

Bond number (Bo) $B_o = \frac{\rho a L^2}{\sigma}$

- A high Bond number indicates that the system is relatively unaffected by surface tension effects; a low number (typically less than one is the requirement) indicates that surface tension dominates.
- It is also known in a slightly different form as the Eötvös number. The term Eötvös number is more frequently used in Europe, while Bond number is commonly used in other parts of the world.
- This number usually characterizes the shape of liquid bubbles and drops.

动力工程多相流国家重点实验室 陈斌

Ga	alile	ei nu	ımb	per ((Ga))				
B	o 0.1	0.2	0.5	1	2	5	10	20	50	100
200	(1.34)	(1.48)	(1.83)	(2.11)	(2.35)				(4.66)	(5.46)
100	(1.09)	(1.19)	(1.38)	(1.59)	(1.86)	(2.40)	(3.19)	(5.22)	(4.24)	(4.67)
50	(1.03)	(1.06)	(1.15)	(1.27)	(1.46)	(1.88)	(2.43)	(3.23)	(3.65)	(3.97)
20	(1.00)	(1.01)	(1.04)	(1.09)	(1.17)	(1.4)	(1.69)	(2.09)	(2.56)	(2.77)
10	(1.00)	(1.00)	(1.02)	(1.04)	(1.08)	(1.19)	(1.34)	(1.56)	(1.87)	(2.10)
5	(1.00)	(1.00)	(1.00)	(1.00)	(1.03)	(1.08)	(1.15)	(1.22)	(1.42)	(1.76)
动力工程多	相流国家	重点实验	室 陈斌		Intern	ational Jou	ırnal of Mu	ultiphase F	Flow 51 (2	013) 11–21

≽19

<text><list-item><list-item>

 Matrix and the refore, there is an appreciable conduction against the flow upon downstream of the cylinder, and therefore, there is an appreciable conduction against the flow upon downstream of the cylinder.
 Pe = LU/h
 Description of the flow of the series of the flow upon downstream locations is diminished, and variables in the flow tend to become 'one-way' properties.

 • When Pe is small, conduction is much more significant than advection, at least near the cylinder, and, therefore, there is an appreciable conduction against the flow upstream of the cylinder.

 Different the cylinder.
 Different the cylinder.

 down the cylinder.

 Different the cylinder.

 for the cylinder.

 Different the cylinder.
 Different the cylinder.
 Different the cylinder.

'able 2 _ Stafan number for throttling loss T -	0°C T. – 40°C				
able 2^{-} Sterall-humber for unothing loss, $1_1 = 1$	Water	Ammonia	R134a	R1234yf	R114
seudo Stefan-number, Št _{thr}	0.05	0.11	0.09	0.12	0.10
ressure ratio, π	12	3.6	3.4	3.2	3.9
fechanical throttling number, N _{thr}	$2.7 imes 10^{-6}$	$1.5 imes 10^{-3}$	$2.6 imes 10^{-3}$	$4.1 imes 10^{-3}$	$1.3 imes 10^{-1}$
tefan-number, St _{thr}	0.067	0.14	0.23	0.32	0.29
hrottling loss, x (from diagrams, sources, see Table 1)	0.067	0.15	0.28	0.35	0.30
Int. J. Refe	rigeration 33(2010) 1343-13	49		

- 幼月上住夕相孤国豕里尽头短:	ē 苏)紙

(lllllll		. 1	- (64)				
trounal	l nur	nbe	r (St)			
Ontimal	Stroul	nal mui	mber fo	r swim	ming a	anima	S
optimu	Suloui	iui iiu		5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		unnu	1.5
Spaciar	L (cm)		Pa	п	\$	U.W.	0.00
species	L (CIII)	S/h*	NE	u	34	0/1	00 ()
Mammals							
Beluga*	364	7.3	$8.0 imes 10^6$	0.145	0.35	0.48	31
Bottlenose dolphin*	258	7.9	1.2×10^7	0.063	0.26	0.52	25
False killer whale ^a	379	7.8	2.1×10^7	0.044	0.26	0.57	28
Florida manatee ^b	334	7.5	4.4×10^6	0.025	0.31	0.66	
Harp seal ⁴	153	7.7	$1.6 imes 10^6$	0.123	0.27	0.45	22
Killer whale*	473	7.3	$2.6 imes 10^7$	0.015	0.28	0.56	29
Ringed seal ^c	106	8.7	$1.3 imes 10^6$	0.105	0.30	0.44	24
White-sided dolphin*	221	6.5	1.3×10^7	0.018	0.24		
Sharks							
Blacktip reef sharkd	97	7.6	$8.3 imes 10^5$	0.036	0.25	0.66	
Bonnethead shark ⁶	93	5.5	8.0×10^5	0.026	0.27	0.74	
Nurse shark ^d	220	17.8	$1.8 imes 10^6$	0.072	0.41		
Scalloped hammerhead**	59	4.9	3.8×10^5	0.027	0.37		
Scombrids							
Atlantic mackerel	32	6.7	5.8×10^5	0.034	0.25	0.73	
Chub mackerel#	21	10.5	1.6×10^5	0.070	0.25		
Chub mackerel**	21	10.5	1.8×10^5	0.067	0.26	0.63	
Giant bluefin tunai	250	4.8	5.7×10^6	0.015	0.24		
Kawakawa tuna ^{5,*}	21	5.0	1.8×10^5	0.032	0.21	0.60	
Pacific bonito ⁱ	47	6.2	4.5×10^5	0.033	0.23		
Skipjack tuna ^k	57	5.8	2.2×10^{6}	0.022	0.27		
Yellowfin tuna ¹	53	5.5	6.1×10^{5}	0.028	0.29	0.48	

