, for these nonrecip-
rocal hopping parameters tsL,R, the real-space Hamiltonian
Eq. (1) would exhibit non-Hermiticity, but respect a sub-
lattice (or chiral) symmetry, namely, �Ĥ�−1 = −Ĥ , where
� = ⊕

n σz,n is the direct sum of z-component Pauli operator
σz,n = diag(1,−1) [24,49,72]. Therefore, if Ĥ has an eigen-
vector |ψ〉 with eigenvalue E , then �|ψ〉 is also an eigenvector
with eigenvalue −E .

Because of translation invariance of the bulk, the general-
ized Bloch Hamiltonian H(β ) can be obtained as [84]

H(β ) =
[

0 R+(β )

R−(β ) 0

]
, (2)

where R+(β ) = t2R/β + t1L + t3Lβ and R−(β ) = t2Lβ +
t1R + t3R/β. The eigenvalue equation reads

R+(β )R−(β ) − E2 = 0, (3)

which is a quartic equation of the complex variable β = eik

with k ∈ C. We should point out that when k ∈ [0, 2π ] ∈ R,
Eq. (3) can give exactly the spectrum of Hamiltonian Eq. (1)
under the PBC (see Appendix A). As will be shown later,
this PBC spectrum would exhibit a topological property with
respect to any base energy (excluding zero energy) on the
OBC spectrum, which can be used to define the BBC for skin
modes.

Basically, one can solve the real-space eigenvalue
equation Ĥ |ψ〉 = E |ψ〉 exactly in the matrix form (see
Appendix B). Here we employ the tensor product ba-
sis |n, α〉 = |n〉α ⊗ |α〉 ≡ |m〉, where |n〉α = ĉ†

nα|0〉α stands
for the excited state at the cell n, α ∈ {A, B}, and
m = 1, 2, · · · , 2N denotes the lattice site in the speci-
fied order (1A, 1B, 2A, 2B, · · · , NA, NB). In this basis, the
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eigenvectors |ψ〉 can be defined by |ψ〉 = ∑2N
m=1 ψm|m〉 =

(ψ1A, ψ1B, · · · , ψNA, ψNB)T (T means transpose), where

ψnA = 1

E

4∑
j=1

c jR+(β j )β
n
j , ψnB =

4∑
j=1

c jβ
n
j , (4)

with β j ( j = 1, · · · , 4) being four roots of the quartic Eq. (3)
for specified energy E and c j four complex size-dependent
coefficients. Obviously, for c j to be nontrivial, β j must obey
the following boundary condition:

β12β34[(β1β2)N+1 + (β3β4)N+1] − β13β24[(β1β3)N+1

+ (β2β4)N+1] + β14β23[(β1β4)N+1 + (β2β3)N+1] = 0,
(5)

where βi j = (βi − β j )(βiβ j − t2R/t3L ). Hence, the coeffi-
cients c j in Eqs. (4) need to take

c1 = β1
(
β34β

N+2
2 + β23β

N+2
4 − β24β

N+2
3

)
c3

β3
(
β24β

N+2
1 − β14β

N+2
2 + β12β

N+2
4

) , (6)

c2 = −β2
(
β34β

N+2
1 + β13β

N+2
4 − β14β

N+2
3

)
c3

β3
(
β24β

N+2
1 − β14β

N+2
2 + β12β

N+2
4

) , (7)

c4 = −β4
(
β23β

N+2
1 + β12β

N+2
3 − β13β

N+2
2

)
c3

β3
(
β24β

N+2
1 − β14β

N+2
2 + β12β

N+2
4

) , (8)

with c3 being a free constant used to normalize the eigenvector
|ψ〉 such that 〈ψ |ψ〉 = 1.

No doubt, Eq. (3) is a solvable quartic equation of β for
given energy E , and hence its four roots β j can be given by
radicals, each depending on E . Insertion of these four roots
into the boundary condition Eq. (5) could yield the allowed
value of E , for given set of system parameters and the lat-
tice size N . Once an energy value E is known, all four β j

are uniquely determined and, as a result, the corresponding
eigenstate of the Hamiltonian Eq. (1) is uniquely obtained, by
means of Eqs. (4), (6)–(8). As the energy E allowed by Eq. (5)
has 2N values, the number of the eigenstate |ψ〉 will also be
2N , consistent with the dimensionality of Hamiltonian Eq. (1).

However, the above way for solving Eqs. (3) and (5) is
only possible numerically, particularly for a large lattice size
N . Below, we offer an analytical approach to solving this
problem. For this end, one needs first to set

β1 = re
i
2 (�+	−
), β2 = re

i
2 (�−	+
), (9)

β3 = re
i
2 (−�+	+
), β4 = re− i

2 (�+	+
), (10)

where r is the real amplitude and �, 	, and 
 are phase
angles that can be complex. Substitution of Eqs. (9) and (10)
into Eq. (3) yields, with the help of Vieta’s theorem,

E± = ±
√√√√ 3∑

j=1

t jLt jR − 2r2t2Lt3L(X + Y + Z ), (11)

cos

(
�

2

)
cos

(
	

2

)
cos

(



2

)
= −1

8

(μ

r
+ νr

)
, (12)

sin

(
�

2

)
sin

(
	

2

)
sin

(



2

)
= i

8

(μ

r
− νr

)
, (13)

where X = cos �, Y = cos 	, Z = cos 
, μ = t1R/t2L +
t1L/t3L, ν = t1L/t2R + t1R/t3R, and r = [t2Rt3R/(t2Lt3L )]1/4.

Substituting Eqs. (9) and (10) again into Eq. (5), we have a
more explicit form for the boundary condition

f (X ) cos[(N + 1)�](Y − Z ) + f (Y ) cos[(N + 1)	]

× (Z − X ) + f (Z ) cos[(N + 1)
](X − Y ) = 0, (14)

where f (x) = t3R/t2L + t2R/t3L − 2r2x. It is now obvious that
by using the change of variables, the original Eqs. (3) and (5),
which involve five variables E and β j , are simplified to
Eqs. (12)–(14), which involve only three complex variables �,

, and 	. Once �, 
, and 	 are worked out, the energy spec-
trum E = (E−, E+) can be solely determined from Eq. (11).

Now, expressing Y and Z in terms of X by use of Eqs. (12)
and (13), and recalling that cos[(N + 1)�] = TN+1(X ), where
TN+1(X ) is a Chebyshev polynomial of the first kind [85], one
can simplify Eq. (14) to a real-coefficient polynomial of 3N
order about X , of course dropping the insignificant factors.
Then, the 3N complex roots of this polynomial equation can
be quickly located by computer routines, e.g., the command
root in MATLAB software. Thanks to the symmetry hidden in
Eq. (14), these 3N roots can be classified into N groups, and
each group has three members that take the same value of

X + (μ/r + νr)2

16(X + 1)
− (μ/r − νr)2

16(X − 1)
.

One can then choose one member as X , while let the other
two be Y and Z , respectively. As can be verified, all these N
solutions (X,Y, Z) thus obtained would satisfy Eqs. (12)–(14).

Lastly, taking the inverse cosine of (X,Y, Z), we get a set of
complex angles (�,	,
), and hence a set of β j from Eqs. (9)
and (10). At this step, one can reorder β1,2,3,4 to fulfill |β1| �
|β2| � |β3| � |β4|. Naturally, a substitution of β j together
with the values of c j into Eqs. (4) could yield N eigenvectors
|ψ〉 of the Hamiltonian Eq. (1) that are associated to E+ in
Eq. (11) and N eigenvectors �|ψ〉 that are associated to E−.
To facilitate discussion, we also sort the energy E according
to the rules as follows. We first divide the energy spectrum
into real part Ere and complex part Eco. Then, the real energy
is sorted in ascending order according to its magnitude, while
the complex energy is sorted according to its absolute value.
The resultant energy spectrum is arranged, from left to right,
as (E−

re , E−
co, 0 if exists, E+

co, E+
re ) in the complex energy plane.

Of course, during this sortation operation, the eigenvector
associated to E needs also be sorted one by one.

The above procedures can solve Eqs. (3) and (5) elegantly
for the sorted energy E , the sorted four roots β j , and conse-
quently the sorted eigenvectors by virtue of Eqs. (4), (6)–(8),
for given hopping parameters tsL(R) and arbitrary lattice size
N � 2. As an example, we present in Figs. 1(b) and 1(c) the
analytical and numerical solutions for both the energy spectra
and eigenfunctions of the Hamiltonian Eq. (1) with a lattice
size N = 40, whose hopping parameters are specified in the
caption. It is seen that our analytical solutions, indicated by
red dots, agree well with the numerical ones, where blue circle
stands for energy and blue lines for eigenvectors.
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FIG. 2. The GBZ, energy spectra, and skin modes of the bulk obtained analytically under the OBC with N = 100, for (a)–(e): t1L = 1/5,
t1R = 9/5; (f)–(i): t1L = 13/10, t1R = 7/10; and (j)–(m): t1L = 7/10, t1R = 13/10, while keeping the other hopping parameters the same, i.e.,
t2L = 6/5, t2R = 4/5, t3L = 9/40, and t3R = 1/40. The rightmost column demonstrates the comparison of our analytical solutions for the skin
modes (blue curves) with the numerical solutions (red dots), zoomed within ten lattice sizes. Panel (b) gives the evolution of four β j with the
energy ordinal number where |β2| = |β3| occurs. The highest peaks in the 3D surface plots (d), (h), and (l) are identified as zero modes, which
correspond to a zero energy located at origin in panels (c), (g), and (k). For comparison, we also present the auxiliary line of eGBZ in panel (j)
and the energy spectra obtained under the PBC (colored solid lines) in (c), (g), and (k)

III. NON-HERMITIAN SKIN EFFECT
AND BBC FOR SKIN MODES

In Fig. 1(c), one also observes a typical non-Hermitian skin
effect, which refers to the localization of bulk states on the
boundary of an open chain. This phenomenon is counterin-
tuitive from the conventional view of Bloch’s theorem, which
states that the bulk eigenstates are modulated plane waves [84]
(see also Appendix A, where we present the exact bulk-mode
solutions for the same Hamiltonian with PBC). Our analytical
solutions Eqs. (4) clearly reveal that the emergence of such
skin effect is attributed to the non-Hermiticity of Hamiltonian
imposed by the OBC, and can be uniquely determined by the
size and position of GBZ relative to the BZ (unit circle) of
PBC in the complex plane. Generally, when Eq. (3) has four
roots βi satisfying |βi| � |β j | for i < j, the GBZ is constituted
by the trajectories of β2 and β3 in the thermodynamic limit
(i.e., N → ∞), where |β2| = |β3| holds [72]. Usually, one can
calculate GBZ using a finite N and basically, the larger the
lattice size, the closer this GBZ gets to the exact GBZ (eGBZ),
the latter of which can be expressed by elementary functions
(see Appendix C). We find that for large enough N , the bulk
modes will only be determined by β2 and β3 on the GBZ,
as the contributions from both β1 and β4 become vanishingly
small. Hence, the bulk modes will localize on the right end
(right skin effect) if the GBZ embraces the BZ circle, but tend
to localize on the left end (left skin effect) if the GBZ is inside
the BZ circle. However, when the GBZ intersects the BZ

circle, there will be more localizations of bulk modes on both
ends (double skin effect). Figure 2 shows the analytical solu-
tions demonstrating the right skin effect (see the top row), the
left skin effect (see the middle row), and the double skin effect
(see the bottom row), which correspond to a GBZ outside,
inside, and intersecting the BZ circle, respectively, obtained
with N = 100 and different sets of hopping parameters. For
comparison, the numerical solutions for these bulk modes (red
dots) are also provided on the rightmost column, which show
a striking agreement with our analytical solutions (here we
have enlarged the pictures within ten lattice sizes).

As a matter of fact, there is a topological origin responsible
for these different kinds of non-Hermitian skin effects [52,58].
It depends strongly on the evolution of the energy spectrum
obtained under PBC as the momentum traverses the BZ. For
this reason, we also plot the PBC spectra (colored solid lines)
in Figs. 2(c), 2(g), and 2(k) for the same hopping parameters,
as the Bloch momentum k runs from 0 to 2π . It is seen that
each PBC spectrum always traces a loop surrounding the OBC
spectrum (red dots), with a direction depending on the choice
of system parameters. This suggests a Z topological winding
number intended for the skin mode of order m, defined by

wm =
∮

BZ

dk

2π i
∂k[ln det(H(k) − Em)], (15)

where H(k) is given by Eq. (2) with k ∈ [0, 2π ], and Em 	= 0
is the energy of the mth-order skin mode obtained with the
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FIG. 3. BBC for skin modes concerning the third GBZ case of
Fig. 2. Top panel: OBC (red dots) and PBC (colored solid line)
energy spectra in the complex plane. (i)–(iv) Profiles of bulk states
for the four base energy points (blue crosses) selected in the top
panel.

OBC. Note that this definition outperforms those presented
in Refs. [23,52,58], where the base energy Em is not forced
on the OBC spectrum and hence the skin mode to be studied
is not specified. We can now relate this winding number wm

to the emergence of skin modes and hence term it BBC for
skin modes. Specifically, when wm is a positive (negative) in-
teger, which means that the PBC spectrum surrounds the base
energy Em in a clockwise (counterclockwise) way, the skin
mode associated to the energy Em will localize on the right
(left) boundary of the chain. Of course, if wm = 0, no skin
mode will take place. To illustrate this, we take the third case
in Fig. 2 as an example, which shows a slightly complicated
PBC spectral structure. The winding number wm for any of
the regions encompassed by the directed PBC spectrum curve
can be easily calculated from Eq. (15), and has been indicated
in the top panel of Fig. 3. Typically, four base energy points
(blue crosses) are chosen from the OBC spectrum, which take
the winding numbers (i) w = −1, (ii) w = 0, (iii) w = 1, and
(iv) w = −1, respectively. The corresponding states are then
plotted in panels (i)–(iv), which display left localization for
w = −1, zero localization for w = 0, and right localization
for w = 1, thereby justifying the BBC for skin modes. It
is also suggested that in open non-Hermitian systems, not
all bulk states are necessarily considered as skin modes; for
instance, the bulk state that has an energy meeting the PBC
spectrum will occupy extensively in the whole chain and is
therefore not a genuine skin mode, as seen in panel (ii).

In addition to those shown in Fig. 2, our analytical so-
lutions can also reveal other possibilities for GBZ and skin
modes. Figure 4 shows an interesting case that was seldom
seen before, namely, a case where the GBZ can intersect the
BZ at six points [see Fig. 4(a)]. In this case, the bulk modes
can exhibit a similar double skin effect as the energy varies,

FIG. 4. Double skin effect of the bulk modes when the GBZ intersects the BZ circle at six points, occurring for t1L = 0, t1R = 1/2,
t2L = 6/5, t2R = 4/5, t3L = 9/40, and t3R = 1/40. (a) GBZ, (b) OBC (red dots) and PBC (colored solid lines) energy spectra in the complex
plane, (c) 3D surface plot of the modes, (d) the corresponding contour plot of the modes, and (e) the profiles of bulk modes for the four typical
energy points (blue crosses) selected in (b). The red arrow in (c) indicates the zero (or edge) mode which is associated to the degenerate zero
energy points in (b). The red, green, purple, and yellow dashed lines in (d) mark the bulk states of four selected energy points in (b).
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but there are four localizations on the left end and two local-
izations on the right end, as seen in Figs. 4(c) and 4(d). More
interestingly, it is exhibited that the PBC spectrum consists
of two parts, each segmenting the OBC spectrum into four
regions, but with the isolated zero energy point excluded [see
Fig. 4(b)]. According to the heading direction of the PBC
energy curve, one can easily obtain the winding number wm

for any bulk mode within these regions. For example, for
the four typical energy points (blue crosses) denoted by (i),
(ii), (iii), and (iv) in Fig. 4(b), the winding number is equal
to w = −1, 0, 1, and −1, respectively. Correspondingly, the
bulk states at these energy points exhibit left, zero, right,
and left localizations, as seen in Fig. 4(e). Once again, the
results obtained are consistent with the BBC for skin modes
established above.

IV. EDGE STATES AND THE RELATED BBC

In Figs. 2(d), 2(h), 2(l), and 4(c), we have indicated the
highest peaks by zero modes (see arrows therein), which
have a degenerate zero energy in the complex energy plane.
These zero modes tend to localize on the boundary, whether
the systems are Hermitian or not, and thus are often termed
edge modes. Although skin modes can also localize on the
boundary, such edge modes intended for the two-band non-
Hermitian systems are different from the former in that (1)
the edge modes are nontrivial behaviors occurring at EPs and
always possess a degenerate zero energy that is not allowed by
the former and (2) the edge modes respect another BBC whose
topological invariant is not defined by Eq. (15) but by [23,24]

W =
∮

GBZ

dk

4π i
tr(SH−1 dH

dk
), (16)

where H(k) is still given by Eq. (2) but with k = −i ln β ∈
C, S is a unitary operator responsible for the sublattice (or
chiral) symmetry, and tr denotes the trace of the matrix. As
seen, this winding number can not be derived from Eq. (15) by
taking Em = 0. We should emphasize that the calculation of
Eq. (16) is performed on the GBZ rather than on the BZ, as the
latter would result in a fractional winding number implying
the breakdown of BBC [24,42].

In the following, we show that, in the majority of param-
eter situations, the edge modes will primarily host on either
boundary of the open chain and thus the topological invariant
Eq. (16) can be improved by presuming S = ±σz, from which
the localization hallmark of edge states can be accurately pre-
dicted, as occurred in one-band non-Hermitian systems (see,
e.g., Fig. 2 in Ref. [23]). This formalism enables us to define
a deterministic BBC for edge states—by deterministic we
mean that the edge state localized on the left (right) boundary
corresponds to the negative (positive) topological invariant,
while the absence of edge state corresponds to zero one (i.e.,
W = 0).

To confirm the BBC for edge states on an analytical level,
we need to find the explicit approximate edge-mode solu-
tions, along with their existence and localization conditions.
This process is not so trivial as what we did for the bulk-
mode solutions, as edge modes are wave states occurring
at the EPs where the vector space is severely skewed [64].
This is also seen from Eqs. (4), where the solutions would

FIG. 5. Normalized edge states for the same three GBZ cases as
in Fig. 2, with (a) GBZ outside BZ, (b) GBZ inside BZ, and (c) GBZ
intersecting BZ. Red dots and blue circles denote the analytical and
numerical solutions, respectively.

become indefinite as E → 0. In fact, when E = 0, Eq. (3) has

four roots β ′
1,2 = (−t1R ±

√
t2
1R − 4t2Lt3R)/(2t2L ), and β ′

3,4 =
(−t1L ±

√
t2
1L − 4t2Rt3L )/(2t3L ). One can sort these roots ac-

cording to their moduli and rename them from least to greatest
by βe

1, βe
2, βe

3, and βe
4. We find that when |βe

2β
e
3| < 1, the edge

modes will localize on the left end, and are given by

ψed
nA = βe

23

(
βe

1

)n+1
R+

(
βe

1

) − βe
13

(
βe

2

)n+1
R+

(
βe

2

)
, ψed

nB = 0
(17)

if R+(βe
2 ) 	= 0 or can be expressed by

ψed
nA = 0, ψed

nB = βe
23

(
βe

1

)n+1 − βe
13

(
βe

2

)n+1
(18)

if R+(βe
2 ) = 0. Otherwise, for |βe

2β
e
3| > 1, the edge modes

tend to localize on the right boundary, with their solutions
given by

ψed
nA = 0, ψed

nB = (
βe

3

)n −
(

βe
3

βe
4

)N+1(
βe

4

)n
, (19)

if R+(βe
3 ) = 0, or defined by

ψed
nA = (

βe
3

)n −
(

βe
3

βe
4

)N+1(
βe

4

)n
, ψed

nB = 0, (20)

if R+(βe
3 ) 	= 0. We should point out that for a special set

of hopping parameters satisfying |βe
2β

e
3| = 1, the zero modes

would exhibit weak localization on both left and right bound-
aries, as compared to the skin modes of the bulk. The reason
is that the GBZ will now be nearly tangent to the BZ circle,
and thus the edge states formed would behave like the ones
occurring in Hermitian systems whose wave functions may
occupy both ends (see, e.g., Fig. 1.4 in Ref. [84]). In this paper,
we shall not digress into this special situation but reserve it for
detailed study in a subsequent work.

For illustration, we demonstrate in Fig. 5 the comparison
of numerical edge modes of three GBZ cases in Fig. 2 with
our analytical solutions Eqs. (17) and (19), all zoomed within
30 lattice sites. Remarkably, these analytical solutions as well
as the analytical conditions for left or right localization can
predict the edge modes precisely. We also confirm that the
analytical solutions Eqs. (18) and (20) for other situations can
coincide with numerical ones as well, provided that |βe

2β
e
3| 	=

1 is met. It is clearly seen that these edge modes in the
thermodynamic limit tend to host on either sublattice A or B,
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FIG. 6. (a) Map of winding number in the plane (t1L, t1R), where
the red, blue, and green regions represent W = 1, −1, and 0, respec-
tively, numerically obtained for N = 50 and t2L = 6/5, t2R = 4/5,
t3L = 9/40, t3R = 1/40. The purple circle, cross, and asterisk indicate
the three GBZ cases (from top to bottom) in Fig. 2, respectively.
The yellow curves are specified by Eqs. (21) and (22), while the red
curve is the demarcation line defined by |βe

2β
e
3 | = 1. (b) and (c) show

the winding number W and energy bands along the white dashed line
in (a), where t1R = 7/10.

not on both, in contrast to what happens in the open two-band
Hermitian systems [84]. Only when |βe

2β
e
3| = 1 is fulfilled

would they host on both sublattice sites, but this case should
be excluded from our theory established here, as stated above.

Concerning the domain that admits edge modes, one can
resort to the BBC principle which relates edge states to the
bulk winding number. Here we can find it analytically using
the condition |βe

2| = |βe
3|, under which the edge modes begin

to dissociate themselves from the bulk states [49]. The domain
of edge modes can then be obtained as

t1R = ±

⎡
⎢⎣ t2Lt1L

t3L
− 2(t2Lt2R − t3Lt3R)

t1L −
√

t2
1L − 4t2Rt3L

⎤
⎥⎦ (21)

for 2
√

t2Rt3L � t1L � (t2Lt2R + t3Lt3R)/
√

t2Lt3R, and

t1R = ±

⎡
⎢⎣ t2Lt1L

t3L
− 2(t2Lt2R − t3Lt3R)

t1L +
√

t2
1L − 4t2Rt3L

⎤
⎥⎦ (22)

for −(t2Lt2R + t3Lt3R)/
√

t2Lt3R � t1L � −2
√

t2Rt3L.
Figure 6(a) illustrates the phase diagram of winding num-

ber obtained numerically with N = 50, according to the
winding number formalism Eq. (16). We have designated the
left localization by W = −1 (blue region), the right local-
ization by W = 1 (red region), and the zero localization by
W = 0 (green region). The corresponding winding number
W and the energy bands along the white dashed line (i.e.,
t1R = 7/10) have been displayed in Figs. 6(b) and 6(c). It is
clearly seen that the regions of nonzero winding number are
very consistent with the domain of edge modes defined by
Eqs. (21) and (22) (see yellow curves), and the demarcation
line between positive and negative winding numbers almost
coincides with that defined by |βe

2β
e
3| = 1 (see red curve). The

only discrepancy lying in four ends of domain is caused by
numerical errors of calculation of the winding number near
EPs and a relatively small lattice size (N = 50) used. Such
errors can be reduced significantly by increasing the decimal

number of digits and the lattice size N to a very high value,
but of course at the cost of an enormous amount of computing
time. The three GBZ cases shown in Fig. 2 are indicated by
purple circle, cross, and asterisk, which all exhibit consistency
with numerical results of the winding number. Therefore,
the non-Bloch BBC for edge modes has been unequivocally
confirmed. Moreover, our results suggest that when choos-
ing S = σz for |βe

2β
e
3| > 1 and S = −σz for |βe

2β
e
3| < 1, the

topological winding number defined by Eq. (16) can correctly
predict both the existence and localization of edge modes in
two-band non-Hermitian systems. The only exception is what
takes plane on the demarcation line |βe

2β
e
3| = 1 where only

the existence domain of edge modes could be predicted by the
winding number Eq. (16).

V. CONCLUSION

We confirmed, on an analytical level, the BBC for skin
modes and the BBC for edge modes in a 1D two-band
non-Hermitian system within the framework of a universal
non-Hermitian SSH model. There are several major conclu-
sions to be drawn here. First, an analytical approach to solving
such an intricate SSH model for energy spectra and eigen-
states was put forward, which not only breaks through the
limitations of those used in Refs. [49,72,73], but also offers
a strong reference for solving other 1D one- or multiband
non-Hermitian models, no matter how complicated the hop-
ping parameters involved. In fact, the importance of such
analytical studies can not be overemphasized, as they enable
one to identify and understand the key factors that lead to the
non-Hermitian skin effects, EPs, the formation of edge states,
and even the BBC.

Second, we demonstrated unequivocally a deterministic
BBC for either skin or edge modes, by introducing two dis-
tinct topological winding numbers that have been improved
distinctively in contrast to those extensively used in previous
studies [23,24,49,52,58,72]. Any indiscriminate use of the
above two topological invariants could result in a failure of
BBC in non-Hermitian systems.

Last but not least, we provided the explicit analytical
solutions for the edge modes, as well as the analytical con-
ditions for their existence and localization. Here, by explicit
we mean that these edge-mode solutions take the form that
does not depend on the energy and thus can be determined
without solving numerically the large Hamiltonian matrix
for energy spectrum, which is usually time-consuming and
even incorrect when the matrix dimension is very high [39].
Obviously, these explicit edge-mode solutions may facilitate
experimental studies of the underlying BBC for topologi-
cally protected edge states in a wide range of non-Hermitian
systems [37,38,43,44].

Further, considering that the BBC is a subtle issue
that has so far remained in debate for non-Hermitian sys-
tems [42,49,74], even on experimental sides [43,44], we
expect that the current paper may clarify this disputable
issue from the analytical standpoint and open avenues for
understanding the elusive non-Hermitian topology in a unified
manner.
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APPENDIX A: ENERGY SPECTRA AND EIGENSTATES
UNDER THE PERIODIC BOUNDARY CONDITION

In this Appendix, we would like to present the analytical
solutions for the non-Hermitian Hamiltonian under the PBC,
which means that the chain shown in Fig. 1(a) is now joined,
end to end, to form a loop. For such a loop-type chain, the
Hamiltonian Eq. (1) needs to be slightly modified as

Ĥ =
N∑

n=1

[t1Lĉ†
nAĉnB + t1Rĉ†

nBĉnA + t2Lĉ†
nBĉ(n+1)A

+ t2Rĉ†
(n+1)AĉnB + t3Lĉ†

nAĉ(n+1)B + t3Rĉ†
(n+1)BĉnA], (A1)

with ĉ(N+1)A = ĉ1A and ĉ(N+1)B = ĉ1B. In this situation,
the eigenvalue equation Ĥ |ψ〉 = E |ψ〉, with |ψ〉 =∑2N

m=1 ψm|m〉 = (ψ1A, ψ1B, · · · , ψNA, ψNB)T, yields a series
of bulk equations,

t1Lψ(n+1)B + t2RψnB + t3Lψ(n+2)B = Eψ(n+1)A, (A2)

t1Rψ(n+1)A + t2Lψ(n+2)A + t3RψnA = Eψ(n+1)B, (A3)

for n = 1, · · · , N , under the following boundary conditions:

ψ(N+ j)A = ψ jA, ψ(N+ j)B = ψ jB, ( j ∈ N ), (A4)

It follows easily that the kth set of solutions satisfying
Eqs. (A2)–(A4) can be expressed as

ψ
(k)
nA = c

√
R+(βk )

R−(βk )
βn

k , ψ
(k)
nB = cβn

k , (A5)

for the energy

E+
k =

√
R+(βk )R−(βk ), (A6)

or given by

ψ
(k)
nA = c

√
R+(βk )

R−(βk )
βn

k , ψ
(k)
nB = −cβn

k , (A7)

for the energy

E−
k = −

√
R+(βk )R−(βk ), (A8)

where R+(β ) and R−(β ) are the same functions as defined in
Eq. (2), c = √|R−(βk )|/[N (|R+(βk )| + |R−(βk )|)], and

βk = exp (ik), with k ∈
{

2π

N
,

4π

N
,

6π

N
· · · ,

2Nπ

N

}
.

(A9)

Obviously, all 2N eigenstates, Eqs. (A5) and (A7), and the
corresponding energy spectra, Eqs. (A6) and (A8), are solely
determined by the discrete βk values defined by Eqs. (A9).

Then the Bloch Hamiltonian H(k) resulting from the
Fourier transformation of the real-space Hamiltonian (A1) can
still be given by Eq. (2), but with the wavenumber k being real
and taken from the first BZ. In the complex plane, this BZ
will show a unit circle in the thermodynamic limit because of
|βk| = 1. As a result, the associated energy spectra Ek would
trace one or several closed loops in the complex energy plane,
different from those allowed by OBC [58]. One can refer to
Figs. 2(c), 2(g), 2(k), and 4(b) for a clear picture on these PBC
spectra, when compared to the OBC spectra.

APPENDIX B: SOLVING THE EIGENVALUE EQUATION
UNDER OPEN BOUNDARY CONDITION

In this Appendix, let us outline the derivation of
Eqs. (5)–(8), starting from the eigenvalue equation Ĥ |ψ〉 =
E |ψ〉, where Ĥ is the real Hamiltonian Eq. (1), E
is the energy spectrum, and |ψ〉 = ∑2N

m=1 ψm|m〉 =
(ψ1A, ψ1B, · · · , ψNA, ψNB)T denotes the corresponding
eigenvector, as stated in Sec. II. In the above basis, this
eigenvalue equation can again be transformed into a series of
bulk Eqs. (A2) and (A3), where now 1 � n � N − 2, together
with a set of boundary equations:

t1Lψ1B + t3Lψ2B = Eψ1A, (B1)

t1Rψ1A + t2Lψ2A = Eψ1B, (B2)

t1LψNB + t2Rψ(N−1)B = EψNA, (B3)

t1RψNA + t3Rψ(N−1)A = EψNB. (B4)

Considering the spatial translational invariance of the bulk
Eqs. (A2) and (A3), one can assume ψnA and ψnB to take
the ansatz Eqs. (4), with the energy E determined by Eq. (3).
As one can check, the solutions Eqs. (4) enable the bulk
Eqs. (A2) and (A3) to hold entirely, and meanwhile transform
the boundary Eqs. (B1)–(B4) into the system of linear equa-
tions Rc = 0, where c = (c1, c2, c3, c4)T and

R =

⎡
⎢⎢⎢⎢⎣

1 1 1 1

R+(β1) R+(β2) R+(β3) R+(β4)

βN+1
1 βN+1

2 βN+1
3 βN+1

4

βN+1
1 R+(β1) βN+1

2 R+(β2) βN+1
3 R+(β3) βN+1

4 R+(β4)

⎤
⎥⎥⎥⎥⎦. (B5)

For c j to be nontrivial, the coefficient matrix defined by Eq. (B5) must have a zero determinant, resulting in the OBC Eq. (5) that
needs to be satisfied by four β j . Naturally, under this OBC, the above system of linear equations, Rc = 0, can be solved, giving
rise to Eqs. (5)–(8).
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APPENDIX C: DETERMINATION OF GENERALIZED
BRILLOUIN ZONE

In Appendix A, we have shown that the BZ of the bulk
modes under the PBC will be a unit circle in the complex
plane, namely, |βk| = 1. Then, when the boundary condition
changes from PBC to OBC, what is the shape of the GBZ of
the bulk modes and how do we determine it either numerically
or analytically? In the current Appendix, let us address these
interesting issues.

As a matter of fact, in previous studies [39,72], it was
revealed that in the continuum limit, the middle two β values
allowed will be equal in modulus (say, |β2| = |β3| here) and
thus can constitute the GBZ of the bulk modes, which is a
closed loop encircling the origin in the complex plane. This
can also be seen from Eq. (5), which now, under the leading-
order approximation at N → ∞, reduces to

β12β34

β13β24
= (β2β4)N+1

(β3β4)N+1
=

(
β2

β3

)N+1

. (C1)

Obviously, as the left-hand side of Eq. (C1) does not depend
on N but its right-hand side does, this equation could be
possible only when |β2| = |β3| holds. Thus, when the energy
E runs over the whole continuum, the trajectories of β2 and
β3 form a closed loop in the complex plane. This idea, pro-
posed in Ref. [72], provides a direct way to determine the
GBZ numerically. To be specific, one needs first to choose
a sufficiently large N and solve the Hamiltonian Eq. (1) for
all eigenvalues E . Substituting each E value into Eq. (3), one
can get the middle two, β2 and β3, of the four roots. Finally,
plotting all β2 and β3 in the complex plane, one can obtain the
resultant numerical GBZ. Naturally, the larger the lattice size
used, the more accurate the numerical GBZ, but meanwhile,
the higher cost the computation takes.

Here we provide an analytical way to determine GBZ,
without solving the Hamiltonian Eq. (1). It is similar to, but
simpler than, that proposed in Refs. [39,72]. Indeed, because
of |β2| = |β3|, we can let β2 = ze−iθ and β3 = zeiθ , where
θ ∈ [0, 2π ). Inserting β2 and β3 into Eq. (3), respectively, and
subtracting these two results to eliminate E , we obtain

z4 + μ

2 cos θ
z3 − νr4

2 cos θ
z − r4 = 0, (C2)

where r, μ, and ν are same as defined above. This real-
coefficient quartic equation has the following four roots:

z1 = −P + 1

2

√
−4P2 − 2p0 + q0

P
− μ

8 cos θ
, (C3)

z2 = −P − 1

2

√
−4P2 − 2p0 + q0

P
− μ

8 cos θ
, (C4)

z3 = P + 1

2

√
−4P2 − 2p0 − q0

P
− μ

8 cos θ
, (C5)

z4 = P − 1

2

√
−4P2 − 2p0 − q0

P
− μ

8 cos θ
, (C6)

where

p0 = − 3μ2

32 cos2 θ
, q0 = μ3

64 cos3 θ
− νr4

2 cos θ
, (C7)

Q =
(

�1 + 3
√−3�

2

)1/3

, P =
√

3

6

√
Q + �0

Q
− 2p0,

(C8)

�0 = 3r4

4

(
μν

cos2 θ
− 16

)
, �1 = 27r4(ν2r4 − μ2)

4 cos2 θ
, (C9)

� = 4�3
0 − �2

1

27
. (C10)

It turns out that as θ runs from 0 to 2π , excluding the
special points π/2 and 3π/2, either (z1e−iθ , z2e−iθ ) or
(z3e−iθ , z4e−iθ ) can trace a closed loop known as the GBZ.
In practice, one can use (z2e−iθ , z3e−iθ , z4e−iθ ) to determine
the exact GBZ (eGBZ), as θ runs from π/2 to 3π/2. The merit
of the latter is that there is no need to sort the roots and there
are much fewer worthless lines around the GBZ formed. Ba-
sically, the eGBZ is the ultimate measure of how accurate the
numerical GBZ obtained with a finite N value could really be.
As an example, we demonstrate in Fig. 2(j) the comparison of
the GBZ that is obtained with a finite N = 100 with the eGBZ
that is defined by (z2e−iθ , z3e−iθ , z4e−iθ ), under the same
parameter condition. It is exhibited that the GBZ is really
composed of the β2 and β3 trajectories that fulfill |β2| = |β3|.
Moreover, the GBZ obtained with a relatively small lattice
size is shown to be very consistent with the eGBZ.
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