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Abstract

In this paper, we propose and analyze a second-order energy stable numerical scheme for
the Swift—-Hohenberg equation, with a mixed finite element approximation in space. We
employ second-order backward differentiation formula scheme with a second-order stabilized
term, which guarantees the long time energy stability. We prove that our two-step scheme
is unconditionally energy stable and uniquely solvable. Furthermore, we present an optimal
error estimate for the scheme. In the end, several numerical experiments are presented to
support our theoretical analysis.

Keyword Swift-Hohenberg equation - Optimal convergence analysis - Mixed finite
element - Energy stability

1 Introduction

The Swift-Hohenberg (SH) equation has been widely used as a model for the study of
pattern formation [12,36] and in complex fluids and biological materials [22,23,33]. It is an
L?-gradient flow for the following free energy functional [31]

E($) = / <1¢4 g ve + 1(A</>>2> dx (1.1
o \4 2 2

where €2 is a domain in R4 (d = 1, 2, 3), ¢ is the density field and € > 0 is a constant with

physical significance, and V and A are the gradient and Laplacian operators, respectively.

The phase field crystal (PFC) model is the H~! gradient flow in terms of the same free energy

functional. The SH equation is given by
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dt )
where 6 E /8¢ denotes the variational derivative of E with respect to ¢. This equation models
the convection of a thin layer of fluid heated from below for which you can think of the
¢ as representing the temperature of the fluid in the mid plane. The parameter ¢ measures
how far the temperature is above the minimum temperature required for convection: for
€ < 0, the heating is too small to cause convection, while for € > 0, convection occurs.
Note that if the % = €¢ were the whole equation, then we would just observe exponential
growth (for ¢ > 0) or decay (for € < 0). The dissipation term acts to smooth out sharp
edges in pattern. The phase field crystal equation is thus the conserved counterpart of the
Swift-Hohenberg equation. This relationship is completely analogous to that between the
Cahn-Hilliard equation and the Allen-Cahn equation. Here, we study the numerical scheme
of SH equation (1.2) with boundary condition 9,¢ = 9,(A¢) = 0. The energy functional
(1.1) is decreasing in time:

dE SE 3\ >
—:/——(de:—/ 9 dx < 0.
dt Q 6¢ ot o \ ot

The SH equation is a fourth-order nonlinear partial differential equation and cannot gener-
ally be solved analytically. Therefore, accurate and efficient numerical methods are desirable
in understanding of nonequilibrium processing. The primary challenge is associated with a
proper discretization of the nonlinear term and the long time energy stability. It is well known
that the standard explicit Euler method is unstable for time step At above a threshold pro-
portional to (Ax)*, where Ax is grid spacing. In order to alleviate the time step restriction,
various computational algorithms have been developed. A first-order semi-implicit finite
difference method was proposed in [11] which splits the linear terms into backward and
forward pieces while treating the nonlinear term explicitly. In [15] the authors proposed a
first-order semi-implicit method which adds an extra stabilizing term to improve the stability
while preserving the simplicity. A second-order semi-implicit method which is based on the
Crank—Nicolson method was introduced in [18], where the authors use Newton’s method to
solve the nonlinear system at every time step to reduce the nonlinear residual to a specified
tolerance, but the optimal error estimate for the scheme was not given. In [26], the author
presented first- and second-order semi-analytical Fourier spectral methods as an accurate and
efficient approach for solving the SH equation, which were based on the operator splitting
method, while the theoretical justification of the energy stability and convergence analysis
was not given. A first- and second-order accurate methods for the SH equation with quadratic-
cubic nonlinearity was proposed in [27], where the author used the Fourier spectral method
for the spatial discretization. In [43] the authors proposed and analyzed a large time-stepping
numerical method for the SH equation based on the finite difference method. In [28], the
author introduced a new mass conservative SH equation and proposed its mass conservative
first- and second-order operator splitting methods, he presented several numerical results to
illustrate the effectiveness of his numerical schemes, but no convergence or error analyses
were presented. There have also been extensive works of energy stable and convergent numer-
ical schemes for the phase field crystal (PFC) equation [14,21,30,40], the modified phase field
crystal (MPFC) equation [1,2,38], and the square phase field crystal (SPFC) equation [10],
using the implicit treatment for the nonlinear terms, such as the convex splitting approach
[2,14,21]. Both the first and second order convex splitting schemes [2,14,21], both the finite
difference [1,21,30,38,40]and Fourier pseudo-spectral spatial approximations [41,42], both
the two-dimensional and three-dimensional numerical implementation [30,41], have been
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extensively reported. However, to the best of our knowledge, optimal error estimates for the
fully discrete finite element schemes for the SH equation or PFC equation are lacking in the
existing literature.

The work presented in this paper on the SH equation is unique in the following sense.
We are able to prove unique solvability, unconditional energy stability and optimal error
estimates for a fully discrete finite element scheme. In the past few years, many efforts have
been devoted to develop second order accurate, energy stable schemes for numerically solving
the phase-field equations. For example, in [35] a second-order convex splitting scheme, in the
modified Crank—Nicolson version, is proposed and discussed. There have also been existing
works for the modified BDF2 scheme applied to the standard Cahn—Hilliard equation, with
both energy stability and optimal rate convergence analysis [13], with either mixed finite
element [25,34]or long stencil fourth order finite difference spatial approximation [8]. And
also, there have been extensive works on the artificial regularization to various gradient flows,
such as the epitaxial thin film model, either with or without slope selection [4,29,39]. Both the
second order BDF2 method for the epitaxial thin film equation with slope selection [16], the
square phase field crystal equation [10], stabilized second order exponential time differencing
(ETD) multistep method for no-slope-selection thin film growth model [24], a third order
exponential time differencing numerical scheme for no-slope-selection epitaxial thin film
model [9], and energy stable higher order linear ETD multi-step methods for gradient flows
[71, have been extensively reported. In all these works, the artificial regularization term has
played an essential role in the energy stability analysis. In particular, there has been a recent
work on artificial regularization parameter analysis for the no-slope-selection epitaxial thin
film model [6], in which the effect of the parameter on the numerical schemes has been
analyzed in details. In this work, we combine the mixed finite element scheme with a second
order BDF temporal discretization and provide a theoretical proof of the optimal convergence
rate, O (h9t! ++ Ar?), for this scheme. Comparing to the primal formulation which requires
H? elements in the discretization, the mixed formulation only needs to use H I elements.
Similar results for the thin film epitaxial growth model have been presented in [29,39]. In
order to improve the energy stability, a second order accurate Douglas—Dupont regularization
term is added in the numerical scheme. Numerical experiments are presented to validate the
accuracy and energy stability of the proposed numerical strategy.

The rest of the paper is organized as follows. In Sect. 2, we propose the semidiscrete
mixed finite element scheme for the SH equation and give the corresponding error estimate.
In Sect. 3, we apply a modified BDF2 algorithm to carry out the time discretization and prove
the unique solvability, the energy stability and the optimal error estimate. Numerical results
are presented in Sect. 4. We conclude the paper in Sect. 5.

2 The Semidiscrete Scheme

In this section, we define the weak formulation of the problem (1.2) and then derive the
corresponding error estimate.

We denote by W™ P (£2) the Sobolev spaces, || - I, » and | - |5, » are the standard norm and
semi-norm respectively. Let H" (£2) denote W™2(Q). We omit the subscript when m = 0
and write || - [lo,2 and | - [p2 as || - | and | - | for simplicity. Moreover, we use (-, -) to represent
the L? inner product.
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We define X = H!(Q) and let 7}, be a quasi-uniform partition of € with mesh grid size
h and the finite element space X}, is defined as

Xy ={v e C%Q) | vlk € Py(K), VK € Tp},

where P, (K) is the standard space of all polynomial functions of degree not greater than g
on K. In the semidiscrete problem, we also need to introduce Bochner space

T 1/2
L2(0, T; Xp) =v:0,T) > X, lz20,7:x,) = </0 ||v(t)||§hdt> < oo} .

We focus on the mixed finite element methods in this paper. Let o = —A¢. The mixed
form of the problem (1.2) is:

B+ + (1 —€)p+20¢0 — Aw=0,in Q x (0, T],
w+ A¢p =0,in Q x (0, T],

O = 3y = 0,1in Q2 x (0, T1,

#(x,0) = ¢, in Q,

The corresponding weak form of system (2.1) is

(%9, 9) + (Vo, Vo) —2(Ve, Vo) + (¢ + (1 —€)p,9) =0, Vi € (0,T]
(w,v) —(V¢p,Vv) =0, V€ (0,T] (2.2)

(9 (x.0), 9) = (¢0. 9)-

The corresponding finite element form of system (2.2) turns out to be: find (¢p, wp) €
L®(0,T; X;) x L*>(0, T; X;,) and ;¢ € L%(0, T; X},), such that for any (¢, v,) € Xj, x
X

B n, on) + (Von, Vor) —2(Vp, Vo) + (97 + (1 — €)pp, on) =0, Vt € (0, T]
(wn, vp) — (Vop, Vup) =0, Ve (0,T]
(@n(x,0), on) = (¢o, n)-

2.1)

(2.3)

In order to obtain an optimal error estimate, we define the Ritz projection Rj, : X — X}
as

(VRyu,Vop) = (Vu, Vop), Yo, € Xy, 2.4
and the L? projection P, : X — X, :
(Ppu, vp) = (u, vp), Yo, € Xp.

Moreover, the discrete Laplacian Ay @ Xp N L(z) — XN L(z) is introduced as in [37]: for any
Yp e XpN L(z), let ApYp, be the unique solution to

(Anvi, xn) = —=(VYn, V), Yxn € Xp. (2.5
One has AR, = Py A as shown in [37]. Also, we recall the optimal WLP estimate for the

Ritz projection [17]:

Lemma 2.1 Assume that Q2 is a convex polygon and Ty, is a quasi-uniform regular triangu-
lation. Let 0 < s < gand1 < p < oo (whenq = 1, then2 < p < 00). There exists a
constant C > 0, independent of h, such that the projection Ry, satisfies the following error
estimate:

llv = Ravllo.p + kv = Ryvlip < CR P ullsp1p, Yo € WHHP(Q),
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Let ¢ and w be the exact solution pair to the (2.2). Define
ey = pPp + 0y, €w:=Po+0u (2.6)

with py = ¢ — Rpd, 0p = Ry — ¢p, pw = @ — Ry, 0, = Rpow — wp,. Then we get the
following error equations:

(0109, on) + (Vou, Vop) = —(0: 04, o) +2(Voy, Vop)
—(@* = . on) — (1 — €)(pg + T4, 1), (2.7)
(Uw, vh) - (VU¢7 Vvh) = _(puh Uh) (28)

In order to establish the error estimate, we need an additional auxiliary technique about
the super-closeness property between the Ritz projection of the continuous solution and the
discrete solution. Its proof is referred to [5].

Lemma 2.2 Given a real-valued function a(x) € WH(Q) (or WH°()2%2). Then Py and
oy satisfy

2 1
(Vpg, a(x)Voy) < Cil|Anogl|? ChD 2
b o) =< CillApogll” + c PllG+1s

in which C\ is an arbitrary positive constant.

Before further investigation, we introduce the Gronwall lemma [32] and a discrete Gron-
wall inequality [20].

Lemma 2.3 (Gronwall Lemma) Let f € L'(ty, T) be a non-negative function, g and ¢ be
continuous functions on [to, T). If ¢ satisfies

P < g(0) + / ' f@e(dr. Vi e (i, T,
then
o) = g(0) + / " F©r)exp ( / t f(r)dr) ds Vi € [0, T,
If moreover g is non-decreasing, then

t
o(t) < g(t)exp (/ f(r)dr) teln,T].
to

Lemma 2.4 (Discrete Gronwall Inequality)Let k, B, ay, by, c,, o, be non-negative numbers
for integers n > 1 and let the inequality

N+1 N+1 N+1
aN+1+kan §B+chn+kZanan for N >0
n=1 n=1 n=1

hold. If kay < 1foralln=1,2,--- | N + 1, then

N+1 NEL N+1
n
an+1 +k nE_l b, <exp (k E - kan) (B +k ng_l c,,) for N > 0.

n=1
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If the inequality

N+1 N+1 N
an+1 +kan < B—i—kX:c,1 +kZanan for N >0
n=1 n=1 n=1

is given, then it holds
N+1 N+1 N+1
an+1 +k2bn < exp (kZan> (B—i—ch,,) for N > 0.
n=1 n=1 n=1
We denote by (¢, @) the exact solution pair to the original Eq. (2.2), then we say that the

solution pair is of the regularity class C if and only if

¢ €H (0, T: HI*YY N L?0, T; with6)y n L=, T; w>),
w €L?0, T; HItY),

and furthermore, the solution pair is of the regularity class C; if and only if

¢ €L™(0, T: W) N L¥O, T; Wit n H'(0, T: HIT) N W>>(0,T; L?)
NWh>, T: H) N H3*©O,T: L>) N H*0,T: HY,
weL™®0,T: HIYYn HY 0, T; HIY).

Next, we provide an optimal error estimate for the semidiscrete scheme.

Theorem 2.1 Let (¢, w) be the solution of (2.2). Then the finite element approximation
(¢n, wp) of (2.3) with ¢ (x,0) = Rp¢(x, 0) has the following error estimate

T
I Cx, T) = dn(x, DI + / llo — wpI*ds < C(e, TR?H2, (2.9)
0
where C (e, T) is a constant that only depends on € and T .

Proof Let ¢;, = 0y in (2.7), v, = Apoy in (2.8) and add up the two equations, we have

%%n%nz + 12406117 = = (3 pp. 09) — (P Lioy) + 2 Vo |*
—(1 = €)(pg. 0p) — (1 — ©)||og|I* + N1 + N2, (2.10)
where
N = (1) = (Ruo)’. 0p), Na = (Rng)® — ¢°, o).
Using the Young’s inequality for A7, it follows that

N1 = ((¢n)*, Rup — ¢n) — (Ru)>, Rup — o)
= —((Rno)*, Rng) + (Rud)?, Rupdn) + ((d1)*, dn Ru) — (d1)°. dn)

1 1 1 1
< —lonllgs — IRRDIG 4 + 5||¢h||3,4 + 5(¢>%,, (Rh)?) + 5||Rh¢||3,4 + E«Rh«p)? )

1 1
= —5||Rh¢||3,4 — 5||¢h||3,4 + (IR 1%, 16017
<0. (2.11)
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In order to estimate A, we first split it into two parts

N = ((Rh)® — Rup(9)* + Rupd* — ¢°, 0p)

= ((Rhp — 9)P*, o) + (Rn$)> — dP) Rup, o)
— 1) + . (2.12)

Using Lemma 2.1, we get

C3 1
1| = 1815 01 (g )| < 1015 00 | =106 11> + = llog I
2 2C3

_ C2GlIIG o h* T+ 16115 oo
- 2 2C3

lplZ s+ llog 1. (2.13)

Then, split T into three parts:

M = ((Ru)* — 7)) Rp. 0p)
= (¢ — pgp)” — *) (D — py). 0p)
= (pp 20 — pp)(d — py), 0p)
= (=207 py + 3605 — Py )
= —2(¢” g, 9p) + 3(dp5, 04) — (04, )
= A1 + Ay + A;. (2.14)

Using Holder’s inequality and Lemma 2.1, we obtain
1
|A1] < 19115.00 <C3||,0¢>||2 + —||o¢||2>
Cs3
1
< C?G3ll9l5 o™ P HllZ 11 + a"¢"3~°°”“¢"2' (2.15)
3 A 1 5
|42] = Slgllo.co  Callpgligs + = llogl
3

3 3
< ZGC3llBllo.collogl” + s llplo.ccCHR N5 4 (2.16)
2 2C3
143 = (03 o9)| < 03 I lloll

1 6 1 2
5 | C3llpgllo + all%”

IA

IA

L 66446y 4116 1 2
5C3Ch q ||¢||q+1,6+TQ||U¢|| . (2.17)

Therefore, we get

1 1 3
Mol <& (5 + Sllello.0o + ||¢||%,oo> logll® + C*C3l19115.0oh* 219115 44

3 1
+ S 18l0.0cCH T3 g llg 1 4 + S CICRTE IG5 (2.18)
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and hence

Ny < |ITy

+

|+|1'12|<i l+§||<15||000-i—éll<i>||% llowll*
= \2 N0 TR P00

3 3
+ S C2ClIBNG o 1B 15 11 + S 19 1l0.00C  C3H BG4

2

1
S C3CO RPN 6.

In addition, we have

1 2 1 2
—@ipp. o) = S0t lI” + S llog |

=

-

1 1
SR 0l5 11 + 5 llogll.

— )pg + 09, 09)
w||l)¢+%”2+%“%”2

= SE ol + o1 + 2005 090 + 5ol
% losl? + llog I + T llog

- C3|1 — €|

211 =
<C3C |1 — €|

2
C3

s~ Dllogl? ) + 2o 2

Gl + L2
2(1-C3) Cs

11—l
R ll7,, + oo I

2(1-C3) C

1
(0> D10g) < llpwll® + 212405 I

Also notice that

1
= WPl + ;1184001

1
2| Vog|l* < Z||Aho¢||2 + 4llog %

A substitution of (2.11-2.23) into (2.10) yields

@ Springer
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where

c—9+'1_6'+1+ = Wllnso + 5117
=3 Cs 2C; 0,00 0,00

G|l —€| 2 4 6
Cy = c’, == __C C3C , ctcs, Lese
> max{ 2(1—C2) +2 3 ||¢||0OO ||¢||Ooo 35 3
Integrating (2.24) over [0, T'], we get
T
Jopte, T + [ 1800 Par
0
T ~
<2C / llogl12dt + C2h*+2 4 0(h?4F2) (2.25)
0

where
~ r 2 2 2
C = Cz/O 10 Bllg1 + lPllg4 1 + lewllgyp)dz.
From oy (x, T)|? < 2Cy fOT llopll2dt + C2h%+2 4 0(h24+2) and the Gronwall lemma,
we get
llog (x, T)I? < C2e2T R21H2 4 o(h21+2), (2.26)
which means that, for any ¢ > 0, we have |loy(x, )|* < Coe2C11p20+2 4 o(p2a+2)y,

Therefore,

T T
/ | Apopldr < 2C / llogl12dt + Cah 2 4 o(h?472)
0 0

T
< 2C]/ 20U 4 TR+ 1 Ton2T2 4 o(n2+2)
0

= Co?C1T p24+2 4 o(n24+2). (2.27)

It follows that

T
logCe. DIP + [ s
0
< 2C,2CTR24+2 1 o(n2012), (2.28)
Note that ¢ (x,0) = Ru¢(x, 0) has been used to eliminate the term oy (x, 0), then we
arrive at the estimate for e,.
¢ Cx, T) = dn(x, DIP=lleg (x, DI =llpg+041” <2(lpp 1>+l 1*) < C(e, THRF.
As for e, by the second equation of (2.2) and (2.3) and the relationship between Py and
Ry, ie., Ay Ry = Py, one gets,
lewll = llo — ol
= o — Pho + Pro — |
= (I = Pp)w — PrAg + Dpgpl|
= [|({ — Pp)w — Ap(Rng — dn)||
= (I = Pp)w — Apoy||
< I = Ppoll + |Apogll.
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The estimate for e,, then follows from (2.28) and the approximation property of the L>-
orthogonal projection, which completes the proof. O

Remark 2.1 The key point of this proof is to establish a super-closeness estimate between the
Ritz projection of the continuous solution and the discrete solution. Similar techniques have
also been used in [5,39].

3 The Fully Discrete Scheme

In this section, we carry out the temporal discretization over the time interval [0, T'] by using
BDF?2 algorithm. For a given positive integer N, let At = T' /N be the uniform time step size
and the nodes are denoted by 7, = nAz,0 < n < N. Then we provide a fully discrete error
estimate. Moreover, by constructing a modified energy functional, the energy decay property
of the fully discrete scheme is proved.

We propose the following fully discrete numerical scheme: for n > 1, given (¢}, @}) €

X, x Xy, find (qbZ'H, a)Z'H) € X, x Xy, such that for arbitrary (¢y, v;) € Xj, x X,
3 n+]74 ny n—1 _
(W, goh) + (Vo V) — 2V Q¢ — ¢, Vi) + (073, an)

(1= @ o) + AM(TV (@ — ), V) = 0, -1

@y o) = (Vg V) = 0.
where A is a given constant. The scheme requires an initialization step. Let qbg = Rn¢o, we
set
$u =40 1 0 13 | _
s on | + (Vay, Vo) = 2(Véy, Vo) + (@), on) + (1 — €)(dy,, o) = 0,
(@h, vp) — (Vo). V) = 0.

(3.2)
3.1 Unique Solvability
Theorem 3.1 The fully discrete scheme (3.1) and (3.2) has a unique solution.
Proof Taking the test function as v, = —Ay, ¢y, in the second equation in our mixed scheme

(3.1), we obtain
@, —anen) = (Voptt, =V A,

by using (2.5), the above equation can be written as

Vot Vou) = (2t Anen).

Thus the scheme (3.1) becomes

<3¢;+1 —4gpp + ¢!

TAL JPh) + (2w D)

— 2V — oY), Vo) + (073, en)
+ (=)@ o) + AA(DR (O] — @), Apgn) = 0.
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By rearranging the above equation, we get, for every ¢;, € X,

2A
+((@, o) = FLoL, o7 (en). (3.3)

<i +1-— e) @Y o) + (1 4+ AAD(LReT T, Angn)

where f[¢}, ¢Zﬁl] is a bounded linear functional involving the previous time iterations.
Based on the scheme (3.3), we define the following functional:

1-—

3 + AA
J(fn) = <4At > llnl? + IIAhd>h||

+Z||¢h||é,4 — fle}, ¢;}*‘1(¢h)

It may be shown that ¢>"+l is the unique minimizer of J (¢,) if and only if it solves, for any
(2D

d 3
aj(d)h + s¢p)ls=0 = (K +1- 6) (Pn. on)
+(1+ AAD(Andn, Angn) + @3y on) — FIo), &) 1(en) = 0.

Since

2

3
e ~—5 (P +5¢n)ls=0 = <— +1 —e) llpnll®

2A
+(1 + AAD | Angnll* + 3llgnenl> > 0

the corresponding functional J (¢,) is a strictly convex functional and the uniqueness of the
solution of scheme (3.1) is proved. The unique solvability of the initialization scheme (3.2)
is similar. O

3.2 Energy stability

We introduce a discrete energy which is consistent with the continuous space energy as
h — 0:

E@)t opt) = f||¢"+‘||0,4+ Sl IR = 1V IR+ 5 ||w"“||- 34)

We first consider the energy stability for the initial step. Taking ¢, = ¢}l — ¢2 and
v = —Lp(g) — @) in (3.2), we obtain

llor — oI + (woh, Vgr — o) —2(Ve), V(g — d)) + (93, ) — o)
+(1 =)o}, ¢} — o) =0, 3.5)
(@, —Dp(p) — ¢ — (VoL =V AR — ) =0.
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According to the second equation of (3.5), we have
(Vooy, Vi@, — $0) = (Bndy, Day — Lidy)

1
= 5(||Ah¢},||2 — 1ARpPI* + 120k — Ladpll®)

1 1
§||Ah¢,i 1% - 5||Ah¢,9||2

=2(Vep, Vo — Vo)

= |VopII> — IV 12 + V) — Vpll*

> |Vepll® — IVeLI~. (3.6)
(@), d — o) = (o). o) — (D)), &)

= [lgpllg.s — (@)% phod)

1 1
= 194 ll6.4 = 518164 = 51949517

1 1
= Enw,inz - 5||w2||2. —2(V¢), Vo, — V)

v

1 1,4 1 1,4 1 0,4
> SNOMIS .4 = 194054 — 18013 4
1 1
= 119164 — 719315.4- 3.7

(1—e><¢,i,¢h ¢>,,) —(M@,n —1601% + lpp — B2

|I¢h I (3.8)
Substltutlng (3.6), (3.6), (3.7) and (3.8) into the first equation of (3.5), we have

1
E”‘f”i — ¢)1> + E($y, wh) — E(¢), 0 < 0.

Therefore, initial energy decay, E (¢}]w w}l) <E (¢2, wg) is proved. But such a property is
not available for n > 1, we define a modified energy for the analysis:

E@pt ot = E@) ™ ot + EIW’H SIP+IV@T —oIP. 39

Theorem 3.2 The discrete energy E(¢y, wy) decays at the initial step. And the modified
energy E (¢5,, wyy) has the following decay property:

E@t, o™ < E(¢}, of), ¥n>1, (3.10)

1
provided that A > 3.

Proof Forn > 1, taking ¢ = ¢”+1 — ¢;, in the first equation of (3.1) yields

3¢, - 4¢z+¢21 it g

+ (V! n+1 V(b"“ Vop) — 22V — Vi~ ! V¢"+1 Vo)
+ ((¢"+1>3 S =+ A =@y gt — i
F ANV (@I — o), V(g — )
=h+hLh+ L+ 1L+ 15+ 1. (3.11)
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Using the Cauchy-Schwarz inequality,

I =

—(3(4%”‘ — o) — (¢ —

2At

EW“ orl”

2At

1
( g — 11> —

N

¢Z l) ¢n+l

f||¢Z — ¢! ||2)

—||¢>”“ — oM+ —||¢>"“ — o2

Likewise, I3 and I4 have the following lower bounds:

L= ()3 ot — o) =

I =—-202V¢) —

= 2(V¢h,
> |Vep 1

L= Vo Vgt —

\Y

Is

V

pr;’; 1 V¢n+l

Vop — Vot — 2Vl —

+1
16,4 —

Vo)

— Ve TP + IV — Vet
—IV 1P+ IVEEIP = 1Ve) — Ve, I
For I, we employ the second part of (3.1) as well as the Cauchy-Schwarz inequality

é)

o) =

V¢Z 1 V¢n+l
—IVey

—(op ™, Ap(p Tt —

ép)

(¢h ¢Z 1 ¢n+1

] n
mll@z

o)

V)

- Ve

—12
—¢, %

n n l n— n n
>—||¢> ) - m( gy — o I1> + = ||¢ + ¢,,||2>

(3.12)

1
||¢>"+‘||0,4 — Z||¢Z||3,4.

(3.13)

— Vet — ver?

= (Vo VAT — o)) = (Mngp T, Apgp T — Anel)

1 n+1 n+1 n

5 (1849, 12— 12ngi 1> + 1angr T — Al 1D

1

5||Ah¢"“ 1> — wmmznz.

(1—e) gyt ¢>”“ o = (||¢”+‘|| —lor I + Ny —
||¢"+1|| Sy PLITES

(3.14)

(3.15)
)

(3.16)

In addltlon, making use of (2.5), the artificial term can be handled in the same manner

Is + —||¢>”+1 or

= ADI(V (@™ — o) V@ =gl +

= ANt ARG — oI + —W+1

> 2|(VALL (T —
=2VA |<V<¢"+‘

¢h) ¢n+l
o). Vigpt! —
¢h)||

Ll
o)l

||¢"*l

2
oyl

2
op l

(3.17)

@ Springer



74  Page 14 of 25 Journal of Scientific Computing (2021) 88:74

Therefore, a combination of (3.11-3.17) results in
E@pt op™) — E(@f. of) + VA= D|Vgp ! — oI < 0.

provided that A > %. This completes the proof. O

3.3 The Optimal Error Estimate

In this subsection, we derive the optimal error estimate of the fully discrete system (3.1) and
(3.2).

Theorem 3.3 Let (¢", @") and (¢}, @) be the solution of (2.2) in the regularity class C1 and
(3.1-3.2) at time t,, respectively, then we have the following error estimate

n
9" — ¢hll + (Ar > llo™ — o ||2> < Cer (™ + A1), (3.18)

m=1

forany 1 <n < N, where C¢ r is a constant that only depends on € and T .
Proof The corresponding error equations for n > 1 become
Bpt g on) + (Vou ™l Ven) + ALV (ot
— o), Von) = —Oh pg. on)+22Voy =V Vo) —(1 — ) (o) +o it on)

+ (RIT, o) + AALRET, V) + 2(RAT, Vo) + T o) + VG @),
(3.19)

(@it ) — (Vo™ Vo) = —(ol ! wn). (3.20)
where
3utl — 4yt 4oyl
20t
Ry = V@™t — o), REF =V - 20" 4+ ¢,
Nln+1 — (¢Z+1)2¢Z+1 _ |Rh¢n+l |2Rh¢n+l ;
Nél+1 — |Rh¢n+1 |2Rh¢n+l _ |¢n+l |2¢n+l.

n+1 n+1 __ ¢en+l1 n+l1
(SAt” ’ Rl _8At¢_¢t ’

And for n = 0, one has

1_ 0
%~ % ! 0
|+ (Vou. Ven) = 2(Vog. Vo)

—2(Ve' = V. Vou) + (1 — €)(p, + 4. on)

1_ 50 140
Py — P _
T ( ¢At ¢’W’> * (¢ At¢ —¢},¢h> + W) + N3 en), (321

(0 vn) = (Vo . Vug) = —(p. vi). (3.22)
with
N = (¢3)°0) — |Rug' P Riop",
Ny =|Ruo' P Rug’ — 16" 9"
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We first consider the case for n > 1. Taking ¢, = cr Lin (3.19), v, = Ah 41 n (3.20)
and adding up the two equations lead to

Ortop, of ™D + lanoy 1P+ Ant(V (ot — o), Vo
_ _(8n+1p¢’ n+1)+2(v(20_
_ ¢> ) Vo n+1) ( 6)(pn+1 +Un+l n+1)+(Rn+l n+l)
+AAI(R"+1 VU"+1)—|—2(Rn+1 valfr)H—l)
+(Nn+1 n+1)+(Nn+1 n+1) (pw+l A 0'£+1) (3.23)
(Nn+l n+l)
((¢n+l) ¢n+1 |Rh¢”+]|2Rh¢"+l, Rh¢n+1 _¢Z+l)
= <(¢”+‘> Op Ry — i — (IRug" T P Rug™, Ry — gt
||¢”+‘||04— ||Rh¢"“||o4+(<¢”+‘) op Ry + (IRue" P Rug™ g

+1 1,4
*||¢n ||o4 - *||Rh¢n+ ||0,4

+<|Rh¢>"+1| |¢”“| )
<0. (3.24)

Besides, the estimate (2.12) implies that

I /1
(O ”+1)'<F<§ f||¢"“||000+ ||¢"+‘||Ooo) log ™ 11°

3
+ 5 CPC "G oo G

3 1
+ 10" oo CH ORI gy 4 + S COCYT "G, 6 (B29)
From (2.5) and (3.20), together with the inequality

41 5 Int1 5 In+1 2 In+1 2
I
o = oo =||/ bt §<f ||pw,||dr) 5/ w1247 - A
In In In

2,2q42 ft1 2
<t Al/ lle Il 4, dt,

n

one gets

AD(V (ot = al), Vo) = = AAt(V (o) — o), Vel + Ant (o)

- pw’ A G(;Jrl)
AN 1
>—(||A S = Nano 1) — s lanoy

2Cy

th+1
—§C2A2C4(At)3h2q+2/ lleoe 17y dz. (3.26)

In
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Applying (2.5) and the Cauchy-Schwarz inequality yields

2V Qo — oy "), Vo) <2|Qoy — o), Aoy
) ) ¢~ % )

1 _
< — Aoy 7 + 4Cal1205 — o1

4Cy

1 _
EE”A oy TP + 4Ca@llog 1P + oyt IP = 200, 05"
_EHAW"HHZ+4C4<4||a¢||2+||a" Y2+ llog 1P+ llop =1

1
S Tkl 1oy TP+ 20Ca (o 1% + oy~ 1P (3.27)

To analyze the other several terms, we resort to the Cauchy—Schwarz inequality and the
Taylor expansion:

1
—@x pg op T <— T lop 1% + ||8”“p¢||

9C3h2‘1+2 Int1
se o P 2 [ 62)
n

=20 ant ),
C3(At)3 It

R o) 5o lof P+ S50 [T ot + ot
In—1

(3.29)

2 3 1
At n+1
AAL(RATY, Vo, ”+1)< Vo ™% + Z(CA) f [Var||*dr,  (3.30)
3 ty

o 2(AD)3 [t
2R, Vopth) <Givey P+ 22 [ ivgulPar + o,
th—1
(3.31)
1 C4c2h2q+2
— (o™, Apoy™h <2—||A noy P =l g, (332)
| | 3|1 — €| C?
—( = oy opth <t log P + = = g
2(1-C3)
(3.33)
Recall the G-norm introduced in [3]. Denote p**! = [0¢ k+l]T and define [[p**!||2, =

1 _
(P!, GpFt!) where G = ( 21 51 )is a positive definite symmetric matrix. Simple cal-

2
culation gives

1
Gxop ot = S0 I — 19713

1
erno"*1 — 205 + 0,717 (3.34)
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Upon this, in combination with the above estimates for (3.23), one has

1
27 (PG = 1B 1) + N1 8n0 ™12 + 22 (2o AR Rl VNP )
(3 [1— €] 30 e 3 a2 n+l 2
_(2C3+ S o1 e + 5 10 R o ) o

2 18 oyt +28 v, g I3 Lo, ] T A ||¢>”+‘uoooczc4h4q+“|\¢>"+‘||q+]4

3
+5C c;nzzb"“uo.oohz‘f+2 ™M 15

C2A%¢y
2

In+1 9C3h24+2  fins 1 In+1
+ (An’n?at? / lleoe (174 ydt + == / peligrde + 5 Cs(a0)? liree I1>de

i 4t -1 -1

A? nt 2(Aa1)3 [ C4C?
+ —— (At 3/ Vo, |Pdt + = / Ve, |12dt + —— h24+2 || o112
203( ) ; Ve |l & ) Vel 5 I g1

-1
C3|1 — €]

S C2 22" 12 4 20C4 (o 1% + oy~ 1. (3.35)
2(1-C3)

Noticing that [lp"*1 1% = Soy ™2

3C3
7= 403 llog

n, we obtain

and [[p'[% = §||gq§||2, take C3 = ﬁ, then

124 3| Apo 2. Multiplying equation (3.35) by 2A7, summing up for
4Cy @

(1= CsAnlop™ 1> + (4 - —)AzZnAh% &

m=1

< Cep (hO9H0 4 phat+4 4 p24+2 L Ar*) 4 (160Cy + Cs) At Z logH 1> + 5llog 112,
m=1

(3.36)

where Cs = (9 + |1 — €| + 61l | .0, 7,12) + 6||¢||L<,0(0 i)
Next, we turn to the case n = 0. Taking ¢, = %, v, = Ah% in (3.21) and (3.22) and adding
the equations up, we get

1 0
o, — O
("’At‘”, ag> +18h0 k1> = 2(Val, Vo)) + 2(Vg!

—V¢°,Voy) — (1 —€)(pg + 0,4, 0,)

1_ .0 1 0
P, P, ¢ — ¢
1 A 1 ¢ ¢ 1 1 1

+ WY, o) + (NS, o). (3.37)

Similarly, we have the estimate
1
(1= CollogI* + S At dpog |12 < Cer(hOH0 + 0 4+ p2072 + Aty (338)

where Cg = %3(3 +3[1 — €| At + 241 + 30t 0,00 + 3011115 00)-
Combining (3.36) and (3.38) and using the discrete Gronwall inequality yields

n
lop ™%+ Ar Y 1 ARoy I < Cor (B9F2 + At (339)

m=1
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Table 1 The errors and order of convergence at 7 = 1.0E — 5 for the density field ¢ with different mesh size

h L2 error order h L? error order
P element 1/4 1.41455E-1 - P> element 1/4 1.26626E-2 -

1/8 3.87441E-2 1.86829 1/8 1.71664E-3 2.88291

1/16 9.88649E-3 1.97045 1/16 2.25398E-4 2.92904

1/32 2.48480E-3 1.99233 1/32 2.86915E-5 2.97378

1/64 6.22093E-4 1.99793 1/64 3.61061E-6 2.99031

The time step is At = 1.0E — 7, A = 2 and the physical parameter is € = 0.5

Table 2 The errors and order of convergence at 7 = 1 for the density field ¢ with different mesh size

h L? error order h L2 error order
P element 1/4 1.19445E-1 - P> element 1/4 7.28731E-3 -

1/8 3.86876E-2 1.62641 1/8 7.76787E-4 3.22980

1/16 1.04641E-2 1.88643 1/16 8.83431E-5 3.13633

1/32 2.67306E-3 1.96888 1/32 1.07337E-5 3.04097

1/64 6.72073E-4 1.99180 1/64 1.33395E-6 3.00837

The time step is At = h%, A =2 and the physical parameter is € = 0.5

Table 3 The errors and order of convergence at 7 = 1 for the density field ¢ with different time step

At=h L2 error order At=h L2 error order
P element 1/4 1.25080E-1 - P, element 1/4 2.33766E-2 -

1/8 3.56815E-2 1.80960 1/8 6.06920E-3 1.94549

1/16 9.49042E-3 1.91063 1/16 1.50024E-3  2.01632

1/32 2.41639E-3 1.97362 1/32 3.71666E-4  2.01311

1/64 6.07296E-4 1.99238 1/64 9.23652E-5  2.00859

1/128 1.52063E-4 1.99773 1/128 2.30133E-5  2.00488

The mesh size At = h, A = 2 and the physical parameter is € = 0.5

Using the same arguments as in the last part of Theorem 2.1 and combining with (3.39) make
(3.18). O

4 Numerical Experiments

4.1 Convergence and Energy Stability Test

In this subsection we first present some numerical tests to check the theoretical convergence
of the proposed scheme (3.1-3.2). We implemented the codes using the software package

FreeFem++ [19]. Firstly, we set = (0, 1)? and € = 0.5. The exact solution is given by

¢e(x,y, 1) = cos(rx) cosQmy)e . “4.1)
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Table 4 The errors and order of convergence at 7 = 2 for the density field ¢ with different time step

h At L2 error order h At L2 error order
P element 1/4 2/4 4.21841E-2 - P, element 1/4 2/4 3.63191E-3 -

1/8 2/8 1.42875E-2 1.56195 1/8 2/8 4.52130E-4 3.00592

1716~ 2/16  3.87900E-3 1.88100 1716 2/16  6.83474E-5 2.72578

1732 2/32  9.92028E-4 1.96723 1732 2/32  1.31688E-5 2.37577

1/64  2/64  2.49452E-4 1.99162 1/64  2/64 297177E-6 2.14772

1/128 2/128 6.24528E-5 1.99792 1/128 2/128 7.16547E-7 2.05219

The mesh size At = 5h, A = 2 and the physical parameter is € = 0.5

Table 5 The errors and order of convergence at 7 = 5 for the density field ¢ with different time step

h At L2 error order h At L2 error order
P element 1/4 5/4 3.50417E-3 - P, element 1/4 5/4 8.82170E—4 -

1/8 5/8 7.74662E—4  2.17743 1/8 5/8 1.12410E—4 2.97229

1/16  5/16  2.02811E—4 1.93343 1/16  5/16  1.96682E—5 2.51483

1/32 5/32  5.18762E—5 1.96699 1732 5/32  4.11619E—6 2.25649

1/64  5/64 1.30162E—5 1.99476 1/64  5/64  9.45032E—7 2.12287

1/128 5/128 3.25376E—6 2.00013 1/128 5/128 2.26759E—7 2.05921

The mesh size At = 2h, A = 2 and the physical parameter is € = 0.5

Table 6 The errors and order of convergence at 7 = 10 for the density field ¢ with different time step

h At L2 error order h At L2 error order
P1 element 1/4 10/4 1.83469E-3 — P> element 1/4 10/4 2.37972E—4 -

1/8 10/8 5.43928E—5 5.07597 1/8 10/8 5.33013E—6 5.48048

1/16  10/16  1.76650E—6 4.94445 1/16  10/16  7.05961E—7 2.91651

1732 10/32  4.28626E—7 2.04311 1732 10/32  1.28952E—7 2.45275

1/64 10/64 1.04643E—7 2.03424 1/64 10/64 2.75001E—8 2.22933

1/128 10/128 2.58095E—8 2.01951 1/128 10/128 6.35261E-9  2.11402

The mesh size At = 10h, A = 2 and the physical parameter is € = 0.5

Next, in order to satisfy the PDE (1.2) and boundary conditions 9,,¢ = 9, (Aw) = 0, where
o = —A¢, we add an artificial, time-dependent forcing term on the right hand side:

01 e +¢3 + (1 = €)pe + 200 + A2, = f, (x,y.1) € 2 x (0, T],

with f = (2574 =102 —€) cos(rx) cos(2m y)e™! +cos?(mx) cos’ 2 y)e_3’ . The problem
is solved using the scheme (3.1-3.2). Numerical tests are running on spatial meshes with
characteristic sizeh = 1/4,1/8,1/16,1/32,1/64,1/128. Both P and P, elements are used
in the spatial discretization. We have verified numerically that the stabilized term constant
A has no effect on the convergence order of the algorithm, so, without loss of generality, we
set A = 2 in the following convergence order tests.

Firstly, we test the convergence order with respect to the spatial grid size /. The time step
length At should be chosen small enough so that the time discretization error is negligible
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Fig. 1 The plot of energy < 10° energy vs time

evolution of numerical solution 10 - - - .

and exact solution O numerical solution
8 —— reference solution

Energy

Time

Fig.2 The evolution of the x10° The discrete derivative of the energy vs time
discrete derivative of the energy
of numerical solution

The discrete derivative of the energy

Fig.3 The plot of energy
evolution with different
parameter A. where h = 1/16,
e =0.5At=0.1

Energy

compared with the spatial discretization error. Therefore, we take At = 1 x 1077, the final
time T = 1 x 1072, The L? errors of the phase variable ¢ between the exact solution and
the numerical solution are listed in Table 1, which shows the optimal convergence rates of
P element and P, element in L2 norm. We can also set Ar = h2 and T = 1, we expect
theoretically a convergence rate of O(h9t! 4 h*). In the case, the spatial approximation
error dominates, and we expect convergence rates of O (h?) for Py element and O (h3) for
‘P, element. Numerical results given in Table 2 agree well with the exceptions.
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Fig.4 The plot of energy x 10*
evolution with different time step 10 ——
size Ar. where h = 1/16, e
€e=05A=2 8 —o—AL=0.1
EB 6
%)
<
H 4
2
0 M)
0 2 4 6 8 10

Then, we test the convergence order with respect to the time step length At. The strategy
used in testing the spatial convergence order is a straight way, but taking 4 too small leads to
a massive increasing in computational efforts. Here, we test the rate of convergence in time
in another way. We set the time step size At = Ch, in which C is a constant, for both the P;
element and the P, element cases, thus at the final time, we expect error O (AP + 0(h?) =
O(A1?) and O(A1?) + O(h%) = O(Ar?) as h — 0. Without loss of generality, we take
At = h, At =2h, At = 5h, At = 10h, respectively. The corresponding results are displayed
in Tables 3—6, which are consistent with our theoretical analysis.

We plot the time evolution of the energy functional of numerical solution and exact solution
in Fig. 1 and the evolution of the discrete derivative of the energy of numerical solution in
Fig. 2, from which we could find that the energy is non-increasing. It demonstrates that the
proposed scheme is unconditionally energy stable. Figure 3 shows that the energy decay is
robust with respect to the parameter A. Figure 4 shows the energy evolution with different
time step size At.

4.2 Phase Transition Behaviors

In this subsection, we apply the proposed scheme to check the evolution from a randomly
perturbed non-equilibrium state to a steady state on the computational domain (—15, 15) x
(—15, 15). With the initial value condition ¢° = ¢+rand, where ¢ = 0.4 and rand is a
randomly chosen number between -0.02 and 0.02 at the grid points. Let the time step be
At = 0.1, the spatial grid size be h = 1/8, A = 2 and the parameter be ¢ = 0.1. Figure 5
shows the time evolution of the phase transition behavior, which validates that our proposed
scheme does lead to the expected states.
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Fig. 5 The evolution of the phase transition behavior in 2D with ¢ = 0.4. Snapshots of the numerical

) t=240 (k) t=270 1) t=300
approximation of the density field ¢ are taken at t = 0, 6, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300. The
computational domain is (—15, 15) x (—15, 15). The parameters are € = 0.1, A = 2, T = 300. The time
step is At = 0.1, the spatial grid sizeis h = 1/8
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5 Concluding Remarks

In this paper, we have proposed and analyzed a mixed finite element method with modified
second-order backward differentiation formula for solving the Swift-Hohenberg equation.
The unconditional energy stability and unconditional unique solvability have been estab-
lished, and an optimal convergence rate O (h9+! 4+ Ar?) has been proved. Furthermore, the
corresponding numerical tests have been undertaken to verify the theoretical analysis.

Data availability statement The datasets generated during and/or analysed during the current study are avail-
able from the corresponding author on reasonable request.
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