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§9.3 The phase plane; linear system
The xy plane is referred to as the phase plane.
In this section we will continue our discussion of the autonomous system

dx

dt
= F (x, y),

dy

dt
= G(x, y). (9.3.1)

In particular we will be concerned with the behavior of the trajectories of the system
(9.3.1) in the neighborhood of a critical point (x∗, y∗). It is convenient to choose the
critical point to be at the origin of the phase plane: This involves no loss of generality,
since if x∗ 6= 0, y∗ 6= 0, it is always possible to make the substitution x = x∗ + u,
y = y∗ + v in Equation (9.3.1), so that u and v will satisfy an autonomous system of
equations with a critical point at the origin. For example, the (0, ε2/α2) is a critical
point for the competing species model

{
dx
dt

= x(ε1 − σ1x− α1y),
dy
dt

= y(ε2 − σ2x− α2y).

The substitution x = u, y = v + ε/α2 takes the model to the form of
{ du

dt
= (ε1 − α1ε2

α2
)u− σ1u

2 − α1uv),
dv
dt

= −σ2ε2

α2
u− ε2v +−σ2uv − α2v

2).

We will further assume that the origin is an isolated critical point of the system
(9.3.1); that is, we assume that there is some circle about the critical point,inside
which there are no other critical points. Finally, we assume that in the neighborhood
of (0,0), the system (9.3.1) has the the form

dx

dt
= ax + by + F1(x, y),

dy

dt
= cx + dy + G1(x, y), (9.3.2)

where ad − bc 6= 0. Note that there are no constant terms in Eqs (9.3.2) since
F (0, 0) = 0 and G(0, 0) = 0. Also, we require that the function F1(x, y) and G1(x, y)
be continuous, have continuous first partial derivatives, and be small in the sense that

lim
r→0

F1(rcoxθ, rsinθ)

r
= 0, lim

r→0

G1(rcoxθ, rsinθ)

r
= 0, (9.3.3)

where r =
√

x2 + y2. Such a system is often referred as an almost linear system in
the neighborhood of the critical point (0,0). Essentially, Eqs. (9.3.2) and (9.3.3) say
that for (x, y) near (0,0) the functions F and G are well approximated by the linear
functions ax + by and cx + dy, respectively.

The conditions on F and G are satisfied by many functions of two variables. For
example, {

dx
dt

= −y + lx2 + mxy + ny2,
dy
dt

= x + εy + ax2 + bxy,
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 Linear System:  Stable Node 
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Figure 9-3-1 Some orbits and direction field for the system x′ = −x, y′ = −2y

{
dx
dt

= y,
dy
dt

= −g
l
x− g

l
(sinx− x),

are almost linear systems in the neighborhood of the (0,0).

9.3.1 Phase portraits of special linear system
In this subsection we draw phase portraits for some special linear systems.

Example 9.3.1
Plot the phase portrait of the system

dx

dt
= −x,

dy

dt
= −2y. (9.3.4)

Solution
The solution of (9.3.4) with the initial condition x(0) = x0, y(0) = y0 is x = x0e

−t,
y = y0e

−2t. From the explicit expression of the solution we see that the trajectory is
y = y0

x2
0
x2. Then we can obtain the phase portrait of (9.3.4)(See Figure 9-3-1).

We can also plot the phase portrait by following Maple commands.

With(DEtools):

DE931 :=[diff(x(t),t)=-x(t),

diff(y(t),t)=-2*y(t)];

DEplot( DE931, [x(t),y(t)],t=-10..10,
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[[x(0)=0,y(0)=2], [x(0)=0,y(0)=-2], [x(0)=-2,y(0)=0],

[x(0)=2,y(0)=0], [x(0)=1,y(0)=0.01], [x(0)=1,y(0)=0.04],

[x(0)=1,y(0)=0.1], [x(0)=1,y(0)=0.25],[x(0)=1,y(0)=1],

[x(0)=1,y(0)=-0.01], [x(0)=1,y(0)=-0.04], [x(0)=1,y(0)=-0.1],

[x(0)=1,y(0)=-0.25],[x(0)=1,y(0)=-1],[x(0)=-1,y(0)=0.01],

[x(0)=-1,y(0)=0.04], [x(0)=-1,y(0)=0.1], [x(0)=-1,y(0)=0.25],

[x(0)=-1,y(0)=1],[x(0)=-1,y(0)=-0.01], [x(0)=-1,y(0)=-0.04],

[x(0)=-1,y(0)=-0.1], [x(0)=-1,y(0)=-0.25],[x(0)=-1,y(0)=-1]],

x=-8..8,y=-8..8,stepsize=0.05, dirgrid=[21,21], color=red,

linecolor=blue,axes=BOXED,

title=" Linear System: Stable Node ",

arrows=SLIM);

Example 9.3.2
Plot the phase portrait of the system

dx

dt
= −x,

dy

dt
= 2y. (9.3.5)

Solution
The solution of (9.3.5) with the initial condition x(0) = x0, y(0) = y0 is x = x0e

−t,
y = y0e

2t. From the explicit expression of the solution we see that the trajectory is
yx2 = y0x

2
0. Then we can obtain the phase portrait of (9.3.4)(See Figure 9-3-2).

We can also plot the phase portrait by following Maple commands. We can also
draw the phase portrait by the Maple command.

With(DEtools): DE932 :=[diff(x(t),t)=-x(t),

diff(y(t),t)=2*y(t)];

DEplot( DE932, [x(t),y(t)],t=-10..10,

[[x(0)=0,y(0)=2], [x(0)=0,y(0)=-2], [x(0)=-2,y(0)=0],

[x(0)=2,y(0)=0], [x(0)=1,y(0)=1], [x(0)=2,y(0)=2],

[x(0)=3,y(0)=3], [x(0)=4,y(0)=4.2],[x(0)=5,y(0)=6],

[x(0)=1,y(0)=-1], [x(0)=2,y(0)=-2], [x(0)=3,y(0)=-3],

[x(0)=4,y(0)=-4.2],[x(0)=5,y(0)=-6],[x(0)=-1,y(0)=1],

[x(0)=-2,y(0)=2], [x(0)=-3,y(0)=3], [x(0)=-4,y(0)=4.2],

[x(0)=-5,y(0)=6],[x(0)=-1,y(0)=-1], [x(0)=-2,y(0)=-2],

[x(0)=-3,y(0)=-3], [x(0)=-4,y(0)=-4.2],[x(0)=-5,y(0)=-6] ],

x=-8..8,y=-8..8,stepsize=0.05, dirgrid=[21,21], color=red,

linecolor=blue,axes=BOXED,

title="Linear System : Saddle(UnstableEquilibrium)",

arrows=SLIM);
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Linear System : Saddle(UnstableEquilibrium)
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Figure 9-3-2 Some orbits and direction field for the system x′ = −x, y′ = 2y

Example 9.3.3
Plot the phase portrait of the system

dx

dt
= −x/10− y,

dy

dt
= x− y/10. (9.3.5)

Solution
By introducing the new variable x = rcosθ, y = rsinθ we can obtain the differen-

tial equations for r and θ:

dr

dt
= −r/10,

dθ

dt
= 1.

The new system has the solution r = r0e
−t/10, θ = t+θ0. From the explicit expression

of the solution we see that the trajectory is spiral. The phase portrait is sketched in
Figure 9-3-3.

We can also plot the phase portrait by following Maple commands.

With(DEtools): DE933 :=[diff(x(t),t)=-x(t)/10-y(t),

diff(y(t),t)=x(t)-y(t)/10];

DEplot( DE933, [x(t),y(t)],t=-10..40,

[[x(0)=8,y(0)=0],[x(0)=6,y(0)=0]],

x=-8..8,y=-8..8,stepsize=0.05, dirgrid=[21,21],

color=red, linecolor=blue,axes=BOXED,

title="Linear System : Stable Focus(Spiral) ",

arrows=SLIM);
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Linear System : Stable Focus(Spiral) 
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Figure 9-3-3 Some orbits and direction field for the system
x′ = −x/10− y, , y′ = x− y/10

Example 9.3.4
Plot the phase portrait of the system

dx

dt
= −y,

dy

dt
= x. (9.3.6)

Solution
From the given equations we get dy

dx
= −x

y
. And it is easy to see that the trajec-

tories of the system is circle centered at the origin: x2 + y2 = x2
0 + y2

0. The phase
portrait is sketched in Figure 9-3-4.

We can also plot the phase portrait by following Maple commands.

With(DEtools): DE934 :=[diff(x(t),t)=-y(t),

diff(y(t),t)=x(t)];

DEplot( DE934, [x(t),y(t)],t=-10..10,

[[x(0)=1,y(0)=0],[x(0)=2,y(0)=0],[x(0)=3,y(0)=0],

[x(0)=4,y(0)=0],[x(0)=5,y(0)=0],[x(0)=6,y(0)=0],

[x(0)=7,y(0)=0],[x(0)=8,y(0)=0]],

x=-8..8,y=-8..8,stepsize=0.05, dirgrid=[21,21],

color=red, linecolor=blue,axes=BOXED,

title="Linear System : Center ",

arrows=SLIM);
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Linear System : Center 
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Figure 9-3-4 Some orbits and direction field for the system x′ = −y, y′ = x

Example 9.3.5
Plot the phase portrait of the system

dx

dt
= −x,

dy

dt
= 5x− y. (9.3.7)

Solution
The solution of (9.3.7) with the initial condition x(0) = x0, y(0) = y0 is x = x0e

−t,
y = y0e

−t + 5x0te
−t. We can plot the phase portrait by following Maple commands.

With(DEtools): DE935 :=[diff(x(t),t)=-x(t),

diff(y(t),t)=5*x(t)-y(t)];

DEplot( DE935, [x(t),y(t)],t=-10..10,

[[x(0)=0,y(0)=2], [x(0)=0,y(0)=-2],

[x(0)=2,y(0)=-8], [x(0)=4,y(0)=-8],

[x(0)=6,y(0)=-8], [x(0)=8,y(0)=-8],

[x(0)=8,y(0)=5], [x(0)=-3,y(0)=-8],

[x(0)=-4,y(0)=13],

[x(0)=-8,y(0)=-8],[x(0)=-8,y(0)=5]],

x=-8..8,y=-18..18,

stepsize=0.05, dirgrid=[21,21], color=red, linecolor=blue,

axes=BOXED, title="Linear System : Improper Node ",

arrows=SLIM);
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Linear System : Improper Node 

–15

–10

–5

0

5

10

15

y

–8 –6 –4 –2 2 4 6 8x

Figure 9-3-5 Some orbits and direction field for the system x′ = −x, y′ = 5x− y

9.3.2 Phase portrait for the general linear system
In this subsection we present a complete picture of all orbits of the linear differ-

ential equation
d~x

dt
= A~x, ~x =

(
x
y

)
, A =

(
a b
c d

)
. (9.3.8)

This picture is called a phase portrait, and it depends almost completely on the
eigenvalues of matrix A.

The system of equations (9.3.8) can be solved by the characteristic method. The
characteristic polynomial of (9.3.8) is

∣∣∣∣
a− λ b

c d− λ

∣∣∣∣ = λ2 − (a + d)λ + ad− bc = λ2 − pλ + q = 0, (9.3.9)

where p = a + d, q = ad− bc. The roots of (9.3.8) are

λ1 =
1

2
(p +

√
∆), λ2 =

1

2
(p−

√
∆), (9.3.9)

where ∆ = p2 − 4q.
We are now in a position to derive the phase portraits of (9.3.8). We distinguish

the following cases.

Case 1. Real unequal roots of the same sign: q > 0, ∆ > 0
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The linear transformation

{
x1 = (d− λ1)x− by,
y1 = (d− λ2)x− by,

{
x = − 1√

∆
(x1 − y1),

y = 1√
∆

[(d− λ2)x1 − (d− λ1)y1],
(9.3.10)

can take (9.3.8) to the form of

dx1

dt
= λ1x1,

dy1

dt
= λ2y1. (9.3.11)

In fact,

dx1

dt
= (d− λ1)

dx

dt
− b

dy

dt
= (d− λ1)(ax + by)− b(cx + dy)

= [a(d− λ1)− bc]x + [b(d− λ1)− bd]y = (ad− bc− aλ1)x− bλ1y

= [ad− bc− (a + d)λ1 + λ2
1 + λ1(d− λ1)]x− bλ1y = λ1x1,

dy1

dt
= (d− λ2)

dx

dt
− b

dy

dt
= (d− λ2)(ax + by)− b(cx + dy)

= [a(d− λ2)− bc]x + [b(d− λ2)− bd]y = (ad− bc− aλ2)x− bλ2y

= [ad− bc− (a + d)λ2 + λ2
2 + λ2(d− λ2)]x− bλ2y = λ2yx2.

The solution of (9.3.11) is

x1 = x0
1e

λ1t, y1 = y0
1e

λ2t.

If λ2 < λ1 < 0, then
lim

t→+∞
x1(t) = 0, lim

t→+∞
y1(t) = 0.

and

lim
t→+∞

y1(t)

x1(t)
= lim

t→+∞
y0

1

x0
1

e(λ2−λ1)t = 0.

lim
t→−∞

y1(t)

x1(t)
= lim

t→−∞
y0

1

x0
1

e(λ2−λ1)t = ∞.

The qualitative diagram of the orbits appears in Figure 9-3-1. And the phase portrait
for the original system can be easily obtained from the transformation(See Figure 9-
3-6). The critical point in this case is called a stable node. The case with two positive
eigenvalues λ1 and λ2 is similar.

Main feature of a stable node:
(1) Two solution line L1 and L2;
(2) limt→+∞ x(t) = 0, limt→+∞ y(t) = 0;
(3) All the trajectories approach the origin tangent to L1 or L2.
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Figure 9-3-6 Some orbits and direction field for the system
x′ = −2x− y, y′ = 4x− 7y

Example 9.3.6 Plot the phase portrait of the following system

dx

dt
= −2− y,

dy

dt
= 4x− 7y.

Solution
p = 9 > 0, q = 18 > 0, ∆ = 81− 72 = 9 > 0, the critical point O(0, 0) is a stable

node. In order to determine the solution line, we solve the equation

k =
dy

dx
=

y

x
=

4− 7k

−2− k

and obtain k1 = 1, k2 = 4. for the point on the positive x-axis the trajectory of the
system paths it upward. The phase portrait of this system is shown in Figure 9-3-6.

Case 2. Real roots of opposite sign: q < 0
We assume that λ1 < 0 < λ2. The linear transformation (9.3.10) can take (9.3.8)

to the form of (9.3.11). The solution of (9.3.11) x1 = x0
1e

λ1t , y1 = y0
1e

λ2t has the
property that

lim
t→+∞

x1(t) = 0, lim
t→+∞

y1(t) = ∞,

and

lim
t→+∞

y1(t)

x1(t)
= lim

t→+∞
y0

1

x0
1

e(λ2−λ1)t = ∞,
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lim
t→−∞

y1(t)

x1(t)
= lim

t→−∞
y0

1

x0
1

e(λ2−λ1)t = 0.

The trajectories of (9.3.11) are sketched in Figure 9.3, and the trajectories of the
original system (9.3.8) are sketched in Figure 9-3-7.

In this case the critical point is called a saddle point. Main features of a saddle
point:

(1) Two solution line L1 and L2;
(2) limt→+∞ x(t) = 0, limt→+∞ y(t) = ∞;
(3) All the trajectories approach infinity tangent to L1 or L2 as t tends to infinity.

Example 9.3.7 Draw the phase portrait of the linear equations

dx

dt
= x− 3y,

dy

dt
= −3x + y.

Solution
It is easy to see that p = 2 > 0, q = −8 < 0. Hence the critical point O(0, 0) is a

saddle. In order to determine the solution line, we solve the equation

k =
dy

dx
=

y

x
=
−3 + k

1− 3k

and obtain 3k2 = 3, and k1 = 1, k2 = −1. The phase portrait of this system is shown
in Figure 9-3-7.

The Maple commands are as follows.

DEtools[phaseportrait]

([diff(x(t),t)=x(t)-3*y(t),

diff(y(t),t)=-3*x(t)+y(t)],

[x(t),y(t)],

t=-100..100,

[[x(0)=1,y(0)=1], [x(0)=1,y(0)=-1],

[x(0)=-1,y(0)=-1], [x(0)=-1,y(0)=1],

[x(0)=4,y(0)=0], [x(0)=1,y(0)=0],

[x(0)=-0.5,y(0)=0], [x(0)=-1,y(0)=0],

[x(0)=0,y(0)=0.5],[x(0)=0,y(0)=1],

[x(0)=0,y(0)=-0.5], [x(0)=0,y(0)=-1]],

x=-1.5..1.5,y=-1.5..1.5,

dirgrid=[30,30],

stepsize=0.1,

arrows=SLIM,

axes=BOXED);
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Figure 9-3-7 Some orbits and direction field for the system
x′ = x− 3y, y′ = −3x + y

Case 3. Equal roots: ∆ = 0
We assume that λ1 = λ2 = λ < 0. The linear system (9.3.8) can be reduced to

the form
dx1

dt
= λx1,

dy1

dt
= λy1, (9.3.12)

or
dx1

dt
= λx1 + y1,

dy1

dt
= λy1. (9.3.13)

The solution of (9.3.12) x1 = x0
1E

λt , y1 = y0
1e

λt has the property that

lim
t→+∞

x1(t) = 0, lim
t→+∞

y1(t) = 0,

and

lim
t→+∞

y1(t)

x1(t)
=

y0
1

x0
1

.

The trajectories of (9.3.12) are sketched in Figure 9.3.10, and the trajectories of the
original system (9.3.8) are similar.

In this case the critical point is called a star-shaped node. Main features of a
star-shaped node:

(1) Each trajectory is a straight line;
(2) limt→+∞ x(t) = 0, limt→+∞ y(t) = 0.
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The solution of (9.3.13) x1 = (x0
1 + y0

1t)e
λt , y1 = y0

1e
λt has the property that

lim
t→+∞

x1(t) = 0, lim
t→+∞

y1(t) = 0,

and

lim
t→+∞

y1(t)

x1(t)
=

y0
1

x0
1 + y0

1t
= 0.

The trajectories of (9.3.13) are sketched in Figure 9.3.11, and the trajectories of the
original system (9.3.8) are similar.

In this case the critical point is called degenerate node. Main features of a star-
shaped node:

(1) There exists one trajectory which is a straight line;
(2) limt→+∞ x(t) = 0, limt→+∞ y(t) = 0;
(3) All the trajectories approach the origin tangent to the straight line.

Case 4. Complex roots: q > 0, ∆ < 0, p 6= 0
In this case the eigenvalues of A is λ1 = λ̄2 = α+ iβ, where α = −p/2, β =

√−∆.
The transformation

{
x1 = −cx + (a− α)y,
y1 = βy,

{
x = 1

c
[−x1 + a−α

β
y1],

y = 1
β
y1,

(9.3.14)

can take (9.3.8) to the form of

dx1

dt
= αx1 + βy1,

dy1

dt
= −βx1 + αy1. (9.3.15)

In fact,

dx1

dt
= −c

dx

dt
+ (a− α)

dy

dt
= −c(ax + by) + (a− α)(cx + dy)

= −cαx + (ad− bc− dα)y = α[−cx + (a− α)y] + (ad− bc− dα− aα + α2)y

= αx1 + [β2 + 2α2 − (a + d)α]y = αx1 + βy1,

since 4β2 = 4(ad− bc)− (a + d)2, α =
a + d

2
.

dy1

dt
= β

dy

dt
= −βx1 + (a− α)y1 + dy1

= −βx1 + αy1.

The new variable {
r =

√
x2

1 + y2
1,

θ = tan−1 y1

x1

{
x1 = rcosθ,
y1 = rsinθ,

(9.3.14)
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can take (9.3.14) to the form of

dr

dt
= αr,

dθ

dt
= −β. (9.3.15)

The solution of (9.3.15) with the initial value r(0) = r0, θ(0) = θ0 is

r = r0e
αt, θ = −βt + θ0.

Finally, eliminating t gives
r = r0e

−(θ−θ0)/β,

which represents a family of spirals, one of which is sketched in Figure 9.3.12.
The critical point is called a spiral point(focus). The more general sketch of

trajectories near a spiral point is shown in Figure 9.3.13.
Main features of a spiral:
(1) Each trajectory is a spiral;
(2) limt→+∞ x(t) = 0, limt→+∞ y(t) = 0.

Case 5. Pure imaginary roots: q > 0, ∆ < 0, p = 0
This is a special case of the previous one with α = 0. It must be treated separately,

since the trajectories are no longer spirals. In this case the motion is periodic in time
and the trajectories are closed curves. The phase portrait is shown in Figure 9.3.5.

In this case the origin is called a center. Main features of a center:
(1) Each trajectory is a closed orbit;
(2) The trajectories neither approach nor recede from the critical point.
In each of the cases we have discussed, the trajectories of the system exhibited

one of the following three types of behavior.
1. All of the trajectories approach the critical point as t → ∞. This will be the

case if the roots of the characteristic equation are real and negative or complex with
negative real parts.

2. The trajectories neither approach the critical point nor to infinity as t → ∞.
this will be the case if the roots of the characteristic equation are pure imaginary.

3. At least one(possibly all) of the trajectories tends to infinity as t → ∞. This
will be the case if at least one of the roots of the characteristic equation is positive
or if the roots have positive real parts.

These three possibilities illustrate the concepts of asymptotic stability, stability,
and instability, respectively, of the critical point at the origin of the system (9.3.8).
The precise definitions of these terms will be given in next section.

9.3.3 The classification of the critical point of the system (9.3.8) in
parameter space

See Figure on Page 266.
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Figure 9-3-9 Stability diagram of the system x′ = ax + by, y′ = cx + dy


