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A B S T R A C T

In this paper, an equal-order hybridized discontinuous Galerkin (HDG) method with a small pressure penalty
parameter for the Stokes equations is analyzed. When the pressure penalty parameter 𝛾 tends to 0 (𝛾 > 0),
the velocity approximation tends to be H(div)-conforming and exactly divergence-free, and the velocity error
bound tends to be pressure-robust. However, taking the value of 𝛾 too small will cause the over-stabilization
of the pressure. Then, we can provide a post-processing procedure to obtain a stable pressure approximation.
. Introduction

Recently, pressure-robust numerical methods are becoming more
nd more popular for the numerical simulations of the incompress-
ble flows, which are often realized by constructing divergence-free
inite element pairs [1–5] or non-divergence-free finite element pairs
ith divergence-free reconstruction operators [6–9]. As we see, these
airs of finite elements are inf–sup stable. The application of inf–
up stable pairs of finite elements often requires the use of different
rder spaces for velocity and pressure. The pairs of equal-order finite
lements for velocity and pressure are often non-inf–sup stable finite
lements pairs. In the equal-order finite element methods, the pressure
tabilization, namely, the pressure–pressure coupling, is needed to
chieve the discrete stability. The introduction of the pressure–pressure
oupling perturbs the continuity equation, which prevents the method
rom being pressure-robust. The numerical methods based on equal-
rder velocities and pressures have been widely studied and applied to
ncompressible flows, such as the pressure stabilization Petrov–Galerkin
PSPG) method [10], continuous interior penalty (CIP) method [11,12],
ocal projection stabilization (LPS) method [13,14], equal-order discon-
inuous Galerkin (DG) methods [15,16]. As far as we know, there may
e not a standard equal-order pressure-robust finite element method in
he literature.

In usual equal-order finite element methods, to alleviate the effect of
mall viscosity and large pressure on the velocity error, we often need
o add some stabilization terms, such as grad-div stabilization and mass
lux penalization. However, taking grad-div stabilization parameter too
arge will lead to an over-stabilizing effect in conforming finite element
ethods [17,18]. For the equal-order DG method, both grad-div stabi-

ization and mass flux penalization are usually adopted simultaneously
y following the idea of [19]. In addition, the DG methods are known to
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be computationally expensive. The worse thing is that the equal-order
DG methods have more degrees of freedom than the mixed-order DG
methods.

In view of the expensive computational cost of the discontinuous
Galerkin (DG) methods, the hybridized discontinuous Galerkin (HDG)
methods have been developed in [20]. The global degrees of freedom
of HDG methods is defined on cell boundaries instead of the interior of
the cells, the number of which is evidently smaller than that of DG
methods, obviating the common criticism of DG methods. The HDG
methods have also been proposed for the velocity–pressure, vorticity–
velocity–pressure and velocity–pressure-gradient formulations of the
Stokes equations [21–24]. The HDG method which we consider in
this paper is for the velocity–pressure formulation of the Stokes equa-
tions. In 2017, stability and error analysis of both equal-order and
mixed-order HDG methods for Stokes equations is presented in [23].
In 2019, a mixed-order embedded-hybridized discontinuous Galerkin
(E-HDG) method is presented and analyzed for the Stokes equations
in [25]. In [25], it is proved that the mixed-order E-HDG and HDG
methods are H(div)-conforming, exactly divergence-free and pressure-
robust. For the equal-order HDG method, the number of the global
degree of freedom defined on cell boundaries is the same as that
of the mixed-order divergence-free HDG method. However, for the
equal-order HDG method, the pressure–pressure coupling prevents the
equal-order HDG method from being pressure-robust. The equal-order
HDG method is not H(div)-conforming, exactly divergence-free and
pressure-robust [23].

In this paper, an equal-order HDG method with a small pressure
penalty parameter for the Stokes equations is analyzed. The stability
and error analysis of the equal-order HDG method with a small pressure
penalty parameter are obtained. As 𝛾, the pressure penalty parameter,
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tends to zero, the velocity approximation tends to be H(div)-conforming
and exactly divergence-free, and the velocity error bound tends to be
pressure-robust. As far as we know, it is the first equal-order method,
in which by taking the small value of the pressure penalty parame-
ter, the velocity error bound tends to be pressure-robust. However,
a sufficiently small pressure penalty parameter will lead to the over-
stabilization of the pressure. Furthermore, we provide a post-processing
procedure for the over-stabilized pressure. It is natural to propose
an equal-order embedded-hybridized discontinuous Galerkin (E-HDG)
method for the Stokes equation. For the equal-order E-HDG method,
the facet velocity functions are continuous, so it has fewer degrees
of freedom than the equal-order HDG method on a given mesh. All
the results in this paper hold true verbatim for the equal-order E-HDG
method.

This paper is arranged as follows. In Section 2, we present the Stokes
equations. In Section 3, we present an equal-order HDG method for
the Stokes equations. In Section 4, we give some preliminaries. Energy
estimates and error estimates are provided in Section 5. In Section 6,
we present the post-processing. In Section 7, the analytical results are
supported by some numerical experiments. Finally, conclusions are
drawn in Section 8.

2. Stokes equations

Let 𝛺 ⊂ R𝑑 be a bounded polygonal domain (𝑑 = 2) or polyhedral
domain (𝑑 = 3) with Lipschitz boundary 𝜕𝛺. We consider the Stokes
equations

⎧

⎪

⎨

⎪

⎩

−𝜈𝛥𝑢 + ∇𝑝 = 𝑓, 𝛺,

∇ ⋅ 𝑢 = 0, 𝛺,

𝑢 = 0, 𝜕𝛺,

(1)

here 𝑢 is the velocity, 𝑝 the pressure, 𝜈 > 0 the viscosity, and 𝑓 the
external body force.

Introduce

𝑋 =
[

𝐻1
0 (𝛺)

]𝑑 , 𝑄 = 𝐿2
0(𝛺) =

{

𝑞 ∈ 𝐿2(𝛺),∫𝛺
𝑞𝑑𝑥 = 0

}

.

We present the weak formulation of (1): given 𝑓 ∈
[

𝐿2(𝛺)
]𝑑 , find

(𝑢, 𝑝) ∈ (𝑋,𝑄), such that

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) = 𝐹 (𝑣), ∀𝑣 ∈ 𝑋,

𝑏(𝑢, 𝑞) = 0, ∀𝑞 ∈ 𝑄,
(2)

with

𝑎(𝑢, 𝑣) = 𝜈 ∫𝛺
∇𝑢∶∇𝑣 d𝑥, 𝑏(𝑢, 𝑞) = −∫𝛺

𝑞(∇ ⋅𝑢) d𝑥, 𝐹 (𝑣) = ∫𝛺
𝑓 ⋅ 𝑣 d𝑥.

. An equal-order hybridized discontinuous Galerkin method

In this section, let us recall the equal-order HDG method for the
tokes equations in [23].

.1. Notation

Let ℎ be a shape-regular simplicial mesh of 𝛺. ℎ𝐾 denotes the
iameter of each element 𝐾 ∈ ℎ, and mesh size ℎ = 𝑚𝑎𝑥𝐾∈ℎℎ𝐾 . Let

ℎ be the set of all facets and  be the mesh skeleton. The boundary of
a cell 𝐾 is denoted by 𝜕𝐾 and the outward unit normal vector on 𝜕𝐾
is denoted by 𝑛.

Consider the following finite element spaces on 𝛺 and  , respec-
tively:

𝑉ℎ =
{

𝑣ℎ ∈
[

𝐿2(𝛺)
]𝑑 ∶ 𝑣ℎ ∈

[

𝑃𝑘(𝐾)
]𝑑 ,∀𝐾 ∈ ℎ

}

,

𝑄 =
{

𝑞 ∈ 𝐿2(𝛺) ∶ 𝑞 ∈ 𝑃 (𝐾),∀𝐾 ∈ 
}

,
ℎ ℎ ℎ 𝑘 ℎ a

59
and

𝑉ℎ =
{

𝑣̄ℎ ∈
[

𝐿2( )
]𝑑 ∶ 𝑣̄ℎ ∈

[

𝑃𝑘(𝐹 )
]𝑑 ,∀𝐹 ∈ ℎ, 𝑣̄ℎ = 0 on 𝜕𝛺

}

,

𝑄̄ℎ =
{

𝑞ℎ ∈ 𝐿2( ) ∶ 𝑞ℎ ∈ 𝑃𝑘(𝐹 ),∀𝐹 ∈ ℎ
}

,

where the space of polynomials of degree 𝑙 > 0, on a domain 𝑀 , is
denoted by 𝑃𝑙(𝑀). Introduce the spaces 𝑉 ⋆

ℎ = 𝑉ℎ × 𝑉ℎ, 𝑄⋆ℎ = 𝑄ℎ × 𝑄̄ℎ
and 𝑋⋆

ℎ = 𝑉 ⋆
ℎ × 𝑄⋆ℎ . Function pairs in 𝑉 ⋆

ℎ and 𝑄⋆ℎ will be denoted by
boldface, e.g., 𝒗ℎ = (𝑣ℎ, 𝑣̄ℎ) ∈ 𝑉 ⋆

ℎ and 𝒒ℎ = (𝑞ℎ, 𝑞ℎ) ∈ 𝑄⋆ℎ .

3.2. Weak formulation

The equal-order HDG formulation of (2) is given by: for 𝑓 ∈
[

𝐿2(𝛺)
]𝑑 , find (𝒖ℎ,𝒑ℎ) ∈ 𝑋⋆

ℎ satisfying

𝑎ℎ(𝒖ℎ, 𝒗ℎ) + 𝑏ℎ(𝒑ℎ, 𝑣ℎ) =
∑

𝐾∈ℎ
∫𝐾

𝑓 ⋅ 𝑣ℎd𝑥, ∀𝒗ℎ ∈ 𝑉 ⋆
ℎ ,

𝑏ℎ(𝒒ℎ, 𝑢ℎ) − 𝑐ℎ(𝒑ℎ, 𝒒ℎ) = 0, ∀𝒒ℎ ∈ 𝑄⋆ℎ ,

(3)

where

𝑎ℎ(𝒖, 𝒗) =
∑

𝐾∈ℎ
∫𝐾

𝜈∇𝑢 ∶ ∇𝑣d𝑥 +
∑

𝐾∈ℎ
∫𝜕𝐾

𝜂𝜈
ℎ𝐾

(𝑢 − 𝑢̄) ⋅ (𝑣 − 𝑣̄)d𝑠

−
∑

𝐾∈ℎ
∫𝜕𝐾

[

𝜈(𝑢 − 𝑢̄) ⋅ 𝜕𝑛𝑣 + 𝜈𝜕𝑛𝑢 ⋅ (𝑣 − 𝑣̄)
]

d𝑠,

𝑏ℎ(𝒑, 𝑣) = −
∑

𝐾∈ℎ
∫𝐾

𝑝∇ ⋅ 𝑣d𝑥 +
∑

𝐾∈ℎ
∫𝜕𝐾

𝑣 ⋅ 𝑛𝑝̄d𝑠,

𝑐ℎ(𝒑, 𝒒) =
∑

𝐾∈ℎ
∫𝜕𝐾

𝛾ℎ𝐾 (𝑝 − 𝑝̄)(𝑞 − 𝑞)d𝑠.

otice that 𝜂 is the velocity penalty parameter, and 𝛾 = 𝑎𝑝
𝜈 the pressure

penalty parameter. In order to ensure the existence and uniqueness of
the method, 𝜂 should be sufficiently large and 𝛾 > 0 (if 𝛾 is set to zero,
he method is unstable, see [23]).

emark 1. Here, we present a unified formulation of the equal-
rder embedded, hybridized, and embedded-hybridized discontinuous
alerkin methods: for 𝑓 ∈

[

𝐿2(𝛺)
]𝑑 , find (𝒖ℎ,𝒑ℎ) ∈ 𝑋⋆

ℎ satisfying (3)
here 𝑋⋆

ℎ is given by

⋆
ℎ = 𝑉 ⋆

ℎ ×𝑄⋆
ℎ

=

⎧

⎪

⎨

⎪

⎩

(

𝑉ℎ × 𝑉ℎ
)

×
(

𝑄ℎ × 𝑄̄ℎ
)

, equal-order HDG method,
(

𝑉ℎ ×
(

𝑉ℎ ∩ 𝐶0 ( )
))

×
(

𝑄ℎ × 𝑄̄ℎ
)

, equal-order E-HDG method,
(

𝑉ℎ ×
(

𝑉ℎ ∩ 𝐶0 ( )
))

×
(

𝑄ℎ ×
(

𝑄̄ℎ ∩ 𝐶0 ( )
))

, equal-order EDG method.

. Preliminaries

For scalar-valued functions 𝑝 and 𝑞, define the inner-product (𝑝, 𝑞)𝑀
∫𝑀 𝑝𝑞d𝑥 on a domain 𝑀 with norm ‖𝑝‖𝑀 =

√

(𝑝, 𝑝)𝑀 . The 𝐿2-
norm on 𝛺 is denoted by ‖𝑝‖ =

√

(𝑝, 𝑝)ℎ . The inner product in
𝐿2(𝛺) is denoted by (⋅, ⋅). For vector-valued functions and tensor-valued
functions, they are similarly defined. The standard notation 𝐻𝑚(𝛺)

def
=

𝑚,2(𝛺). The norm of 𝐻𝑚(𝛺) is denoted by ‖ ⋅ ‖𝑚. The trace operator
r ∶ 𝐻𝑠(𝛺) → 𝐻𝑠−1∕2( ) (𝑠 ≥ 1) is introduced to restrict functions in
𝑠(𝛺) to  . Let ℎ = 𝐼∪𝐵 , where 𝐼 and 𝐵 are the subset of interior

acets and boundary facets, respectively. Define the jump J⋅K operator
across the interior facets 𝐹 = 𝜕𝐾− ∩ 𝜕𝐾+ ∈ 𝐼 by J𝜙K = 𝜙+ −𝜙−, where
± denote the trace of 𝜙 from the interior of 𝐾±. For the boundary

acets 𝐹 ∈ 𝐵 , let J𝜙K = 𝜙.
Introduce the broken Sobolev space𝐻𝑚 (

ℎ
)

=
{

𝑤 ∈ 𝐿2(𝛺) ∶ 𝑤|𝐾 ∈
𝐻𝑚(𝐾),∀𝐾 ∈ ℎ

}

with 𝑚 > 0. Define the broken divergence ∇ℎ⋅ ∶
𝐻1 (ℎ

)]𝑑
→ 𝐿2(𝛺) by

(

∇ℎ ⋅𝑤
)

|

|

|𝐾
∶= ∇ ⋅

(

𝑤|𝐾
)

,∀𝐾 ∈ ℎ,

nd similarly define the broken gradient.
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Introduce the following extended function spaces

𝑉 (ℎ) = 𝑉ℎ +
[

𝐻1
0 (𝛺)

]𝑑 ∩
[

𝐻2(𝛺)
]𝑑 , 𝑄(ℎ) = 𝑄ℎ + 𝐿2

0(𝛺) ∩𝐻1(𝛺),

𝑉 (ℎ) = 𝑉ℎ +
[

𝐻3∕2
0 ( )

]𝑑
, 𝑄̄(ℎ) = 𝑄̄ℎ +𝐻

1∕2
0 ( ).

Here,
[

𝐻3∕2
0 ( )

]𝑑
and 𝐻1∕2

0 ( ) stand for the trace spaces of
[

𝐻1
0 (𝛺)

]𝑑 ∩
[

𝐻2(𝛺)
]𝑑 and 𝐿2

0(𝛺) ∩ 𝐻1(𝛺) on  , respectively. Set 𝑉 ⋆(ℎ) = 𝑉 (ℎ) ×
𝑉 (ℎ), 𝑄⋆(ℎ) = 𝑄(ℎ) × 𝑄̄(ℎ) and 𝑋⋆(ℎ) = 𝑉 ⋆(ℎ) ×𝑄⋆(ℎ).

Define the following norms on 𝑉 ⋆(ℎ), 𝑄⋆(ℎ) and 𝑋⋆(ℎ), respec-
tively:

|||𝒗|||2𝑣 =
∑

𝐾∈ℎ

‖∇𝑣‖2𝐾 +
∑

𝐾∈ℎ

𝜂ℎ−1𝐾 ‖𝑣̄ − 𝑣‖2𝜕𝐾 ,

|||𝒗|||2𝑣′ = |||𝒗|||2𝑣 +
∑

𝐾∈ℎ

ℎ𝐾
𝜂

∥ 𝜕𝑣
𝜕𝑛

∥2𝜕𝐾 ,

|||𝒒|||2𝑝 = ||𝑞||2 + |𝒒|2𝑝,

|||𝒒|||2𝑝′ = ||𝑞||2 + |𝒒|2𝑝 +
∑

𝐾∈ℎ

ℎ𝐾 ∥ 𝑞 ∥2𝜕𝐾 ,

and
|||(𝒗, 𝒒)|||2𝑣,𝑝 = 𝜈|||𝒗|||2𝑣 + 𝜈

−1
|||𝒒|||2𝑝,

|||(𝒗, 𝒒)|||2𝑣′ ,𝑝′ = 𝜈|||𝒗|||2𝑣′ + 𝜈
−1
|||𝒒|||2𝑝′ ,

where |𝒒|2𝑝 =
∑

𝐾∈ℎ 𝑎𝑝ℎ𝐾‖𝑞−𝑞‖
2
𝜕𝐾 , and ||| ⋅ |||𝑣′ and ||| ⋅ |||𝑣 are equivalent

on 𝑉 ⋆
ℎ , namely,

|||𝒗ℎ|||𝑣 ≤ |||𝒗ℎ|||𝑣′ ≤ 𝑐|||𝒗ℎ|||𝑣, (4)

with 𝑐 > 0 independent of ℎ, see [23, Eq.(28)]. The following discrete
Poincaré inequality will be used [26, Eq.(13)]: there is a positive
constant 𝐶𝑝 independent of ℎ, such that

‖𝑣ℎ‖ ≤ 𝐶𝑝|||𝒗ℎ|||𝑣, ∀𝒗ℎ ∈ 𝑉 ⋆
ℎ . (5)

Define the following semi-norm

|

|

𝑣ℎ||
2
nj =

∑

𝐹∈ℎ

1
ℎ𝐹 ∫𝐹

(

J𝑣ℎK ⋅ 𝑛𝐹
)2 d𝑠, ∀𝑣ℎ ∈ 𝑉ℎ,

where ℎ𝐹 denotes the diameter of each facet 𝐹 ∈ ℎ.
Next, we recall the stability and boundedness of the bilinear forms

𝑎ℎ, 𝑏ℎ and 𝑐ℎ in [23].

Lemma 1 ([23, Lemmas 4.2 and 4.3] Coercivity and Boundedness of
𝑎ℎ). For sufficiently large 𝜂, there exist constants 𝐶𝑐𝑎 > 0 and 𝐶𝑏𝑎 > 0,
independent of ℎ and 𝜈, such that for all 𝒗ℎ ∈ 𝑉 ⋆

ℎ and 𝒖 ∈ 𝑉 ⋆(ℎ)

𝑎ℎ(𝒗ℎ, 𝒗ℎ) ≥ 𝜈𝐶𝑐𝑎 |||𝒗ℎ|||
2
𝑣 and |

|

𝑎ℎ(𝒖, 𝒗ℎ)|| ≤ 𝜈𝐶𝑏𝑎 |||𝒖|||𝑣′ |||𝒗ℎ|||𝑣. (6)

Lemma 2 (Boundedness of 𝑏ℎ). There exists a constant 𝐶𝑏𝑏 > 0, independent
of ℎ, such that for all 𝒗 ∈ 𝑉 ⋆(ℎ) and 𝒒 ∈ 𝑄⋆(ℎ)

𝑏ℎ(𝒒, 𝑣)|| ≤ 𝐶𝑏𝑏 |||𝒗|||𝑣|||𝒒|||𝑝′ . (7)

Proof. The proof of this lemma was provided in the proof of Lemma
4.8 in [23]. □

Lemma 3 ([23, Lemma 4.4] Stability of 𝑏ℎ). There exists a constant 𝛽𝑝 > 0,
independent of ℎ, such that for all 𝒒ℎ ∈ 𝑄⋆ℎ

𝛽𝑝 ‖‖𝑞ℎ‖‖ ≤ sup
𝒘ℎ∈𝑉 ⋆ℎ

𝑏ℎ
(

𝒒ℎ, 𝑤ℎ
)

|||𝒘ℎ|||𝑣
+ |

|

𝒒ℎ||𝑝 .

Lemma 4 ([23, Lemma 4.7] Discrete Inf–sup Stability). For sufficiently
large 𝜂, there exists a constant 𝜎 > 0, independent of ℎ and 𝜈, such that for
all (𝒗ℎ, 𝒒ℎ) ∈ 𝑋⋆

ℎ

𝜎|||(𝒗ℎ, 𝒒ℎ)|||𝑣,𝑝 ≤ sup
(𝒘ℎ ,𝒓ℎ)∈𝑋⋆ℎ

×
𝑎ℎ(𝒗ℎ,𝒘ℎ) + 𝑏ℎ(𝒒ℎ, 𝑤ℎ) − 𝑏ℎ(𝒓ℎ, 𝑣ℎ) + 𝑐ℎ(𝒒ℎ, 𝒓ℎ) .

(8)
|||(𝒘ℎ, 𝒓ℎ)|||𝑣,𝑝

60
Remark 2. We notice that if 𝑉ℎ is replaced by a smaller facet velocity
space 𝑉 𝑐

ℎ ,

𝑉 𝑐
ℎ =

{

𝑣̄ℎ ∈
[

𝐿2( )
]𝑑 ∶ 𝑣̄ℎ ∈

[

𝑃1(𝐹 )
]𝑑 ,∀𝐹 ∈ ℎ, 𝑣̄ℎ = 0 on 𝜕𝛺

}

∩ 𝐶0 ( ) ,

Lemmas 3 and 4 still hold true. Their proofs are the same as that of
Lemma 4.4 and Lemma 4.7 in [23], respectively.

Finally, we have the following consistency result.

Lemma 5 ([23, Lemma 4.1] Consistency). Let (𝑢, 𝑝) ∈
([

𝐻1
0 (𝛺)

]𝑑 ∩
[

𝐻2(𝛺)
]𝑑) ×

(

𝐿2
0(𝛺) ∩𝐻1(𝛺)

)

solves the Stokes problem (1), and 𝒖 =
(𝑢, tr(𝑢)) and 𝒑 = (𝑝, tr(𝑝)), then

𝑎ℎ(𝒖, 𝒗ℎ) + 𝑏ℎ(𝒑, 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝑢) + 𝑐ℎ
(

𝒑, 𝒒ℎ
)

=
(

𝑓, 𝑣ℎ
)

ℎ
, ∀(𝒗ℎ, 𝒒ℎ) ∈ 𝑋⋆

ℎ .

(9)

Remark 3. For the equal-order E-HDG and EDG methods, Lemmas 1,
2 and 5 still hold true, because the corresponding spaces in the two
methods are subspaces of that in the equal-order HDG method. And,
Lemmas 3 and 4 also hold true, by following the proofs of Lemma 4.4
and Lemma 4.7 in [23], respectively.

5. Energy estimates and error estimates

In this section, we present energy estimates and error estimates for
the equal-order HDG method with a small pressure penalty parameter.

5.1. Energy estimates

The well-posedness of the equal-order HDG method follows the
discrete inf–sup stability (8). The energy estimates of the solution
are given in the following theorem. Here, we provide the sharp en-
ergy estimates by introducing the Helmholtz–Hodge decomposition,
see [27, Theorem 3.168]: for every vector field 𝑔 ∈ [𝐿2(𝛺)]𝑑 , there exist
a divergence-free vector field 𝑔0 ∈ 𝐻0(div, 𝛺) = {𝑣 ∈ 𝐻(div, 𝛺) ∶ ∇ ⋅ 𝑣 =
0, 𝑣 ⋅ 𝑛 = 0 𝑜𝑛 𝜕𝛺} and 𝑎 scalar function 𝜙 ∈ 𝐻1(𝛺)∕R with 𝑔 = 𝑔0 +∇𝜙
and (𝑔0,∇𝜙) = 0. The decomposition is unique. The function 𝑔0 = 𝑃𝐻𝑔
is called the Helmholtz-Hodge projector of 𝑔.

Theorem 1. Let 𝑓 ∈ [𝐿2(𝛺)]𝑑 and assume that 𝜂 > 0 is sufficiently
large. Then, the solution (𝒖ℎ,𝒑ℎ) ∈ 𝑋⋆

ℎ to (3) satisfies the following energy
estimates:

|||𝒖ℎ|||𝑣 ≤ 𝐶𝑝(𝜈𝐶𝑐𝑎 )
−1
‖𝑃𝐻𝑓‖ + 𝐶𝛾1∕2𝜈−1∕2‖∇𝜓‖,

‖∇ℎ ⋅ 𝑢ℎ‖ ≤ 𝐶𝛾1∕2𝜈−1∕2‖𝑃𝐻𝑓‖ + 𝐶𝛾‖∇𝜓‖,
|

|

𝑢ℎ||nj ≤ 𝐶𝛾1∕2𝜈−1∕2‖𝑃𝐻𝑓‖ + 𝐶𝛾‖∇𝜓‖,

|||𝒑ℎ|||𝑝 ≤ 𝐶𝑝𝜎
−1
‖𝑓‖,

(10)

ith 𝑃𝐻𝑓 the Helmholtz–Hodge projector of 𝑓 and ∇𝜓 = 𝑓 − 𝑃𝐻𝑓 with
∈ 𝐻1(𝛺)∕R.

roof. Taking 𝒒ℎ = (∇ℎ ⋅ 𝑢ℎ, 0) and 𝒒ℎ = (0, 𝑞ℎ) in the second equation
f (3), respectively, we have

= −
∑

𝐾
∫𝐾

(∇ℎ ⋅ 𝑢ℎ)2d𝑥 +
∑

𝐾
∫𝜕𝐾

𝛾ℎ𝐾 (𝑝̄ℎ − 𝑝ℎ)∇ℎ ⋅ 𝑢ℎd𝑠, (11)

nd
J𝑢ℎK ⋅ 𝑛|𝐹 = 𝛾ℎ𝐾+ (𝑝̄ℎ − 𝑝+ℎ ) + 𝛾ℎ𝐾− (𝑝̄ℎ − 𝑝−ℎ ), ∀𝐹 ∈ 𝐼 ,

J𝑢ℎK ⋅ 𝑛|𝐹 = 𝛾ℎ𝐾
(

𝑝̄ℎ − 𝑝ℎ
)

, ∀𝐹 ∈ 𝐵 .
(12)

or (11), we apply Cauchy–Schwarz inequality and the discrete trace
nequality to obtain

∇ ⋅ 𝑢 ‖ ≤ 𝐶𝛾1∕2𝜈−1∕2 |𝒑 | . (13)
ℎ ℎ | ℎ|𝑝
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By applying (12), the triangle inequality and shape regularity of mesh,
we have

|

|

𝑢ℎ||
2
nj =

∑

𝐹∈ℎ

1
ℎ𝐹

‖

‖

J𝑢ℎK ⋅ 𝑛𝐹 ‖‖
2
𝐿2(𝐹 ) ≤ 𝐶𝛾𝜈−1 |

|

𝒑ℎ||
2
𝑝 . (14)

Taking 𝒗ℎ = 𝒖ℎ, 𝒒ℎ = 𝒑ℎ in (3), together with the coercivity of 𝑎ℎ in (6),
Cauchy–Schwarz inequality, the discrete Poincaré inequality (5), (13)
and (14) leads to

𝜈𝐶𝑐𝑎 |||𝒖ℎ|||
2
𝑣 + 𝜈

−1
|

|

𝒑ℎ||
2
𝑝

≤
(

𝑃𝐻𝑓, 𝑢ℎ
)

ℎ
+
(

𝑓 − 𝑃𝐻𝑓, 𝑢ℎ
)

ℎ

≤ 𝐶𝑝‖𝑃𝐻𝑓‖|||𝒖ℎ|||𝑣 −
∑

𝐾∈ℎ
∫𝐾

𝜓∇ℎ ⋅ 𝑢ℎ d𝑥 +
∑

𝐾∈ℎ
∫𝜕𝐾

𝜓𝑢ℎ ⋅ 𝑛 d𝑠

≤ 𝐶𝑝‖𝑃𝐻𝑓‖|||𝒖ℎ|||𝑣 + 𝐶‖∇ℎ ⋅ 𝑢ℎ‖‖𝜓‖

+ 𝐶 |

|

𝑢ℎ||nj (
∑

𝐾∈ℎ

(‖𝜓‖2𝐾 + ℎ2𝐾‖∇𝜓‖
2
𝐾 ))

1∕2

≤ 𝐶𝑝‖𝑃𝐻𝑓‖|||𝒖ℎ|||𝑣 + 𝐶(‖∇ℎ ⋅ 𝑢ℎ‖ + |

|

𝑢ℎ||nj)‖∇𝜓‖

≤ 𝐶𝑝‖𝑃𝐻𝑓‖|||𝒖ℎ|||𝑣 + 𝐶𝜈
−1∕2

|

|

𝒑ℎ||𝑝 𝛾
1∕2

‖∇𝜓‖,

(15)

where we use the well-known inequality ‖𝑤‖ ≤ 𝐶‖∇𝑤‖,∀𝑤 ∈
𝐻1(𝛺)∕R. We apply Young’s inequality to the right-hand side of (15)
to obtain
|||𝒖ℎ|||𝑣 ≤ 𝐶𝑝(𝜈𝐶𝑐𝑎 )

−1
‖𝑃𝐻𝑓‖ + 𝐶𝛾1∕2𝜈−1∕2‖∇𝜓‖,

|

|

𝒑ℎ||𝑝 ⩽ 𝐶‖𝑃𝐻𝑓‖ + 𝐶𝛾1∕2𝜈1∕2‖∇𝜓‖.
(16)

Thus, we insert the pressure estimate in (16), into (13) and (14) to
obtain
‖∇ℎ ⋅ 𝑢ℎ‖ ≤ 𝐶𝛾1∕2𝜈−1∕2‖𝑃𝐻𝑓‖ + 𝐶𝛾‖∇𝜓‖,

|

|

𝑢ℎ||nj ≤ 𝐶𝛾1∕2𝜈−1∕2‖𝑃𝐻𝑓‖ + 𝐶𝛾‖∇𝜓‖.
(17)

By the discrete inf–sup stability (8) and the discrete Poincaré in-
equality (5),

𝜎𝜈−
1
2
|||𝒑ℎ|||𝑝 ≤ 𝜎|||(𝒖ℎ,𝒑ℎ)|||𝑣,𝑝 ≤ sup

(𝒗ℎ ,𝒒ℎ)∈𝑋⋆ℎ

(

𝑓, 𝑣ℎ
)

ℎ
|||(𝒗ℎ, 𝒒ℎ)|||𝑣,𝑝

≤ 𝐶𝑝𝜈
− 1

2
‖𝑓‖.

Finally, by collecting the above estimates, we can finish the proof. □

5.2. Error estimates

Now, we give the error estimates for the velocity and the pressure.
Introduce the following approximation and discretization errors for the
velocity and the pressure, respectively, as follows:

𝜉𝑢 = 𝑢 − BDM𝑢, 𝑒𝑢 = 𝑢ℎ − BDM𝑢, 𝜉𝑢 = tr(𝑢) − ̄𝑉 𝑢, 𝑒𝑢 = 𝑢̄ℎ − ̄𝑉 𝑢,

(18)

where BDM ∶
[

𝐻1(𝛺)
]𝑑

→ 𝑉ℎ is the usual BDM interpolation operator
of order 𝑘 in [28, Lemma 7] and ̄𝑉 is 𝐿2 -projection operator onto 𝑉ℎ,

𝜉𝑝 = 𝑝 − 𝑄𝑝, 𝑒𝑝 = 𝑝ℎ − 𝑄𝑝, 𝜉𝑝 = tr(𝑝) − ̄𝑄𝑝, 𝑒𝑝 = 𝑝̄ℎ − ̄𝑄𝑝,

(19)

with 𝑄 and ̄𝑄 the 𝐿2 -projection operators onto 𝑄ℎ and 𝑄̄ℎ, respec-
tively, and

𝜉′𝑝 = 𝑝 − 𝑆𝑍𝑝, 𝑒′𝑝 = 𝑝ℎ − 𝑆𝑍𝑝, 𝜉′𝑝 = tr(𝑝) − ̄𝑆𝑍𝑝, 𝑒′𝑝 = 𝑝̄ℎ − ̄𝑆𝑍𝑝,

(20)

with 𝑆𝑍 the continuous Scott–Zhang interpolant [29], and ̄𝑆𝑍𝑝 =
𝑆𝑍𝑝|| ∈ 𝑄̄ℎ. Set 𝝃𝑢 = (𝜉𝑢, 𝜉𝑢), 𝒆𝑢 = (𝑒𝑢, 𝑒𝑢), 𝝃𝑝 = (𝜉𝑝, 𝜉𝑝), 𝒆𝑝 = (𝑒𝑝, 𝑒𝑝),
𝝃′𝑝 = (𝜉′𝑝, 𝜉

′
𝑝) and 𝒆′𝑝 = (𝑒′𝑝, 𝑒

′
𝑝).

Theorem 2. Let (𝑢, 𝑝) ∈
[

𝐻𝑘+1(𝛺)
]𝑑 × 𝐻𝑘+1(𝛺) and (𝒖ℎ,𝒑ℎ) be the
solutions to (2) and (3), respectively. Set 𝒖 = (𝑢, tr(𝑢)) and 𝒑 = (𝑝, tr(𝑝)).
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Then, the following error estimates hold true:

|||𝒖 − 𝒖ℎ|||𝑣′ ≤ 𝐶(ℎ𝑘‖𝑢‖𝑘+1 + 𝛾
1
2 𝜈−

1
2 ℎ𝑘+1‖𝑝‖𝑘+1),

|||𝒑 − 𝒑ℎ|||𝑝 ≤ 𝐶
[

𝜈𝜎−1ℎ𝑘‖𝑢‖𝑘+1 + (𝜎−1 + 1)ℎ𝑘+1‖𝑝‖𝑘+1
]

,
(21)

with 𝐶 > 0 independent of ℎ, 𝜎, 𝛾 and 𝜈.

emark 4. Based on the proof of Section 5 in [23], the pressure term
n the velocity estimate can be scaled by 𝜈−

1
2 , whereas we obtain an

improved velocity estimate scaled by 𝛾
1
2 𝜈−

1
2 in (21) due to a small

pressure penalty parameter.

Proof. By subtracting (3) from (9), we have the following error
equation

𝑎ℎ(𝒖 − 𝒖ℎ, 𝒗ℎ) + 𝑏ℎ(𝒑 − 𝒑ℎ, 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝑢 − 𝑢ℎ) + 𝑐ℎ
(

𝒑 − 𝒑ℎ, 𝒒ℎ
)

= 0,

∀(𝒗ℎ, 𝒒ℎ) ∈ 𝑋⋆
ℎ .

(22)

e split the above error equation as

𝑎ℎ(𝒆𝑢, 𝒗ℎ) + 𝑏ℎ(𝒆𝑝, 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝑒𝑢) + 𝑐ℎ(𝒆𝑝, 𝒒ℎ)

= 𝑎ℎ(𝝃𝑢, 𝒗ℎ) + 𝑏ℎ(𝝃𝑝, 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝜉𝑢) + 𝑐ℎ(𝝃𝑝, 𝒒ℎ).
(23)

aking 𝒗ℎ = 𝒆𝑢, 𝒒ℎ = 𝒆𝑝 in (23) and using the coercivity of 𝑎ℎ in (6)
ead to

𝜈𝐶𝑐𝑎 |||𝒆𝑢|||
2
𝑣 + 𝜈

−1
|𝒆𝑝|2𝑝 ≤ 𝑎ℎ(𝝃𝑢, 𝒆𝑢) + 𝑏ℎ(𝝃𝑝, 𝑒𝑢) − 𝑏ℎ(𝒆𝑝, 𝜉𝑢) + 𝑐ℎ(𝝃𝑝, 𝒆𝑝).

(24)

oting that 𝜉𝑢 is H(div)-conforming and exactly divergence-free, 𝜉𝑝 =
− 𝑄𝑝 and 𝜉𝑝 = tr(𝑝) − ̄𝑄𝑝, we have

𝑏ℎ(𝒆𝑝, 𝜉𝑢) = −
∑

𝐾∈ℎ
∫𝐾

𝑒𝑝∇ℎ ⋅ 𝜉𝑢d𝑥 +
∑

𝐾∈ℎ
∫𝜕𝐾

𝜉𝑢 ⋅ 𝑛𝑒𝑝d𝑠 = 0,

𝑏ℎ(𝝃𝑝, 𝑒𝑢) = −
∑

𝐾∈ℎ
∫𝐾

𝜉𝑝∇ℎ ⋅ 𝑒𝑢d𝑥 +
∑

𝐾∈ℎ
∫𝜕𝐾

𝑒𝑢 ⋅ 𝑛𝜉𝑝d𝑠 = 0.
(25)

hanks to the boundedness of 𝑎ℎ in (6), Cauchy–Schwarz inequality and
oung’s inequality,

𝑎ℎ(𝝃𝑢, 𝒆𝑢) ≤ 𝜈𝐶𝑏𝑎 |||𝝃𝑢|||𝑣′ |||𝒆𝑢|||𝑣 ≤ 𝐶𝜈|||𝝃𝑢|||2𝑣′ +
1
2
𝐶𝑐𝑎𝜈|||𝒆𝑢|||

2
𝑣,

𝑐ℎ(𝝃𝑝, 𝒆𝑝) ≤ 𝜈−1|𝒆𝑝|𝑝|𝝃𝑝|𝑝 ≤
1
2
𝜈−1|𝒆𝑝|2𝑝 +

1
2
𝜈−1|𝝃𝑝|2𝑝.

(26)

hen the combination of (24)–(26) admits
1
2
𝐶𝑐𝑎𝜈|||𝒆𝑢|||

2
𝑣 +

1
2
𝜈−1|𝒆𝑝|2𝑝 ≤ 𝜈𝐶|||𝝃𝑢|||2𝑣′ +

1
2
𝜈−1|𝝃𝑝|2𝑝. (27)

By the interpolation estimates of the BDM interpolation operator
nd the 𝐿2 -projection operators, we have

|||𝝃𝑢|||2𝑣′ ≤ 𝐶ℎ2𝑘‖𝑢‖2𝑘+1, |𝝃𝑝|2𝑝 ≤ 𝐶𝑎𝑝ℎ
2𝑘+2

‖𝑝‖2𝑘+1. (28)

For the first inequality of (28), the detailed proof is provided in [25,
Lemma 9]. Combining (27) and (28) yields

|||𝒆𝑢|||2𝑣 ≤ 𝐶ℎ2𝑘‖𝑢‖2𝑘+1 + 𝐶𝛾𝜈
−1ℎ2𝑘+2‖𝑝‖2𝑘+1. (29)

Then,

|||𝒖 − 𝒖ℎ|||𝑣′ ≤ 𝐶ℎ𝑘‖𝑢‖𝑘+1 + 𝐶𝛾
1
2 𝜈−

1
2 ℎ𝑘+1‖𝑝‖𝑘+1, (30)

which follows from the triangle inequality, (29), the equivalence of
||| ⋅ |||𝑣′ and ||| ⋅ |||𝑣 on 𝑉 ⋆

ℎ and the first inequality of (28).
Next, we split the error Eq. (22) with (18) and (20) to obtain

𝑎ℎ(𝒆𝑢, 𝒗ℎ) + 𝑏ℎ(𝒆′𝑝, 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝑒𝑢) + 𝑐ℎ(𝒆
′
𝑝, 𝒒ℎ)

= 𝑎ℎ(𝝃𝑢, 𝒗ℎ) + 𝑏ℎ(𝝃′𝑝, 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝜉𝑢) + 𝑐ℎ(𝝃
′
𝑝, 𝒒ℎ),

(31)

y the discrete inf–sup stability (8), (31), and noting that 𝑐ℎ(𝝃′𝑝, 𝒒ℎ) = 0
nd 𝑏ℎ(𝒒ℎ, 𝜉𝑢) = 0,

𝜎𝜈−
1
2
|||𝒆′𝑝|||𝑝 ≤ 𝜎|||(𝒆𝑢, 𝒆′𝑝)|||𝑣,𝑝 ≤ sup

(𝒗ℎ ,𝒒ℎ)∈𝑋⋆ℎ

𝑎ℎ(𝝃𝑢, 𝒗ℎ) + 𝑏ℎ(𝝃′𝑝, 𝑣ℎ)
|||(𝒗ℎ, 𝒒ℎ)|||𝑣,𝑝

≤ 𝐶𝑏𝜈1∕2|||𝝃 ||| + 𝐶𝑏𝜈−1∕2|||𝝃′ ||| .

(32)
𝑎 𝑢 𝑣′ 𝑏 𝑝 𝑝′
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By the triangle inequality and (32), we get

|||𝒑 − 𝒑ℎ|||𝑝 ≤ 𝜈𝜎−1𝐶𝑏𝑎 |||𝝃𝑢|||𝑣′ + 𝐶
𝑏
𝑏𝜎

−1
|||𝝃′𝑝|||𝑝′ + |||𝝃′𝑝|||𝑝.

Finally, we have

|||𝒑 − 𝒑ℎ|||𝑝 ≤ 𝐶
[

𝜈𝜎−1ℎ𝑘‖𝑢‖𝑘+1 + (𝜎−1 + 1)ℎ𝑘+1‖𝑝‖𝑘+1
]

,

which follows from the first inequality of (28) and the interpolation
estimate of the Scott–Zhang interpolation operator. □

From Theorem 2, we can conclude that when the pressure penalty
parameter 𝛾 is equal to 𝜈, the velocity error bound is independent of
the negative power of viscosity. When 𝛾 tends to 0, the velocity error
bound tends to be pressure-robust. In addition, we also notice that the
convergence rate of the pressure is 𝑘 + 1 when 𝜈 ≤ 𝐶ℎ, so the equal-
order method is beneficial in terms of accuracy and convergence rate
for the pressure. For the velocity error in the 𝐿2-norm, we refer readers
to Appendix.

Remark 5. Here, we will comment on whether the current analysis
still works for the equal-order E-HDG and EDG methods. For the equal-
order E-HDG method, all the results of the section hold verbatim by
following the above proofs. For the equal-order EDG method, from the
proof of Theorem 1, we can notice that ‖∇ℎ ⋅ 𝑢ℎ‖ tends to 0 as 𝛾 → 0.
However, |

|

𝑢ℎ||nj does not tend to 0 as 𝛾 → 0, because (12) is not true.
nd, the velocity error bound does not tend to be pressure-robust as
→ 0, because the second equation of (25) is not true.

. Post-processing

In this section, we present a Stokes-based post-processing. Notice
hat from Theorem 2, the dependence of 𝜎−1 in the pressure error bound
ndicates that when we take the value of 𝛾 too small, it may lead to the
isk of over-stabilization of the pressure, because 𝛾 → 0, then 𝜎 → 0 (see
emma 4.7 in [23]). Then, the post-processing can be used to avoid the
ver-stabilization of the pressure.

Consider the following finite element spaces on the  :

𝑉 𝑐
ℎ =

{

𝑣̄ℎ ∈
[

𝐿2( )
]𝑑 ∶ 𝑣̄ℎ ∈

[

𝑃1(𝐹 )
]𝑑 ,∀𝐹 ∈ ℎ, 𝑣̄ℎ = 0 on 𝜕𝛺

}

∩ 𝐶0 ( ) ,

𝑄̄𝑐ℎ =
{

𝑞ℎ ∈ 𝐿2( ) ∶ 𝑞ℎ ∈ 𝑃𝑘(𝐹 ),∀𝐹 ∈ ℎ
}

∩ 𝐶0 ( ) .

otice that 𝑉 𝑐
ℎ is piecewise continuous 𝑃1 polynomials on  , and 𝑄̄𝑐ℎ

piecewise continuous 𝑃𝑘 polynomials on  . Set the following spaces
𝑉 ⋆𝑐
ℎ = 𝑉ℎ × 𝑉 𝑐

ℎ , 𝑄⋆𝑐ℎ = 𝑄ℎ × 𝑄̄𝑐ℎ and 𝑋⋆𝑐
ℎ = 𝑉 ⋆𝑐

ℎ ×𝑄⋆𝑐ℎ .
The post-processing is given by: for 𝒑ℎ, the pressure solution of the

equal-order HDG or E-HDG method with a sufficiently small pressure
penalty parameter, find (𝒖⋆ℎ ,𝒑

⋆
ℎ ) ∈ 𝑋⋆𝑐

ℎ satisfying

𝑎ℎ(𝒖⋆ℎ , 𝒗ℎ) + 𝑏ℎ(𝒑
⋆
ℎ , 𝑣ℎ) = 𝑏ℎ(𝒑ℎ, 𝑣ℎ), ∀𝒗ℎ ∈ 𝑉 ⋆𝑐

ℎ ,

𝑏ℎ(𝒒ℎ, 𝑢⋆ℎ ) − 𝑐ℎ(𝒑
⋆
ℎ , 𝒒ℎ) = 0, ∀𝒒ℎ ∈ 𝑄⋆𝑐ℎ ,

(33)

with a mild pressure penalty parameter 𝛾𝑜 in the term 𝑐ℎ, say 𝛾𝑜 = 1 with
𝑝 = 𝜈. Notice that we devise the post-processing to get a better pressure
pproximation 𝒑⋆ℎ , and the velocity 𝒖⋆ℎ is only an auxiliary variable.

Remark 6. In the implementation, 𝑏ℎ(𝒑ℎ, 𝑣ℎ) is replaced by
(

𝑓, 𝑣ℎ
)

ℎ
−

𝑎ℎ(𝒖ℎ, 𝒗ℎ), because 𝑏ℎ(𝒑ℎ, 𝑣ℎ) =
(

𝑓, 𝑣ℎ
)

ℎ
− 𝑎ℎ(𝒖ℎ, 𝒗ℎ), for ∀𝒗ℎ ∈ 𝑉 ⋆𝑐

ℎ .

Next, consider the following Stokes problem

𝜈∇2𝑢⋆ + ∇𝑝⋆ = ∇𝑝, in 𝛺,

∇ ⋅ 𝑢⋆ = 0, in 𝛺,

𝑢⋆ = 0, on 𝜕𝛺.

(34)

It is obvious that 𝑢⋆ = 0, 𝑝⋆ = 𝑝.
We give a corresponding consistent form

𝑎ℎ(𝒖⋆, 𝒗ℎ) + 𝑏ℎ(𝒑⋆, 𝑣ℎ) = 𝑏ℎ(𝒑, 𝑣ℎ), ∀𝒗ℎ ∈ 𝑉 ⋆𝑐
ℎ ,

⋆ ⋆ ⋆𝑐 (35)

𝑏ℎ(𝒒ℎ, 𝑢 ) − 𝑐ℎ(𝒑 , 𝒒ℎ) = 0, ∀𝒒ℎ ∈ 𝑄ℎ .
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Introduce
𝜉⋆𝑢 = 𝑢⋆ − BDM𝑢⋆, 𝑒⋆𝑢 = 𝑢⋆ℎ − BDM𝑢⋆, 𝜉⋆𝑢 = tr(𝑢⋆) − ̄𝑐𝑉 𝑢

⋆,

𝑒⋆𝑢 = 𝑢̄⋆ℎ − ̄𝑐𝑉 𝑢
⋆,

𝜉⋆𝑝 = 𝑝⋆ − 𝑄𝑝⋆, 𝑒⋆𝑝 = 𝑝⋆ℎ − 𝑄𝑝⋆, 𝜉⋆𝑝 = tr(𝑝⋆) − ̄𝑐𝑄𝑝
⋆,

𝑒⋆𝑝 = 𝑝̄⋆ℎ − ̄𝑐𝑄𝑝
⋆,

where ̄𝑐𝑉 and ̄𝑐𝑄 are the 𝐿2 -projection operators onto 𝑉 𝑐
ℎ and 𝑄̄𝑐ℎ,

respectively. Set 𝝃⋆𝑢 = (𝜉⋆𝑢 , 𝜉
⋆
𝑢 ) = (0, 0), 𝒆⋆𝑢 = (𝑒⋆𝑢 , 𝑒

⋆
𝑢 ), 𝝃

⋆
𝑝 = (𝜉⋆𝑝 , 𝜉

⋆
𝑝 ) and

𝒆⋆𝑝 = (𝑒⋆𝑝 , 𝑒
⋆
𝑝 ).

Theorem 3. There is a unique solution
(

𝒖⋆ℎ ,𝒑
⋆
ℎ
)

∈ 𝑋⋆𝑐
ℎ to (33), the

pressure solution of which satisfies the following stability estimate and error
estimate:

|||𝒑⋆ℎ |||𝑝 ≤ 𝐶𝑝𝜎𝑜
−1
‖𝑓‖ +

𝜎𝑜−1𝑐𝐶𝑏𝑎𝐶𝑝
𝐶𝑐𝑎

‖𝑃𝐻𝑓‖ + 𝐶𝜎𝑜−1𝛾1∕2𝜈1∕2‖∇𝜓‖,

|||𝒑 − 𝒑⋆ℎ |||𝑝 ≤ 𝐶
[

𝜈ℎ𝑘‖𝑢‖𝑘+1 + (𝜈1∕2𝛾
1
2 + 1)ℎ𝑘+1‖𝑝‖𝑘+1

]

,

ith 𝐶 > 0 a constant independent of ℎ, 𝛾 and 𝜈, and 𝜎𝑜 in (36), 𝑃𝐻𝑓 the
elmholtz-Hodge projector of 𝑓 and ∇𝜓 = 𝑓 − 𝑃𝐻𝑓 with 𝜓 ∈ 𝐻1(𝛺)∕R.

emark 7. Comparing the stability and error estimates of the pressure
n Theorems 1 and 2, the estimates of the post-processed pressure in
heorem 3 have no dependence on the value of 𝜎−1.

Proof. By Remark 2, there is a constant 𝜎𝑜 > 0 independent of ℎ and
𝜈 such that for ∀(𝒗ℎ, 𝒒ℎ) ∈ 𝑋⋆𝑐

ℎ

𝜎𝑜|||(𝒗ℎ, 𝒒ℎ)|||𝑣,𝑝 ≤ sup
(𝒘ℎ ,𝒓ℎ)∈𝑋⋆𝑐ℎ

×
𝑎ℎ(𝒗ℎ,𝒘ℎ) + 𝑏ℎ(𝒒ℎ, 𝑤ℎ) − 𝑏ℎ(𝒓ℎ, 𝑣ℎ) + 𝑐ℎ(𝒒ℎ, 𝒓ℎ)

|||(𝒘ℎ, 𝒓ℎ)|||𝑣,𝑝
.

(36)

The well-posedness of (33) follows using this discrete inf–sup stability.
By (33) and 𝑏ℎ(𝒑ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ)ℎ − 𝑎ℎ(𝒖ℎ, 𝒗ℎ),∀𝒗ℎ ∈ 𝑉 ⋆𝑐

ℎ , we have

𝑎ℎ(𝒖⋆ℎ , 𝒗ℎ) + 𝑏ℎ(𝒑
⋆
ℎ , 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝑢

⋆
ℎ ) + 𝑐ℎ(𝒑

⋆
ℎ , 𝒒ℎ) =

(

𝑓, 𝑣ℎ
)

ℎ
− 𝑎ℎ(𝒖ℎ, 𝒗ℎ).

(37)

sing the discrete inf–sup stability (36), Cauchy–Schwarz inequality,
he discrete Poincaré inequality (5), the boundedness of 𝑎ℎ in (6) and
4) yields

𝜎𝑜|||(𝒖⋆ℎ ,𝒑
⋆
ℎ )|||𝑣,𝑝 ≤ sup

(𝒗ℎ ,𝒒ℎ)∈𝑋⋆𝑐ℎ

(

𝑓, 𝑣ℎ
)

ℎ
− 𝑎ℎ(𝒖ℎ, 𝒗ℎ)

|||(𝒗ℎ, 𝒒ℎ)|||𝑣,𝑝
≤ 𝐶𝑝𝜈

− 1
2
‖𝑓‖

+ 𝑐𝐶𝑏𝑎𝜈
1
2
|||𝒖ℎ|||𝑣.

(38)

Then, the stability estimate follows from the energy estimate (16) of
the velocity.

By (35) and 𝑏ℎ(𝒑, 𝑣ℎ) = (𝑓, 𝑣ℎ)ℎ − 𝑎ℎ(𝒖, 𝒗ℎ),∀𝒗ℎ ∈ 𝑉 ⋆𝑐
ℎ , we have

ℎ(𝒖⋆, 𝒗ℎ)+𝑏ℎ(𝒑⋆, 𝑣ℎ)−𝑏ℎ(𝒒ℎ, 𝑢⋆)+𝑐ℎ(𝒑⋆, 𝒒ℎ) = (𝑓, 𝑣ℎ)ℎ −𝑎ℎ(𝒖, 𝒗ℎ). (39)

ubtracting (37) from (39) leads to

𝑎ℎ(𝒆⋆𝑢 , 𝒗ℎ) + 𝑏ℎ(𝒆
⋆
𝑝 , 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝑒

⋆
𝑢 ) + 𝑐ℎ(𝒆

⋆
𝑝 , 𝒒ℎ)

= 𝑎ℎ(𝝃⋆𝑢 , 𝒗ℎ) + 𝑏ℎ(𝝃
⋆
𝑝 , 𝑣ℎ) − 𝑏ℎ(𝒒ℎ, 𝜉

⋆
𝑢 ) + 𝑐ℎ(𝝃

⋆
𝑝 , 𝒒ℎ) + 𝑎ℎ(𝒖 − 𝒖ℎ, 𝒗ℎ).

(40)

e notice 𝑎ℎ(𝝃⋆𝑢 , 𝒗ℎ) = 𝑏ℎ(𝒒ℎ, 𝜉⋆𝑢 ) = 0 with 𝝃⋆𝑢 = (0, 0). Then we use the
iscrete inf–sup stability (36) and (40), yielding

𝜎𝑜|||(𝒆⋆𝑢 , 𝒆
⋆
𝑝 )|||𝑣,𝑝 ≤ sup

(𝒗ℎ ,𝒒ℎ)∈𝑋⋆𝑐ℎ

𝑎ℎ(𝒖 − 𝒖ℎ, 𝒗ℎ) + 𝑏ℎ(𝝃⋆𝑝 , 𝑣ℎ) + 𝑐ℎ(𝝃
⋆
𝑝 , 𝒒ℎ)

|||(𝒗ℎ, 𝒒ℎ)|||𝑣,𝑝
.

(41)
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We use the boundedness of 𝑎ℎ in (6), the boundedness of 𝑏ℎ (7) and
Cauchy–Schwarz inequality to obtain

𝑎ℎ(𝒖 − 𝒖ℎ, 𝒗ℎ) ≤ 𝜈𝐶𝑏𝑎 |||𝒖 − 𝒖ℎ|||𝑣′ |||𝒗ℎ|||𝑣,

𝑏ℎ(𝝃⋆𝑝 , 𝑣ℎ) ≤ 𝐶𝑏𝑏 |||𝒗ℎ|||𝑣|||𝝃
⋆
𝑝 |||𝑝′

,

𝑐ℎ(𝝃⋆𝑝 , 𝒒ℎ) ≤ 𝜈−1|𝒒ℎ|𝑝|𝝃
⋆
𝑝 |𝑝

.

(42)

By inserting (42) into (41),

|||(𝒆⋆𝑢 , 𝒆
⋆
𝑝 )|||𝑣,𝑝 ≤ 𝐶𝜈1∕2|||𝒖 − 𝒖ℎ|||𝑣′ + 𝐶𝜈

−1∕2
|||𝝃⋆𝑝 |||𝑝′ . (43)

Using the triangle inequality and (43), we have

|||(𝒖⋆ − 𝒖⋆ℎ ,𝒑
⋆ − 𝒑⋆ℎ )|||𝑣,𝑝 ≤ |||(𝝃⋆𝑢 , 𝝃

⋆
𝑝 )|||𝑣,𝑝 + |||(𝒆⋆𝑢 , 𝒆

⋆
𝑝 )|||𝑣,𝑝

≤ 𝐶𝜈1∕2|||𝒖 − 𝒖ℎ|||𝑣′ + 𝐶𝜈
−1∕2

|||𝝃⋆𝑝 |||𝑝′ .
(44)

Then, the pressure error estimate follows from (44), the interpolation
estimates of the 𝐿2 -projection operators and the velocity error bound
(21). □

Remark 8. When we take the value of 𝛾 too small, we will comment
on the post-processing in solving the Navier–Stokes equations. For the
steady Navier–Stokes problem, it only need a post-processing for the
pressure solution after the Picard iterations. For the time-dependent
Navier–Stokes problem, when we only need the pressure solution at
the final time, in fact, we also only need to do a post-processing for
the pressure solution at the final time. When we need to compute the
discrete error of the pressure in the 𝐿2(0, 𝑡;𝐿2(𝛺)) norm, we have to do
a post-processing for every time step, which is indeed very expensive. In
the numerical simulation of incompressible flows, the velocity solution
is often the most important variable which we care about. Thus when
we do not care about the pressure solution, we do not need to do a
post-processing for the pressure.

7. Numerical examples

In this section, some numerical experiments are presented to sup-
port our analytical results. Numerical examples have been run on
the high order finite element library NGSolve [30]. In all numerical
examples, the velocity penalty parameter 𝜂 is chosen to be 10𝑘2, and the
regular triangulations with diagonals (from bottom right to top left),
with the same number of subdivisions on each coordinate direction,
are used.

7.1. No-flow problem

In this numerical example, we test the equal-order HDG and E-
HDG methods with small pressure penalty parameters. We consider the
No-flow problem where the exact solution for the Stokes equations is
𝑢 = (0, 0), 𝑝 = R

(

𝑦3 − 𝑦2∕2 + 𝑦 − 7∕12
)

in the unit square 𝛺 = (0, 1)2 [9].
The right-hand side 𝑓 =

(

0,R
(

1 − 𝑦 + 3𝑦2
))

and R = 100.
Set 𝜈 = 10−4 and the polynomial order 𝑘 = 2. We use the mesh with

𝑁 = 10 subdivisions in each coordinate direction. It can be observed
in Table 1 that the velocity errors for the equal-order HDG and E-HDG
methods tend to be pressure-robust, and ‖∇ℎ ⋅ 𝑢ℎ‖ and |

|

𝑢ℎ||nj tend to
0 as 𝛾 → 0. For the equal-order EDG method, it does not tend to be
pressure-robust, and |

|

𝑢ℎ||nj does not tend to 0 as 𝛾 → 0.

7.2. The numerical performance of post-processing

In this subsection, we consider the numerical performances of the
post-processing for the equal-order HDG method. We take the analytical
solution (𝑢, 𝑝) of the Stokes equations on the two-dimensional square
domain 𝛺 = (0, 1)2, as follows:

5 5
𝑢 = 𝑐𝑢𝑟𝑙(𝜒), 𝑝 = 𝑥 + 𝑦 − 1∕3, (45)
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Table 1
The numerical performances of equal-order HDG, E-HDG, and EDG methods with small
pressure penalty parameter.
𝛾 ‖𝑢 − 𝑢ℎ‖ ‖∇ℎ(𝑢 − 𝑢ℎ)‖ ‖𝑝 − 𝑝ℎ‖ ‖∇ℎ ⋅ 𝑢ℎ‖ |

|

𝑢ℎ||nj
Equal-order HDG

1.00e+00 3.18e−05 2.66e−03 2.60e−04 2.85e−03 6.88e−04
1.00e−01 3.19e−06 2.66e−04 2.60e−04 2.86e−04 6.91e−05
1.00e−02 3.19e−07 2.66e−05 2.60e−04 2.86e−05 6.91e−06
1.00e−03 3.19e−08 2.66e−06 2.60e−04 2.86e−06 6.91e−07
1.00e−04 3.19e−09 2.66e−07 2.60e−04 2.86e−07 6.91e−08

Equal-order E-HDG

1.00e+00 3.48e−05 2.65e−03 2.60e−04 2.85e−03 6.88e−04
1.00e−01 3.48e−06 2.65e−04 2.60e−04 2.86e−04 6.91e−05
1.00e−02 3.49e−07 2.65e−05 2.60e−04 2.86e−05 6.91e−06
1.00e−03 3.49e−08 2.65e−06 2.60e−04 2.86e−06 6.91e−07
1.00e−04 3.49e−09 2.65e−07 2.60e−04 2.86e−07 6.91e−08

Equal-order EDG

1.00e+00 3.90e−03 2.83e−01 3.28e−04 4.62e−03 1.81e−01
1.00e−01 3.86e−03 2.81e−01 3.28e−04 4.62e−04 1.81e−01
1.00e−02 3.85e−03 2.81e−01 3.28e−04 4.62e−05 1.81e−01
1.00e−03 3.85e−03 2.81e−01 3.28e−04 4.62e−06 1.81e−01
1.00e−04 3.85e−03 2.81e−01 3.28e−04 4.62e−07 1.81e−01

Table 2
The numerical performance of the equal-order HDG method with the post-processing,
with different parameters 𝛾, and ‘×’ represents no post-processing.
𝛾 ‖𝑢 − 𝑢ℎ‖ ‖∇ℎ(𝑢 − 𝑢ℎ)‖ ‖𝑝 − 𝑝ℎ‖ ‖𝑝 − 𝑝⋆ℎ ‖ ‖∇ℎ ⋅ 𝑢ℎ‖ |

|

𝑢ℎ||nj
1.00e+02 1.02e−06 6.61e−05 2.89e−08 × 5.91e−05 2.61e−06
1.00e+01 3.33e−07 2.09e−05 2.48e−08 × 8.02e−06 6.16e−07
1.00e+00 3.21e−07 1.98e−05 2.45e−08 × 8.46e−07 7.09e−08
1.00e−01 3.22e−07 1.99e−05 2.45e−08 × 8.51e−08 7.20e−09
1.00e−02 3.23e−07 1.99e−05 2.45e−08 × 8.52e−09 7.21e−10
1.00e−03 3.23e−07 1.99e−05 2.45e−08 × 8.52e−10 7.21e−11
1.00e−04 3.23e−07 1.99e−05 2.45e−08 × 8.52e−11 7.21e−12
1.00e−05 3.23e−07 1.99e−05 2.45e−08 × 8.52e−12 7.21e−13
1.00e−06 3.23e−07 1.99e−05 2.45e−08 × 8.69e−13 7.60e−14
1.00e−07 3.23e−07 1.99e−05 2.50e−08 × 1.79e−13 2.26e−14
1.00e−08 3.23e−07 1.99e−05 5.88e−08 3.08e−08 1.61e−13 1.94e−14
1.00e−09 3.23e−07 1.99e−05 5.34e−07 3.08e−08 1.54e−13 1.86e−14
1.00e−10 3.23e−07 1.99e−05 5.34e−06 3.08e−08 9.07e−14 2.43e−14
1.00e−11 3.23e−07 1.99e−05 5.34e−05 3.08e−08 1.66e−13 2.59e−14
1.00e−12 3.23e−07 1.99e−05 5.34e−04 3.08e−08 1.56e−13 2.21e−14
1.00e−13 3.23e−07 1.99e−05 5.34e−03 3.08e−08 1.39e−13 2.08e−14
1.00e−14 3.23e−07 1.99e−05 5.34e−02 3.08e−08 3.74e−13 2.37e−14

where 𝜒 = 𝑥2(𝑥− 1)2𝑦2(𝑦− 1)2, see [25, Subsection 4.2]. Here, we take
= 10−4. The right-hand side 𝑓 and the Dirichlet boundary condition

are derived from the exact solution.
Use the mesh with 𝑁 = 10 subdivisions in each coordinate direction

nd the polynomial order 𝑘 = 4. Here, for smooth solutions, it is prefer-
ble to use higher-order finite elements with the post-processing. From
able 2, we can observe that for the equal-order HDG method, a suffi-
iently small pressure penalty parameter 𝛾 cause the over-stabilization
f the pressure (when 𝛾 is less than 10−8). After the post-processing,
e get a stable and accurate pressure approximation. Then, by taking
= 10−11, we test the convergence rates of the equal-order HDG method

with the post-processing, with different viscosity 𝜈. The meshes with
𝑁 = 5, 10, 20 and 40 subdivisions in each coordinate direction are
used. It can be observed in Table 3 that the errors in the velocity
for the equal-order HDG method with the post-processing are indeed
independent of viscosity, as expected from Theorem 2. Optimal rates of
convergence are observed for 𝜈 = 1 and 𝜈 = 10−5, respectively. We also
notice that the convergence rate of the pressure is 5 for small viscosity
𝜈 = 10−5, as expected from the pressure estimate in Theorem 3.

In addition, the equal-order E-HDG method with the post-processing
also have similar numerical performance(for brevity not shown here).
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Table 3
The equal-order HDG method with the post-processing, 𝛾 = 10−11, polynomial order
𝑘 = 4.
𝑁 ‖𝑢 − 𝑢ℎ‖ Rate ‖∇ℎ(𝑢 − 𝑢ℎ)‖ Rate ‖𝑝 − 𝑝⋆ℎ ‖ Rate

𝜈 = 1

5 3.39e−06 1.32e−04 1.55e−04
10 1.05e−07 5.0 8.06e−06 4.0 8.93e−06 4.1
20 3.20e−09 5.0 4.91e−07 4.0 5.02e−07 4.2
40 9.83e−11 5.0 3.01e−08 4.0 2.89e−08 4.1

𝜈 = 10−5

5 3.39e−06 1.32e−04 3.25e−07
10 1.05e−07 5.0 8.06e−06 4.0 9.81e−09 5.1
20 3.20e−09 5.0 4.91e−07 4.0 3.03e−10 5.0
40 1.08e−10 4.9 3.01e−08 4.0 9.45e−12 5.0

8. Conclusions

In this paper, we analyze an equal-order HDG method with a small
pressure penalty parameter for the Stokes equations. When the pressure
penalty parameter 𝛾 tends to 0, the velocity approximation tends to
be H(div)-conforming and exactly divergence-free, and the velocity
error tends to be pressure-robust. To avoid that a sufficiently small
pressure penalty parameter cause the over-stabilization of the pressure,
we provide a post-processing procedure.
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Appendix. Velocity error in the 𝑳𝟐-norm

Firstly, we consider the following Stokes problem:

−𝜈∇2𝜒 + ∇𝜆 = 𝑔, in 𝛺,

∇ ⋅ 𝜒 = 0, in 𝛺,

𝜒 = 0, on 𝜕𝛺.

(A.1)

The solution (𝜒, 𝜆) to (A.1) has the following regularity assumption [31,
Assumption A7]:
√

𝜈 ‖𝜒‖2 + ‖𝜆‖1 ≤ 𝐶 ‖𝑔‖ . (A.2)

Introducing the following approximation errors

𝜉𝜒 = 𝜒 − BDM𝜒, 𝜉𝜒 = tr(𝜒) − ̄𝑉 𝜒,

𝜉𝜆 = 𝜆 − 𝑆𝑍𝜆, 𝜉𝜆 = tr(𝜆) − ̄𝑆𝑍𝜆,

where 𝑆𝑍𝜆 is the continuous Scott–Zhang interpolant [29] and ̄𝑆𝑍𝜆 =
𝑆𝑍𝜆|| ∈ 𝑄̄ℎ. Set 𝝃𝜒 = (𝜉𝜒 , 𝜉𝜒 ) and 𝝃𝜆 = (𝜉𝜆, 𝜉𝜆).

Theorem 4. Under the settings of Theorem 2, we have

‖

‖

𝑢 − 𝑢ℎ‖‖ ≤ 𝐶(ℎ𝑘+1‖𝑢‖𝑘+1 + 𝛾
1
2 𝜈−

1
2 ℎ𝑘+2‖𝑝‖𝑘+1), (A.3)

with 𝐶 > 0 independent of ℎ, 𝛾 and 𝜈.

Proof. Firstly, taking 𝑔 = 𝑢 − 𝑢ℎ in (A.1), it is easy to obtain

𝑎ℎ(𝒖 − 𝒖ℎ, (𝜒, tr(𝜒))) + 𝑏ℎ(𝒑 − 𝒑ℎ, 𝜒) + 𝑏ℎ((𝜆, tr(𝜆)), 𝑢 − 𝑢ℎ)

− 𝑐ℎ
(

𝒑 − 𝒑ℎ, (𝜆, tr(𝜆))
)

=
∑

𝐾∈ℎ
∫𝐾

(𝑢 − 𝑢ℎ) ⋅
(

−𝜈∇2𝜒 + ∇𝜆
)

d𝑥 = ‖

‖

𝑢 − 𝑢ℎ‖‖
2 .

(A.4)

In addition, we have the following error equation

𝑎ℎ(𝒖 − 𝒖ℎ, 𝒗ℎ) + 𝑏ℎ(𝒑 − 𝒑ℎ, 𝑣ℎ) + 𝑏ℎ(𝒒ℎ, 𝑢 − 𝑢ℎ) − 𝑐ℎ
(

𝒑 − 𝒑ℎ, 𝒒ℎ
)

= 0.
(A.5)
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We subtract (A.5) from (A.4) and take 𝒗ℎ = (BDM𝜒, ̄𝑉 𝜒) and 𝒒ℎ =
(𝑆𝑍𝜆, ̄𝑆𝑍𝜆) to obtain

‖

‖

𝑢 − 𝑢ℎ‖‖
2 =𝑎ℎ(𝒖 − 𝒖ℎ, 𝝃𝜒 ) + 𝑏ℎ(𝒑 − 𝒑ℎ, 𝜉𝜒 ) + 𝑏ℎ(𝝃𝜆, 𝑢 − 𝑢ℎ)

− 𝑐ℎ(𝒑 − 𝒑ℎ, 𝝃𝜆)

= 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4.

(A.6)

ow, we estimate each term in (A.6). By the boundedness of 𝑎ℎ, the
irst inequality of (28) and the regularity condition (A.2),

1 ≤ 𝐶𝜈|||𝒖 − 𝒖ℎ|||𝑣′ |||𝝃𝜒 |||𝑣′ ≤ 𝐶𝜈ℎ|||𝒖 − 𝒖ℎ|||𝑣′‖𝜒‖2
≤ 𝐶

√

𝜈ℎ|||𝒖 − 𝒖ℎ|||𝑣′ ‖‖𝑢 − 𝑢ℎ‖‖ ,

here for the first inequality, we use the boundedness of 𝑎ℎ on the
xtended space 𝑉 ⋆(ℎ) in [25, Lemma 10]. Noticing that 𝑇2 = 0. For
3, we use the boundedness of 𝑏ℎ (7), the continuous Scott–Zhang
nterpolant estimate, and the regularity condition (A.2) to obtain

𝑇3 ≤ 𝐶𝑏𝑏 |||𝒖 − 𝒖ℎ|||𝑣|||𝝃𝜆|||𝑝′ ≤ 𝐶ℎ|||𝒖 − 𝒖ℎ|||𝑣||𝜆||1 ≤ 𝐶ℎ|||𝒖 − 𝒖ℎ|||𝑣‖𝑢 − 𝑢ℎ‖.

or 𝑇4, noting ̄𝑆𝑍𝜆 = 𝑆𝑍𝜆|| , we have 𝑇4 = 0. We collect the error
ounds of the right-hand side of (A.6), and divide both sides of (A.6)
y ‖

‖

𝑢 − 𝑢ℎ‖‖. Then, we have

‖

‖

𝑢 − 𝑢ℎ‖‖ ≤ 𝐶ℎ|||𝒖 − 𝒖ℎ|||𝑣′ .

his completes the proof. □
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