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Abstract. After more than 10 years in development, the nonlinear topological
photonics is emerging as a new branch of physics. One of the most interesting subjects
in the nonlinear topological photonics are the topological edge solitons. These soli-
tary structures move along the edges of photonic crystals with constant speed, are im-
mune to disorders/defects along the way, and maintain their profiles unchanged during
long-distance propagation. In this paper, we present bright and dark valley Hall edge
solitons in the kagome photonic lattice. These solitons emerge at domain walls that
exist between different types of kagome lattices. We are interested in the wall between
two specific types: the squeezed and expanded kagome photonic lattices. The solitons
move along the wall without change in their profiles, thanks to the self-action effect
of nonlinearity, and can circumvent sharp corners, thanks to the topological protection.
Advances achieved in this paper represent new progress in the nonlinear topological
photonics and may lead to applications in the development of novel photonic chips.
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1. INTRODUCTION

The topological insulator is a new phase of matter that originated in the con-
densed matter physics [1, 2]. Along the rapid developement in the 21st century, it
brought intriguing new phenomena to the attention of researchers in other fields of
physics. It is already accepted that topological insulators may even bring improve-
ments in the performance of electronic chips. They possess localized states that can
uniformly move along the edges of photonic crystals and are immune to disorders or
defects along the way. Nowadays, research on topological insulators has spread into
many branches of physics, such as photonics [3–12], acoustics [13–18], mechanical
systems [19, 20], ultra-cold atoms [21, 22], polaritons in microcavities [23–25], and
electrical circuits [26–31]. Especially, “topological photonics” has become a com-
pletely new academic discipline that developed rapidly in the past decade [32–41],
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and has already sprouted several branches, such as nonlinear topological photonics
[35], non-Hermitian topological photonics [39, 42], and quantum topological pho-
tonics [43]. The present status of work on the optical topological edge solitons that
belong to the nonlinear topological photonics, indeed elucidates a variety of pos-
sible avenues in the manipulation of topological edge states: bistability effects for
edge states in pumped dissipative systems [44–46], modulational instability of the
nonlinear edge states [47, 48], the stabilization of operation of topological lasers
due to nonlinear gain saturation [49–57], nonlinearity-induced topological transitions
[11], as well as a rich variety of solitonic effects [58–60], including the formation of
self-sustained localized states in the bulk of topological insulators [10, 61], nonlin-
ear vortices [62], topological edge solitons [63–76], defect solitons [77, 78], and
nonlinearity-induced higher-order topological phases [79], to name a few.

Among topological edge solitons, the valley Hall edge solitons acquired special
status. The term valley Hall comes from the focus on the Hall effect at the peaks and
valleys in the energy band structure of photonic crystals. Such solitons do not require
either external magnetic field or elaborate waveguide arrays, and therefore possess
advantages in experimental realization, which is why we chose them initially for
theoretical exploration. In the previous work, the valley Hall effect [80] was obtained
via breaking the inversion symmetry of the system by introducing a detuning to the
refractive index change of the waveguide channel or by adjusting the size of the
lattice sites. However, such a scheme is not feasible for the kagome photonic lattice,
which has three sites in the unit cell, and exhibit Dirac points as well as flat bands
in the band structure [72, 81–83]. Therefore, one has to manipulate the kagome
lattice differently. This is accomplished by introducing two types of misalignments in
the unit cell that is adopted for the production of higher-order topological insulators
[84–90], and then establishing a domain wall between the two misaligned lattices.
This we achieved by squeezing sites in the unit cell in one part of the lattice and
expanding them in the other, and then producing a domain wall between the squeezed
and expanded sublattices that allows for the generation and propagation of valley Hall
edge solitons .

Explicitly, such an operation does not break the inversion symmetry of the lat-
tice, but indeed leads to the disappearance of Dirac points and the formation of six
valleys. The Berry curvature of the valley is not zero any longer, and the sign of the
Berry curvature of neighboring valleys is opposite [91, 92]. As a result, across the do-
main wall or the interface between squeezed and expanded kagome photonic lattices,
the difference of the valley Chern numbers is ±1, which illustrates that there is an
edge state localized at the domain wall, according to the bulk-edge correspondence
principle [46]. Even though valley Hall edge solitons have been reported previously
[73, 75, 76], the production of such solitons in the kagome photonic lattice is still an
open problem. To the best of our knowledge, nonlinear manipulation of the valley
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Hall edge states in the kagome photonic lattice is not reported yet. This is accom-
plished in this work.

We believe that research on topological solitons in kagome (or any other) lattice
is meaningful and significant, because it not only deepens the understanding of valley
Hall effect and provides a new method for manipulating light field in a photonic
crystal, but also enlightens future ideas that might help the development of on-chip
optical functional devices, e.g., the valley Hall lasing in the kagome photonic lattice.

2. CONFIGURATION AND BAND STRUCTURE

The propagation dynamics of the valley Hall edge state along the longitudinal
z axis of the waveguide array with focusing cubic nonlinearity can be described by
the dimensionless nonlinear Schrödinger-like paraxial wave equation,

i
∂ψ

∂z
=−1

2

(
∂2

∂x2
+
∂2

∂y2

)
ψ−R(x,y)ψ−|ψ|2ψ, (1)

where ψ is the field amplitude, x = X/r0 and y = Y/r0 are the normalized trans-
verse coordinates, and z = Z/(κr20) is the normalized propagation distance. Here,
r0 is the transverse scale, κ = 2nπ/λ the wavenumber, λ the wavelength, and n the
ambient refractive index. The potential function R stands for the waveguide array
that is arranged within a kagome landscape without any modulation along the longi-
tudinal coordinate. The profiles of individual waveguides in the array are described
by Gaussian functions of width d:

R(x,y) = p
∑
m,n

exp

[
−(x−xm,n)

2+(y−ym,n)
2

d2

]
, (2)

where p stands for the depth of waveguides in two sublattices, and (xm,n,ym,n) are
the coordinates of the nodes in the kagome grid. We consider a configuration that
is periodic along the x axis and is limited along the y axis, with outer boundaries
located far away from the domain wall, so that R(x,y) =R(x+L,y) with L = 2a
and a being the array constant, as shown in Fig. 1(a). Clearly, the distance between
two nearest-neighbored sites in Fig. 1(a) is also a. Representative parameter values
for these quantities are a= 1.7, d= 0.5 (in units of r0), and p= 12. By inserting the
ansatz ψ(x,y,z) = u(x,y)exp(ikxx)exp(ibz) into Eq. (1) and without considering
the nonlinear term, one obtains the linear eigenvalue problem

bu=
1

2

(
∂2

∂x2
+
∂2

∂y2
+2ikx

∂

∂x
−k2x

)
u+Ru, (3)

where u(x,y)=u(x+L,y) is the periodic Bloch wave function, kx ∈ [−Kx/2,Kx/2)
is the Bloch momentum in the first Brillouin zone with Kx =2π/L, and b is the prop-
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agation constant of the linear mode that is a function of kx. Based on the plane-wave
expansion method, the band structure corresponding to the configuration in Fig. 1(a)
is easily obtained, as displayed on the right-hand-side of the configuration, which is
projected onto the (kx, b) plane - it has three bands and there are Dirac points between
the top two bands.

The configuration can be experimentally obtained by using the femtosecond
laser writing technique in fused silica [3, 8, 10, 11, 90, 93], and the dimensionless
parameters described above can be switched to dimensional ones with real physical
meaning. Provided the laser radiation at the wavelength of λ = 800 nm is used and
the characteristic transverse scale is set to r0 = 10 µm that corresponds to dimen-
sionless coordinates x,y = 1, the array constant is 17 µm, the waveguide width is
5 µm, and the refractive index modulation depth is ∼ 1.07×10−4 per unit depth.

(a)

(b) (c)

(d) (e)

Dirac points

¡!
¡

¡!
¡

2a ¡!¡!¡

Fig. 1 – (Color online) (a) Kagome photonic lattice and its corresponding band struture projected on
the (kx, b) plane, which possesses two Dirac points. The green hexagon shows the unit cell that has
three sites. (b) Setup is as in (a), but for the squeezed kagome lattice. In the band structure, Dirac

points disappear and the band gap appears. (c) Setup is as in (b), but for the expanded kagome lattice.
(d) Composite kagome lattice with squeezed (top) and expanded (bottom) kagome lattices, with the
interface indicated by the green line. There is an edge state in the band structure that is indicated by
the red curve. (e) Setup is as in (d), but with expanded (top) and squeezed (bottom) kagome lattices.

Parameters: a= 1.7, d= 0.5, p= 12, and δ = 0.2.
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For enabling the valley Hall effect in kagome lattice, one has to squeeze/expand
the distance among three sites in the unit cell [91, 92] and at the same time keep the
distance between two neighboring unit cells unchanged. After this operation, the
rotation symmetry of the configuration changes from C6 to C3. To conveniently
evaluate the shrinkage and expansion within the unit cell, we introduce a positive
quantity δ. Thus, the distance among three sites in one unit cell is changed to α= a−
δ for the squeezed kagome lattice and to α= a+ δ for the expanded kagome lattice.
The squeezed and expanded kagome lattices with δ=0.2 are shown in Figs. 1(b) and
1(c), respectively. From the corresponding band structures, one finds that the Dirac
points between top two bands are replaced by a big band gap. Even though the band
structures in Figs. 1(b) and 1(c) look the same, the corresponding Berry curvatures
are opposite [91, 92], which is crucial for establishing a domain wall between the
squeezed and expanded kagome lattice arrays, and realizing the valley Hall edge
state. In Figs. 1(d) and 1(e), we show the composite kagome lattice, by combining
the squeezed lattice and the expanded lattice with the interface highlighted by a green
line. The difference between the two configurations is that the top lattice is squeezed
in Fig. 1(d) while the bottom lattice is squeezed in Fig. 1(e). One finds that both
cases can support valley Hall edge states in the band gap, as indicated by red curves
in the band structures.

=0.1=0.1

(a) (b)

(c) (d)

¡ ¡!¡ x

¡!

y

¡ ¡!¡ x

¡!

y

Fig. 2 – (a) Linear valley Hall edge state at kx = 0.1Kx in Fig. 1(d). (b) Linear valley Hall edge state
at kx = 0.1Kx in Fig. 1(e). (c) First-order b′ = db/dkx and second-order b′′ = d2b/dk2x derivatives
of the valley Hall edge state in Fig. 1(d), as shown by the solid and dashed curves, respectively. (d)

Same as in (c), but for the edge state in Fig. 1(e).

We present in Fig. 2 the valley Hall edge state at kx = 0.1Kx for both cases in
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Figs. 1(d) and 1(e), displayed in Figs. 2(a) and 2(b), respectively. One finds that the
energy is indeed mostly localized along the domain wall. To exhibit more intricate
properties of these edge states, we explore their first-order b′ = db/dkx and second-
order b′′ = d2b/dk2x derivatives, as shown in Figs. 2(c) and 2(d), which correspond
to valley Hall edge states in Figs. 1(d) and 1(e). The red dots elucidate the Bloch
momentum kx = 0.1Kx. As is well known, b′ estimates the velocity of the edge state
(v = −b′) while b′′ is responsible for its dispersion. According to the condition for
constructing bright and dark solitons, the valley Hall edge state with the negative
second-order derivative supports bright valley Hall edge solitons and that with the
positive second-order derivative supports dark valley Hall edge solitons. Hence, one
expects a dark valley Hall edge soliton based on the state in Fig. 2(c) and a bright
valley Hall edge soliton based on the state in Fig. 2(d).

3. VALLEY HALL EDGE SOLITONS

To construct bright valley Hall edge solitons, one firstly establishes the nonlin-
ear valley Hall edge state, and then seeks for the precursor of the valley Hall edge
soliton, due to the splitting spot of the valley Hall edge state, that will grow thanks to
the incipient modulational instability [48, 73, 75]. However, this method is not ap-
propriate for the dark valley Hall edge soliton, which displays a notch on the homo-
geneous background. Therefore, we adopted the method developed in Refs. [69, 72],
according to which the soliton can be prepared by superimposing the envelopes of
the linear valley Hall edge state. The envelope equation corresponding to Eq. (1) can
be written as

i
∂A

∂z
=
β′′

2

∂2A

∂X2
−χ|A|2A, (4)

where A is the slowly-varying envelope, χ =
∫ +∞
−∞ dy

∫ L
0 |ϕ|4dx is the nonlinear-

ity coefficient, and X = x+ b′z. The soliton solution can be written in the form
ψ(x,y,z) = A(X,z)ϕ(x,y)exp(ibz), in which ϕ(x,y)exp(ibz) is the linear Bloch
state. Bright solitons exist in the region b′′ < 0, while dark solitons exist in the re-
gion b′′ > 0. Numerically, Eq. (4) can be solved by using Newton’s method in the
form A(X,z) = w(X)exp(ibnlz), where bnl is the nonlinearity-induced phase shift,
which should be sufficiently small to make sure that the profile w(X) is broad and
fulfills the slowly-varying requirement. Equation (4) is the well-known nonlinear
Schrödinger equation with third-order nonlinearity (i.e., the Kerr nonlinearity), and
it possesses various solutions. We are interested in the soliton solutions that can be
written as

A(x,z) =

√
2
bnl
χ
sech

(√
−2

bnl
b′′
(
x+ b′z

))
exp(−ibnlz) (5)
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for bright solitons, and

A(x,z) =

√
bnl
χ
tanh

(√
bnl
b′′
(
x+ b′z

))
exp(−ibnlz) (6)

for dark solitons.

3.1. BRIGHT VALLEY HALL EDGE SOLITONS

By superimposing the envelope in Eq. (5) to the corresponding linear valley
Hall edge state shown in Fig. 2(b), we obtain the bright valley Hall edge soliton
with bnl = 0.003 at kx = 0.1Kx, as shown in Fig. 3(a) at distance z = 0. Since the
first-order derivative of the linear valley Hall edge state is b′ = −0.0805, the bright
valley Hall edge state moves along the positive x direction during propagation, with
a speed of v = 0.0805, as the soliton bifurcates from the linear valley Hall edge state.
The movement can be seen from the selective profiles at certain distances, shown in
each panel. The beam can maintain its profile unchanged even after experiencing an
extremely long propagation distance, e.g., z = 10000. As an illustration, we record
the peak amplitude anlin =max{|ψ|} during propagation, shown by the black curve
in Fig. 3(c). One finds that the peak amplitude indeed does not decay.

If the nonlinearity is lifted during propagation, the diffraction will result in the
broadening of the beam. To demonstrate the significance of nonlinearity, we display
the profile of the beam at z = 2000 upon linear propagation in Fig. 3(b) - the domain
wall is almost filled with the beam because of the diffractive broadening, which is
sharply different from the nonlinear propagation in Fig. 3(a). The broadening of the
beam must be accompanied by decreasing peak amplitude, and this phenomenon is
demonstrated by the red curve in Fig. 3(c), which is the peak amplitude of the beam
during linear propagation alin. Clearly, the formation of the bright valley Hall edge
soliton is due to the balance between the nonlinearity and the diffraction.

3.2. DARK VALLEY HALL EDGE SOLITONS

To construct the dark valley Hall edge soliton, we superimpose the linear val-
ley Hall edge state in Fig. 2(a) with the envelope given in Eq. (6). Since there is a
π-phase shift across the notch, we investigate the propagation dynamics of two dark
valley Hall edge solitons with a large separation. This operation is necessary, and
the reason is two-fold. Firstly, we use the split-step Fourier method to do the propa-
gation, which will connect the left-end (viz. min{x}) and right-end (viz. max{x})
of the window to make a loop that demands ψ|min{x} = ψ|max{x}. Secondly, there
must be interaction between solitons [76] if they are close to each other, hence large
separation will prevent such an interaction. In Fig. 4(a), the constructed dark valley
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Fig. 3 – (Color online) (a) Profiles of the bright valley Hall edge soliton with kx = 0.1Kx at selected
distances during propagation. (b) Profile of the same input as in (a), but for linear propagation. (c)

Peak amplitude of the beam during propagation. Black curve is for nonlinear propagation, while the
red curve is for linear propagation. All panels are shown in the window −85≤ x≤ 85 and

−12≤ y ≤ 12. For the envelope, we use bnl = 0.003, b′ =−0.0805, b′′ =−0.4111, and other
parameters are the same as those adopted in Fig. 1.

Hall edge solitons (with z = 0 at the bottom of the panel) localize at x = ±80 with
max{x}= 136, so the separation of the two dark valley Hall edge solitons is 160 or
112, which is sufficiently large to avoid the interaction between solitons.

Since b′ =0.1175, the dark valley Hall edge soliton moves along the negative x
direction with a speed v =−0.1175 during propagation, as exhibited in the selected
profiles in Fig. 4. One also finds that the launched beam maintains its shape without
decaying during propagation, which elucidates the validity of the existence of the
dark valley Hall edge soliton. Similar to the bright case, we also record the linear

(c) 2022 RRP 74(0) 405 - v.2.0*2022.5.17 —ATG



9 Valley Hall edge solitons in the kagome photonic lattice Article no. 405
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Fig. 4 – (Color online) Same as Fig. 3 but for the dark valley Hall edge soliton with bnl = 0.003,
b′ = 0.1175 and b′′ = 0.5898. All panels are shown in the window −136≤ x≤ 136 and

−12≤ y ≤ 12.

propagation of the beam in Fig. 4(a) with z = 0, and the profile at z = 2000 is dis-
played in Fig. 4(b). In comparison with the profile at z = 2000 in Fig. 4(a), the notch
width in Fig. 4(b) is much wider, because of the diffractive broadening. Different
from the bright case, where one can record the peak amplitude during propagation,
there is no peak amplitude for the dark valley Hall edge soliton, except the back-
ground peak amplitude. In Fig. 4(c), we show the background amplitude peak for
both nonlinear propagation anlin and linear propagation alin, as indicated by the black
and red curves, respectively. One finds that the background amplitude peak anlin does
not change over a long propagation distance, which demonstrates the stability of the
dark valley Hall edge soliton, whereas the background amplitude peak alin increases
upon linear propagation. The profile of the beam in Fig. 4(b) as well as the back-
ground amplitude peak in Fig. 4(c) affirms the decisive role of nonlinearity in the
formation of dark valley Hall edge solitons.

3.3. TOPOLOGICAL PROTECTION OF VALLEY HALL EDGE SOLITONS

In the above text, we have demonstrated the existence and propagation dynam-
ics of both bright and dark valley Hall edge solitons in the kagome lattice waveguide
arrays. In this subsection, we confirm the topological protection of these valley Hall
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edge solitons, by exhibiting their capability of circumventing sharp corners. Even
though the squeezed and expanded kagome lattices lost their C6 rotation symmetry,
they still possess the C3 rotation symmetry, so that establishing a domain wall with
60◦ or 120◦ corners is feasible. In Fig. 5(a), we display a composite kagome lattice
with a plough-shaped domain wall, as indicated by the green line. The angle at the
corner is 60◦.

z=600

z=300

z=0

z=900

¡!
¡ ¡!¡ x

y

(b)

z=450

z=700

z=250

z=0

(c)

(a)

Fig. 5 – (a) Navigating kagome lattice with a plough-shaped domain wall as indicated by the green
line. (b) Propagation of the bright valley Hall edge soliton along the domain wall at selective distances.

All panels are shown in the window −72≤ x≤ 72 and −5≤ y ≤ 20. Other parameters: a= 1.8,
δ = 0.4, d= 0.5, b′ =−0.0336, b′′ =−0.1718, bnl = 0.003, and kx = 0.1Kx. (c) Same as in (b) but
for the dark valley Hall edge state with b′ =−0.0666, b′′ = 0.0031, bnl = 0.0001 and kx = 0.265Kx.

We first launch a bright valley Hall edge soliton into the horizontal edge of the
domain wall, as shown in the panel with z = 0 in Fig. 5(b). Since the velocity is
along the positive x direction, the valley Hall edge soliton will encounter the corner
during propagation (see the panel with the distance z = 300). When it propagates
to z = 600, nearly half of the energy transfers to sloped edge of the domain wall.
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The bright valley Hall edge soliton almost moves away from the sloped edge after a
propagation distance of z = 900, with a small residual on the horizontal edge. This
phenomenon demonstrates that the bright valley Hall edge state can circumvent the
sharp corner and is topologically protected. The right column in Fig. 5 displays the
case of the dark valley edge soliton.

As shown in Fig. 1(d) and Fig. 1(e), the second-order derivative of the edge
state can be positive or negative, which depends on the value of Bloch momentum.
For checking the topological protection of dark valley Hall edge state, we still use the
same configuration as in Fig. 5(a), but we choose kx = 0.265Kx. Frankly, according
to the definition of dark soliton, the homogeneous background should fill both the
horizontal edge and the sloped edge of the domain wall. However, this is difficult to
reach. As a compromise, we can only prepare a quasi-soliton as shown in Fig. 5(c)
at z = 0, which is along the horizontal edge of the domain wall. We agree that the
quasi-soliton will spread during propagation, but still we can record the behavior of
the notch, which moves along the positive x direction (see the profile at z = 250).
When the beam reaches z = 450, the notch is crossing the corner without showing
much of reflection or radiation. The notch completely transfers to the sloped edge of
the domain wall finally, and the profile demonstrating this phenomenon is also shown
in Fig. 5(c), at z = 700. In this manner, we have exhibited the topological protection
of valley Hall edge solitons.

4. CONCLUSION

Summarizing, we have demonstrated the existence and dynamics of valley Hall
edge solitons in the kagome lattice, for the first time. By combining the squeezed and
expanded kagome lattices, a domain wall (i.e., the interface) is established between
them that supports valley Hall edge soliton states. According to the dispersive prop-
erties of the edge state, we successfully constructed both bright and dark valley Hall
edge solitons by superimposing envelopes onto their corresponding linear valley Hall
edge states. The valley Hall edge solitons in the kagome lattice propagate stably and
are topologically protected, because they can circumvent sharp corners set in the do-
main wall. These results not only help to better understand the valley Hall effect,
but also display the potential for applications in fabricating compact on-chip optical
functional devices on-demand.
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6. N. H. Lindner, G. Refael, V. Galitski, Nat. Phys. 7, 490–495 (2011).
7. M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor, Nat. Phys. 7, 907–912 (2011).
8. S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, A. Szameit,

Nature 560, 461–465 (2018).
9. Y. Yang, Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, R. Singh, Y. Chong, B. Zhang, H. Chen,

Nature 565, 622–626 (2019).
10. S. Mukherjee, M. C. Rechtsman, Science 368, 856–859 (2020).
11. L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt et al., Science 370, 701–704

(2020).
12. Z. Yang, E. Lustig, Y. Lumer, M. Segev, Light Sci. Appl. 9, 128 (2020).
13. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, B. Zhang, Phys. Rev. Lett. 114, 114301 (2015).
14. Y.-G. Peng, C.-Z. Qin, D.-G. Zhao, Y.-X. Shen, X.-Y. Xu, M. Bao, H. Jia, X.-F. Zhu, Nat. Commun.

7, 13368 (2016).
15. C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P. Liu, Y.-F. Chen, Nat. Phys. 12,

1124–1129 (2016).
16. J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, Z. Liu, Nat. Phys. 13, 369–374 (2017).
17. X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, J. Christensen, Commun. Phys. 1, 97 (2018).
18. G. Ma, M. Xiao, C. T. Chan, Nat. Rev. Phys. 1, 281–294 (2019).
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