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Floquet systems with periodically varying in time parameters enable realization of unconventional topo-
logical phases that do not exist in static systems with constant parameters and that are frequently accom-
panied by appearance of novel types of the topological states. Among such Floquet systems are the Su–
Schrieffer–Heeger lattices with periodically-modulated couplings that can support at their edges anoma-
lous pmodes of topological origin despite the fact that the lattice spends only half of the evolution period
in topologically nontrivial phase, while during other half-period it is topologically trivial. Here, using Su–
Schrieffer–Heeger arrays composed from periodically oscillating waveguides inscribed in transparent
nonlinear optical medium, we report experimental observation of photonic anomalous pmodes residing
at the edge or in the corner of the one- or two-dimensional arrays, respectively, and demonstrate a new
class of topological p solitons bifurcating from such modes in the topological gap of the Floquet spectrum
at high powers. p solitons reported here are strongly oscillating nonlinear Floquet states exactly repro-
ducing their profiles after each longitudinal period of the structure. They can be dynamically stable in
both one- and two-dimensional oscillating waveguide arrays, the latter ones representing the first real-
ization of the Floquet photonic higher-order topological insulator, while localization properties of such p
solitons are determined by their power.

� 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Photonic topological insulators [1,2] are unique materials host-
ing localized topologically protected states at their edges by anal-
ogy with edge modes in electronic topological insulators, first
predicted in solid-state physics [3,4]. Various mechanisms of for-
mation of the photonic topological edge states were discovered,
most of which are associated with breakup of certain symmetries
of the underlying system possessing specific degeneracies in the
linear spectrum. The most representative feature of topological
edge states is their remarkable robustness with respect to defor-
mations of the structure, disorder, and their persistence for differ-
ent geometries of the edge between topologically distinct
materials. Their formation and robustness have been predicted
and demonstrated for various photonic systems with broken
time-reversal symmetry, for valley-Hall systems with broken
inversion symmetry, and in higher-order topological insulators
[5–20]. Particularly nontrivial situation is realized when topologi-
cal phase is induced by periodic modulations of system parameters
in the evolution variable [21], for example in the direction of light
propagation. Characterization of such driven Floquet systems usu-
ally requires special topological invariants, as shown in Refs. [22–
24]. Among the most intriguing manifestations of topological
effects in Floquet systems is the formation of unidirectional edge
states as proposed in Ref. [8] and observed at optical frequencies
in Ref. [9], observation of anomalous topological states [25–27],
and of so-called anomalous p modes associated with nonzero p
gap invariant and studied in Refs. [28–32]. Recent surge of interest
to topological pumping in near-solitonic regime should be men-
tioned too [33–35].

p modes are unique topological states that may appear in a
quasi-energy spectrum of the Floquet system that due to modula-
tion of its parameters spends half of the evolution period in ‘‘in-
stantaneous” nontopological phase, while on the other half of the
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period it is topologically nontrivial. In tight-binding models
describing Floquet systems, p modes usually appear at the edges
of the ‘‘longitudinal” Brillouin zone with quasi-energies equal to
�p=T (where T is period of the Floquet system), in contrast to con-
ventional ‘‘zero-energy” edge states in static topological systems,
hence the notion of p modes that we also use in this work for con-
venience. So far, the photonic pmodes have been observed only in
linear regime in one-dimensional modulated Su–Schrieffer–Heeger
(SSH) arrays in a microwave range [36] and at optical frequencies
in non-Hermitian or plasmonic SSH arrays [37–39] with high
refractive index contrast, where, however, considerable losses limit
propagation distances to hundreds of micrometers. p modes may
have applications in the design of systems supporting high-
quality cavity modes [40,41], for realization of low-threshold lasers
[42–45], in strongly correlated electron-photon systems [46], and
other areas. They have been also encountered beyond the realm
of optics, e.g., in acoustics [47,48]. Nevertheless, to date the pho-
tonic p modes remain unobserved in higher-dimensional conser-
vative systems and their nonlinear analogs were never reported
experimentally. At the same time, photonic Floquet systems offer
unique testbed for the exploration of nonlinear effects in specifi-
cally designed low-loss topological guiding structures, where
observation of so far elusive class of p solitons is possible.

It should also be mentioned that nonlinearity is playing an
increasingly important role in all-optical control of topological sys-
tems, see recent reviews [2,49]. In particular, nonlinearity may
stimulate modulational instability of the nonlinear edge states
[50–52], it leads to rich bistability effects for edge states in pumped
dissipative resonator structures [53–55]; it may cause power-
controlled topological transitions [56], and enables the formation
of topological solitons both in the bulk of the insulator [57,58]
and at its edges [51,59–70]. The important property of such soli-
tons is that they remain localized due to nonlinearity, and at the
same time they inherit topological protection from linear edge
modes, from which they usually bifurcate. Corner solitons in
higher-order topological insulators have been reported too [71–
73]. Very recently it was theoretically predicted [74] that Floquet
topological systems may support a new class of topological soli-
tons, qualitatively different from previously observed unidirec-
tional states [67] —namely, p soliton— that represents
dynamically oscillating nonlinear Floquet state with a quasi-
energy in the topological bandgap that exactly reproduces its
intensity distribution after each longitudinal period of the struc-
ture. Even strongly localized p solitons are practically free from
radiative losses that usually restrict propagation distances for uni-
directional edge solitons in Floquet waveguiding systems [64,67].

In this work, we report on the experimental observation of p
solitons in one- and two-dimensional Floquet waveguide arrays,
where nontrivial topological properties arise due to z-periodic
oscillations of waveguide centers in each unit cell of the structure.
The arrays considered here are inscribed in a transparent nonlinear
dielectric medium (fused silica) using the technique of direct fem-
tosecond laser writing [75–77] and represent SSH-like structures,
which, however, are not static, but spend half of the z-period in
‘‘instantaneous” topological phase, while during other half of the
period they are ‘‘instantaneously” non-topological, as defined by
periodically varying intra- and inter-cell coupling strengths. In
two dimensions such arrays represent the realization of the pho-
tonic Floquet higher-order insulator. Floquet spectrum of such
arrays is characterized by the presence of in-gap topological p
modes, from which robust p solitons can bifurcate in the nonlinear
regime. We observe such solitons using single-site excitations,
study their periodic evolution with distance, and dependence of
their localization properties on the amplitude of the waveguide
oscillations and power.
2018
2. Results and discussion

We consider paraxial propagation of a light beam along the z
axis of the medium with focusing cubic nonlinearity and shallow
transverse modulation of the refractive index that can be described
by the nonlinear Schrödinger-like equation for the dimensionless
light field amplitude w:

i
@w
@z

¼ �1
2

@2

@x2
þ @2

@y2

 !
w�Rðx; y; zÞw� jwj2w: ð1Þ

Here x; y are the scaled transverse coordinates, z is the propagation
distance that plays in Eq. (1) the same role as time in the Schrödin-
ger equation describing a quantum particle in a potential, and the
functionRðx; y; zÞ describes array of periodically oscillating waveg-
uides. For details of normalization of Eq. (1) see Section S1 in the
Supplementary materials.

2.1. 1D p solitons

First of all, for observation of 1D p solitons we consider the SSH-
like arrays of oscillating waveguides containing 7 unit cells. Refrac-
tive index distribution in such arrays can be described by the fol-
lowing function:

R ¼ p
X
m

½e�ðx21m=a2xþy2=a2y Þ þ e�ðx22m=a2xþy2=a2y Þ�; ð2Þ

where x1m ¼ xm þ d=2þ r cosðxzÞ and x2m ¼ xm � d=2� r cosðxzÞ
are the x-coordinates of the waveguide centers in each unit cell con-
taining two waveguides, x ¼ 2p=Z is the spatial frequency of oscil-
lations of the waveguide centers, Z is the longitudinal period of the
array, xm ¼ x� 2md; m is the integer index of the cell, r is the ampli-
tude of the waveguide oscillations, which was varied from 1 to
11lm;d ¼ 30 lm is the spacing between waveguides at r ¼ 0
(i.e., unit cell size is 2d), ax ¼ 2:5 lm and ay ¼ 7:5 lm are the widths
of waveguides that are elliptical due to writing process, and p is the
array depth proportional to the refractive index contrast dn in the
structure (see Section S1 in the Supplementary materials). Sche-
matic illustration of such array is presented in Fig. 1a. As one can
see, the separation d� 2r cosðxzÞ between two waveguides in the
unit cell (intracell separation) of this structure varies dynamically,
leading to periodic transformation between ‘‘instantaneously” topo-
logical (inter-cell coupling exceeds intracell one) and non-
topological (inter-cell coupling is weaker than intra-cell one) SSH
configurations. Microphotographs of such 1D fs-laser written arrays
in fused silica at different distances within the sample are presented
in Fig. 1b. The array period Z ¼ 33 mm was selected such that our
samples contained three full z-periods of this Floquet structure
(see Section S2 in the Supplementary materials).

Nontrivial topological properties in this system arise due to lon-
gitudinal variations of the structure (oscillations of the waveg-
uides). Its modes are the Floquet states w ¼ uðx; y; zÞeibz, where b
is a quasi-propagation constant (for first Brillouin zone
b 2 ½�x=2; þx=2Þ), and uðx; y; zÞ ¼ uðx; y; zþ ZÞ is the Z-
periodic complex field that satisfy the equation
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Neglecting nonlinear term in Eq. (3) we calculate linear spectrum of
1D array using the method proposed in Ref. [27] (see Section S5 in
the Supplementary materials). The transformation of linear spec-
trum with increase of the amplitude r of waveguide oscillations is
shown in Fig. 1c. Quasi-propagation constant b is defined modulo
x and in Fig. 1c we show the spectrum within three longitudinal



Fig. 1. (Color online) (a) Schematic image of the 1D oscillating waveguide array (three longitudinal z-periods) containing 7 unit cells. (b) Microphotographs of the fs-laser
written oscillating waveguide array at different distances in topological phase ðz ¼ 0Þ , uniform phase ðz ¼ Z=4Þ, and trivial phase ðz ¼ Z=2Þ. (c) Quasi-propagation constants of
the Floquet modes of the oscillating array versus amplitude of the waveguide oscillations r within three longitudinal Brillouin zones. (d), (e) Intensity distributions of the
linear p modes at different distances z for two selected oscillation amplitudes r corresponding to the red dots in (c). In all cases Z ¼ 33 mm.
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Brillouin zones. Gray lines correspond to the delocalized bulk
modes, while the red lines correspond to the linear topological p
modes [28–32]. Notice that they emerge around the points, where
Floquet replicas of the bands spectrally overlap, and longitudinal
modulation hybridizes states at the band edges lifting their degen-
eracy and opening the topological gap. Because our structure is
symmetric, p modes appear near both edges of the array. Quasi-
propagation constants of p modes are located in the forbidden
gap in the Floquet spectrum that guarantees absence of coupling
with bulk states. Their localization near a given edge increases with
increase of the gap width, cf Fig. 1d and e. Such modes show strong
shape transformations within longitudinal period, but exactly
reproduce their shape after each period Z. Remarkably, Fig. 1e
clearly shows that global intensity maximum of the p mode is not
always located in the edge waveguide. For instance, at z ¼ Z=2,
where the array is in instantaneous nontopological phase, the inten-
sity maximum switches into next to edge waveguide, while at z ¼ Z,
exactly after one oscillation period, where structure returns into
instantaneous topological configuration, the light also switches
back to the edge waveguide. Already for r ¼ 7 lm the p mode con-
tracts practically to single waveguide in some points within evolu-
tion period that enables its efficient excitation in the experiment
(this determined our choice of the initial ‘‘phase” of the waveguide
oscillations in Fig. 1a; linear spectrum clearly does not depend on
this phase). Very similar results and Floquet spectrum were
obtained also for arrays with odd number of waveguides (where
one of the unit cells is incomplete), because even in this case due
to waveguide oscillations both edges periodically pass through
stages when truncation becomes topological or nontopological
and therefore support p modes.

The appearance of topological p modes in the spectrum of this
Floquet system is associated with nonzero value of the p gap
invariant wp (see Section S4 in the Supplementary materials for
details of its calculation and literature [30,36]). One can observe
the formation of pmodes in the spectrum of truncated array when
2019
wp ¼ 1 (for sufficiently large oscillation amplitudes r), while these
modes are absent when wp ¼ 0 (e.g., at r ! 0).

Inspecting spectrum in Fig. 1c one can see that while longitudi-
nal modulation with frequency x creates Floquet replicas of bands
and localized p modes, by itself it does not induce parametric res-
onances between localized and bulk modes, which nevertheless
can occur, if additional weak modulation of optical potential at fre-
quencies 2x; 3x; � � � is added that keeps Z-periodicity of array.

The p solitons are the topological nonlinear Floquet states bifur-
cating from the linear pmodes. To find their profiles we iteratively
solve Eq. (3) with the last nonlinear term included (see Section S6
in the Supplementary materials), by varying soliton power

U ¼ RR jwj2dxdy and calculating for each U corresponding Z-
periodic soliton profile uðx; y; zÞ, quasi-propagation constant b,

and averaged amplitude A ¼ Z�1 R zþZ
z max jwjdz. The p solitons

bifurcate from linear p modes, as evident from the representative
bðUÞ dependence in Fig. 2a, where quasi-propagation constant of
linear mode is shown by the dashed line. Their amplitude A
increases with the power (Fig. 2b). Importantly, nonlinearity
changes the location of b inside the topological gap, gradually shift-
ing it towards the bulk band (gray region). This is accompanied by
changes in soliton localization in the ðx; yÞ plane (it may first
increase and then decrease depending on the value of r), especially
when b shifts into the band, where coupling with the bulk modes
occurs. Periodic transformation of soliton intensity distribution
with z is illustrated in Fig. 2c. It should be stressed that for our
parameters even for the amplitude of oscillations r � 9 lm the p
solitons obtained here are robust objects that practically do not
radiate and survive over hundreds of Z periods that is beneficial
in comparison with the previously observed unidirectional edge
solitons [67].

We tested stability of such states by adding broadband small
noise (typically, 5% in amplitude) into input field distributions
and propagating such perturbed p solitons over distances � 500Z



Fig. 2. (Color online) Quasi-propagation constant (a) and z-averaged peak ampli-
tude (b) of the p soliton versus its power U. Gray region in (a) corresponds to the
bulk band, while white region corresponds to the forbidden gap in Floquet
spectrum. Horizontal dashed line shows quasi-propagation constant b of linear p
mode. (c) Intensity distributions in the p soliton with power U ¼ 0:5 at different
distances within one oscillation period Z. The state is shown near left edge only.
Here r ¼ 6 lm; Z ¼ 33 mm. The dependencies bðUÞ and AðUÞ for other values of
3 lm 6 r 6 9 lm are qualitatively similar.

A.A. Arkhipova et al. Science Bulletin 68 (2023) 2017–2024
that allows to detect the presence of even very weak instabilities.
Such stability analysis has shown that for our parameters and for
amplitudes of oscillations r > 5 lm 1D solitons belonging to for-
bidden gap are stable, while they become unstable, when they shift
into band. Notice that stabilization of such states that have powers
well below power of Townes soliton in uniform cubic medium is
consistent with arguments of Ref. [78].

To demonstrate 1D p solitons experimentally we inscribed in a
fused silica sample the series of SSH-like arrays with the different
amplitudes r of waveguide oscillations ranging from 1 to 11 lm,
with a step in r of 2 lm using fs-laser writing technique (see
Fig. 1b with exemplary microphotographs of the array and Sec-
tion S2 in the Supplementary materials for the details of inscrip-
tion). While full sample length contains three Z-periods of the
structure, to demonstrate dynamics in the internal points of the
last period, we additionally inscribed arrays with fractional lengths
2:25Z; 2:50Z; 2:75Z with the same parameters (see Section S2 in
the Supplementary materials for the details).

In experiments we excited the waveguide at the left edge using
the fs-laser pulses of variable energy E (for correspondence
between pulse energy E and input peak power in the waveguide
see Section S3 in the Supplementary materials). Output intensity
cross-sections at y ¼ 0 (red lines) and 2D distributions (blue insets)
are compared in Fig. 3 with the results of theoretical simulations of
the single-site excitation with different input powers U in the
frames of Eq. (1) (black-red insets). In all cases theoretical results
well agree with the experimental observations. In Fig. 3a and top
right image in Fig. 3c we show how output beam localization pro-
gressively increases in linear regime (low pulse energies E ¼ 20 nJ)
with increase of the amplitude r of the waveguide oscillations. Effi-
cient excitation of well-localized linear p modes is evident for
r P 7 lm, while for r ¼ 5 lm the excitation efficiency is lower
and some fraction of power penetrates into the bulk of the array.
First rows in Fig. 3b and c illustrate that p mode undergoes strong
oscillations on one Z period, main intensity maximum switches
into second waveguide at z ¼ 2:50Z (consistently with the dynam-
ics of exact state in Fig. 1e), but it returns to the edge one at
z ¼ 3:00Z illustrating periodic evolution.
2020
By increasing pulse energy we observe the formation of the 1D
p solitons. As mentioned above, they are in-gap topological states
bifurcating from pmodes under the action of nonlinearity. Nonlin-
earity leads to soliton reshaping (in particular, for r ¼ 7� 9 lm it
slightly broadens with increase of U), but when its quasi-
propagation constant shifts into the band, strong radiation into
the bulk occurs. This is most clearly visible for r ¼ 7 lm
(Fig. 3b), where solitons were observed well-localized near the
edge for the pulse energies E < 350 nJ, but radiating around
E � 430 nJ (notice that at this energy the level of radiation
becomes visible only after three Z periods). Further increase of
the pulse energy leads to stronger radiation. At r ¼ 9 lm the range
of the pulse energies, where formation of robust p solitons is
observed substantially increases (Fig. 3c). Well localized p solitons
performing Z-periodic oscillations are observed for the pulse ener-
gies E < 900 nJ (rows 1–3) and only at E � 1000 nJ small radiation
due to the coupling with the bulk modes appears (row 4). Simula-
tions over much larger distances ðz > 100ZÞ confirm robustness of
such dynamically excited nonlinear Floquet states with in-gap
quasi-propagation constants. It should be stressed that excitation
of the waveguide in the bulk of the above arrays does not yield
localization for considered pulse energies.
2.2. 2D p solitons

For observation of 2D p solitons we utilize 2D generalization of
the SSH array with oscillating waveguides. Unit cell of such an
array (quadrimer) contains four waveguides, whose centers oscil-
late with period Z along the diagonals of the unit cell. We consider
sufficiently large structure containing 5� 5 unit cells. Refractive
index distribution in this Floquet structure is described by the
function

R¼ p
X
m;n

e�ðx21m=a2xþy21n=a
2
y Þ þe�ðx22m=a2xþy21n=a

2
y Þ þe�ðx21m=a2xþy22n=a

2
y Þ þe�ðx22m=a2xþy22n=a

2
y Þ

h i
;

ð4Þ

where x1m;2m ¼ xm � d=2� r cosðxzÞ and y1n;2n ¼ yn � d=2� r cosðxzÞ
are the coordinates of centers of four waveguides in the unit cell
with xm ¼ x� 2md and yn ¼ y� 2nd; m; n are the integers. In 2D
case the oscillation periodwas taken as Z ¼ 49:5 mm, so that sample
contained two full longitudinal array periods. Spacing between
waveguides at r ¼ 0 lm was set to d ¼ 32 lm, and to achieve more
uniform coupling between elliptic waveguides, their longer axes
were oriented along the diagonal of the array (see schematics in
Fig. 4a and microphotographs of inscribed structure at different
distances in Fig. 4b). As one can see, such structure realizes the
photonic Floquet higher-order insulator periodically switching
between ‘‘instantaneous” topological and non-topological phases.

Dependence of quasi-propagation constants b of the Floquet
eigenmodes of the 2D array, obtained from linear version of Eq.
(3), on amplitude of waveguide oscillations r shown in Fig. 4c
reveals the formation of 2D p modes (red lines) that reside in the
corners of the structure, but in comparison with 1D case they
appear in sufficiently narrow range of oscillation amplitudes. This
is a consequence of substantially more complex spectrum of static
2D SSH structures [73] featuring four bands in topological phase
(in contrast to only two bands in 1D SSH arrays), that in our case
experience folding due to longitudinal array modulation, resulting
in a very complex Floquet spectrum. For instance, quasi-
propagation constants of 2D p modes may overlap with the band,
as it also happens with eigenvalues of usual corner modes in static
higher-order insulators [73]. To obtain such spectrum, where topo-
logical gap can be opened by longitudinal array modulation, we
had to select not too small depth of potential p ¼ 5 to ensure that
the width of the bulk bands is comparable with the width of the



Fig. 3. (Color online) (a) Formation of the pmodes with increase of the amplitude of waveguide oscillations r in linear regime. The impact of nonlinearity on such states and
formation of p solitons is illustrated in (b) for r ¼ 7 lm and in (c) for r ¼ 9 lm at different propagation distances. In all panels red lines show experimental 1D intensity cross-
sections at y ¼ 0, blue inset shows 2D experimental intensity distributions for a given pulse energy E, and black-red insets show corresponding theoretical 2D intensity
distributions for different input powers U.
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longitudinal Brillouin zone and no too strong band folding occurs.
Example of the p mode performing periodic oscillations (only one
corner is shown) is depicted in Fig. 4d. The properties of 2D p soli-
tons, whose family was obtained from nonlinear Eq. (3) using iter-
ative method, are summarized in Fig. 5. As in the 1D case, quasi-
propagation constant of 2D solitons crosses the gap with increase
of power U and enters into the band (Fig. 5a). For the selected
amplitude r ¼ 7 lm the soliton exists practically in the entire
gap, because b of linear p mode from which it bifurcates is located
2021
near the lower gap edge (we have checked that this linear p mode
indeed falls into forbidden gap of bulk system by calculating qua-
sienergy spectrum of periodic, i.e., infinite in the transverse direc-
tion, Floquet array). The average amplitude A increases with U
(Fig. 5b). The intensity distributions at different distances illustrat-
ing periodic p soliton evolution in z are presented in Fig. 5c.
Despite the fact that this state is 2D and oscillates strongly, the col-
lapse is suppressed and one observes very robust propagation for
all powers, when soliton resides in the gap. This conclusion was



Fig. 4. (Color online) (a) Schematic illustration of the 2D oscillating waveguide array (for illustrative purposes we show only 3� 3 unit cells). (b) Microphotographs of laser-
written 2D array with 5� 5 unit cells at different distances. (c) Quasi-propagation constants of the Floquet modes of the 2D array with oscillating waveguides versus
amplitude of waveguide oscillations rwithin three longitudinal Brillouin zones. (d) Intensity distribution in linear 2D pmode at different distances z for r ¼ 6 lm. In all cases
Z ¼ 49:5 mm.

Fig. 5. (Color online) Quasi-propagation constant (a) and z-averaged peak ampli-
tude (b) versus power U for the p solitons in 2D array. (c) Intensity distributions at
different distances for a soliton with U ¼ 0:2. In all cases r ¼ 7 lm; Z ¼ 49:5 mm.
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also supported by the results of propagation of weakly perturbed
2D p solitons over large distances. For r ¼ 7 lm all such states in
the gap were found stable.

To observe 2D p solitons we inscribed the series of 2D oscillat-
ing arrays with various amplitudes of waveguide oscillations up to
r ¼ 9 lm. Excitations in the right corner of the array were used, but
it should be stressed that excitations of other corners yields nearly
identical results due to high symmetry and uniformity of the array.
At low pulse energies E ¼ 10 nJ one observes strong diffraction
into the bulk at r ¼ 3 lm (Fig. 6a), while efficient excitation of lin-
ear pmodes takes place at amplitudes r P 5 lm (Fig. 6b and c). To
the best of our knowledge, this constitutes the first observation of
2D pmodes in photonics. Increasing pulse energy at low r � 3 lm
results first in concentration of light in the bulk of the sample and
then its gradual displacement toward the corner (Fig. 6a). By con-
trast, for r P 5 lm one observes the formation of p solitons, whose
range of existence in terms of input power grows with increase of r.
Thus, at r ¼ 5 lm the well-localized solitons form at pulse energies
E < 300 nJ, while at E � 400 nJ strong radiation into the bulk
occurs (Fig. 6b) due to nonlinearity-induced shift into the allowed
band. At r ¼ 7 lm one observes the formation of the p solitons
even at E � 600 nJ (Fig. 6c) with tendency for slight increase of sec-
ondary intensity maxima in soliton profile at highest power levels
that is observed also in exact soliton solution of Eq. (3). Excitations
in other corners of the array (e.g., top one) yield similar results con-
firming the p soliton formation, while excitations in the bulk
strongly diffract at these pulse energies.

3. Conclusion

We presented experimental observation of a new type of p soli-
tons in nonlinear Floquet system, where nontrivial topology arises
from periodic modulation of the underlying photonic structure in
evolution variable (along the light propagation path). Such solitons
exist both in 1D and 2D geometries and they show exceptionally
robust evolution due to practically absent radiative losses at con-



Fig. 6. (Color online) Excitation of the p solitons in 2D oscillating waveguide arrays
for different amplitudes of the waveguide oscillations r at z ¼ 2Z. Top rows (blue
background) show experimentally measured intensity distributions for different
pulse energies E, while bottom rows (black background) show theoretically
calculated output patterns for different powers U. (a)–(c) r = 3, 5, and 7 lm,
respectively.
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sidered periods and amplitudes of oscillations. The results obtained
here may be used in the design of a class of topological Floquet
lasers based on pmodes, for the control and enhancement of para-
metric processes, such as generation of new harmonics assisted by
topology of the Floquet system, and for design of new types of on-
chip all-optically controlled topological devices.
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