
Computers and Mathematics with Applications 100 (2021) 167–181
Contents lists available at ScienceDirect

Computers and Mathematics with Applications

www.elsevier.com/locate/camwa

Analysis of the local and parallel space-time algorithm for the heat

equation

Dandan Xue a, Yanren Hou a,∗, Yi Li b

a School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
b School of Mathematics, Northwest University, Xi’an, Shaanxi 710127, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Time-dependent

Parareal

Spectral deferred correction

Local and parallel algorithm

Superposition principle

In this paper, a second-order local and parallel space-time algorithm is proposed and analyzed for the heat
equation. This scheme is based on the parareal with spectral deferred correction method in time and the
expandable local and parallel finite element method in space. It realizes the parallelism both in the temporal
as well as in the spatial direction. We prove its stability and the optimal error estimation in 𝐿2-norm. At last,
several numerical experiments are presented to demonstrate the effectiveness of our parallel scheme.

1. Introduction

With the rapid development of high performance computers, parallel algorithms have attracted more attention. It is necessary to exploit parallel
algorithm which can use large numbers of cores simultaneously. Although there are many parallel algorithms based on domain decomposition to
solve the time dependent partial differential equations, the spatial parallel speedup will saturate as more processors are available. In fact, there is
another direction to improve the efficiency, which is parallel in the temporal direction.

In 2001, Lions et al. [1] first provided the parareal algorithm, which is a time integration scheme to compute the numerical solutions of ordinary
differential equations or discretized partial differential equations in parallel in the temporal direction. The main idea of parareal method is to
decompose the global problem in the time direction into a series of independent subproblems, which can be solved concurrently in each time
subinterval. Since this algorithm was proposed, it has received a lot of attention. Convergence and stability of the parareal algorithm have been
discussed in [2–6]. The detailed analysis of the scheduling of tasks in parareal algorithm was proposed in [7]. In addition, several variants for
parareal method have been proposed, see [8–12]. The parareal algorithm has been successfully applied to a variety of problems, such as quantum
system [13], the first and second hyperbolic system [14], Navier-Stokes equations [15], Stokes/Darcy equations [16], the linear structural dynamic
system [17], parabolic optimal control problems [18] and so on.

To realize the combination of spatial parallelism with time parallelism, we utilize the expandable local and parallel finite element method for the
spatial parallelism. This idea is inspired by the expandable local and parallel two-grid finite element scheme in [19]. In fact, the local and parallel
finite element algorithms based on two-grid discretizations was first proposed in [20,21] and further analyzed for other problems, such as the Stokes
problem [22,23], the Navier-Stokes problem [24], the eigenvalue problems [25], the time-dependent convection-diffusion equations [26] and so on.
The authors of [19] proposed an improved scheme, an expandable local and parallel two-grid finite element scheme for Poisson equations, which
can be easily implemented on large parallel computers. What’s the difference in this paper is that we use the idea of expandable local and parallel
finite element method with the same grid size to realize the spatial parallelism.

The outline of this paper is as follows. Section 2 provides some preliminary materials. In Section 3, we provide the parareal method based on the
spectral deferred correction method. Then combining the expandable local and parallel finite element method to realize the spatial parallelism, so
we construct the local and parallel space-time algorithm with second order accuracy in time. The stability and convergence results for the space-time
parallel algorithm are obtained in Section 4 and 5, respectively. Then the numerical experiments in Section 6 are devoted to support the results of
our theoretical analysis. Finally, a brief conclusion and outlook are given in the last section.

* Corresponding author.

E-mail addresses: dandanxue@stu.xjtu.edu.cn (D. Xue), yrhou@mail.xjtu.edu.cn (Y. Hou), liyizz@nwu.edu.cn (Y. Li).
https://doi.org/10.1016/j.camwa.2021.09.008

Received 19 June 2020; Received in revised form 14 September 2021; Accepted 17 September 2021

0898-1221/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2021.09.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2021.09.008&domain=pdf
mailto:dandanxue@stu.xjtu.edu.cn
mailto:yrhou@mail.xjtu.edu.cn
mailto:liyizz@nwu.edu.cn
https://doi.org/10.1016/j.camwa.2021.09.008

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
2. Preliminaries

Let 𝑇 > 0 be a finite time, then we consider the initial-boundary value problem for the heat equation with Dirichlet boundary condition in a
bounded domain Ω ∈ℝ𝑑 , 𝑑 = 2 or 3:

⎧⎪⎨⎪⎩
𝑢𝑡 −Δ𝑢 = 𝑓 in Ω× (0, 𝑇],
𝑢 = 0 on 𝜕Ω× (0, 𝑇],
𝑢(𝑥,0) = 𝑢0(𝑥) = 0 in Ω,

(1)

where 𝑢 = 𝑢(𝑥, 𝑡) is the temperature and 𝑓 = 𝑓 (𝑥, 𝑡) is the density of the heat source.

Throughout this paper, for the bounded domain Ω, we denote (⋅, ⋅) as the usual inner product and ‖ ⋅ ‖Ω as the corresponding norm in 𝐿2(Ω). The
norm in 𝐻𝑘(Ω) is denoted by ‖ ⋅ ‖𝑘,Ω. The space 𝐻1

0 (Ω) = {𝑣 ∈ 𝐻1(Ω) ∶ 𝑣|𝜕Ω = 0} is equipped with the norm ‖∇ ⋅ ‖Ω, which is an equivalent norm of ‖ ⋅ ‖1,Ω due to the Poincaré inequality.

The weak formulation of (1) reads: find 𝑢 ∈𝐻1
0 (Ω) such that{

(𝑢𝑡, 𝑣) + 𝑎(𝑢, 𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ 𝐻1
0 (Ω),

𝑢(0) = 𝑢0 = 0.
(2)

Here 𝑎(𝑢, 𝑣) = (∇𝑢, ∇𝑣).
Let 𝑇 ℎ(Ω) = {𝜏ℎ

Ω} be a regular triangulation of Ω, where ℎ = max
𝜏ℎ
Ω∈𝑇 ℎ(Ω)

{diam(𝜏hΩ)} is the mesh size parameter. Associated with the mesh 𝑇 ℎ(Ω), we

set

𝑆ℎ(Ω) = {𝑣ℎ ∈ 𝐶0(Ω) ∶ 𝑣ℎ|𝜏ℎ
Ω
∈ 𝑃 𝑟

𝜏ℎ
Ω
, ∀𝜏ℎ

Ω ∈ 𝑇 ℎ(Ω)},

𝑆ℎ
0 (Ω) = 𝑆ℎ(Ω) ∩𝐻1

0 (Ω).

Here, 𝑟 ≥ 1 is a positive integer and 𝑃 𝑟

𝜏ℎ
Ω

is the space of polynomial of degree not greater than 𝑟 defined on 𝜏ℎ
Ω.

We introduce the Ritz projection 𝑃ℎ from 𝐻1
0 (Ω) onto 𝑆ℎ

0 (Ω) by requiring

𝑎(𝑢,𝑃ℎ𝑣− 𝑣) = 0, ∀𝑢 ∈ 𝑆ℎ
0 (Ω), 𝑣 ∈𝐻1

0 (Ω). (3)

The Ritz projection is stable in 𝐻1
0 (Ω), that is to say

‖∇𝑃ℎ𝑣‖Ω ≤ ‖∇𝑣‖Ω, ∀𝑣 ∈ 𝐻1
0 (Ω).

In addition, the Ritz projection has the property:

‖𝑃ℎ𝑣− 𝑣‖Ω + ℎ‖∇(𝑃ℎ𝑣− 𝑣)‖Ω ≤ 𝐶𝑅ℎ𝑟+1‖𝑣‖𝑟+1,Ω, ∀𝑣 ∈ 𝐻1
0 (Ω) ∩𝐻𝑟+1(Ω). (4)

We recall the Poincaré inequality: there exists constant 𝐶𝑝, which only depends on the region Ω, such that

‖𝑣‖Ω ≤ 𝐶𝑝‖∇𝑣‖Ω, ∀𝑣 ∈ 𝐻1
0 (Ω), (5)

the Young’s inequality with 𝜀:

𝑎𝑏 ≤ 𝜀𝑎2 + 1
4𝜀

𝑏2, (𝑎, 𝑏 > 0, 𝜀 > 0), (6)

and the Minkowski inequality: assume 1 ≤ 𝑝 ≤∞ and 𝑢, 𝑣 ∈𝐿𝑝(Ω), then

‖𝑢+ 𝑣‖𝐿𝑝(Ω) ≤ ‖𝑢‖𝐿𝑝(Ω) + ‖𝑣‖𝐿𝑝(Ω). (7)

3. The local and parallel space-time scheme

In this section, we propose a space-time parallel algorithm for the heat equation with second order accuracy in time. And we denote it as the
local and parallel space-time scheme. The temporal parallelism is achieved with the parareal method, the spatial parallelism is achieved with the
expandable local and parallel method, and the spectral deferred correction method is used to get the second-order scheme. However, in order to
introduce the final space-time parallel algorithm more clearly, we first introduce the parareal method. Then combining the idea of the expandable
local and parallel finite element method, we provide the special steps of the space-time parallel algorithm.

3.1. The parareal method

Let Δ𝑡 = 𝑇 ∕𝑁 be the time step length, and we divide the time interval [0, 𝑇] into 𝑁 subintervals [𝑡𝑛, 𝑡𝑛+1] by choosing points 𝑡𝑛 = 𝑛Δ𝑡 for
𝑛 = 0, … , 𝑁 − 1. For the parareal method, the subintervals are assigned to different processors. For simplicity, denote the processors 𝑃1 through 𝑃𝑁 .
Generally, we need two numerical ordinary differential equation step methods denoted by  and  . In addition, for the sake of efficiency of the
parareal method,  is computationally less expensive than  . In order to reduce the computational cost of , one can choose  with a larger time
step length or a coarser discretization in space or even a lower-order numerical method than  . Upon convergence, the accuracy of the parareal
method is limited by what one would obtain if  is used in serial. We are going to use the notations (𝑡𝑛+1, 𝑡𝑛, ̂𝑢) and  (𝑡𝑛+1, 𝑡𝑛, ̂𝑢), which means the
numerical solutions at time 𝑡𝑛+1 with the initial value 𝑢̂ at time 𝑡𝑛 by using  and  , respectively.
168

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
For the first step of parareal method,  is used to compute a provisional solution of (1) at all nodes sequentially, i.e.,

𝑢𝑛+1
1 = (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

1), 𝑛 = 0,… ,𝑁 − 1.

As soon as each processor 𝑃𝑛+1 obtains the initial value 𝑢𝑛
𝑘

and the provisional solution 𝑢𝑛+1
𝑘

with the iteration number 𝑘 ≥ 1, one can compute a
more accurate approximate solution  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

𝑘
) at each 𝑡𝑛+1 in parallel. Then the final serial correction step takes the form

𝑢𝑛+1
𝑘+1 = (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

𝑘+1) + (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
𝑘
) − (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

𝑘
), (8)

for 𝑛 = 0, … , 𝑁−1. The parareal method proceeds iteratively alternating between the parallel computation of  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
𝑘
) and the serial computation

of (8), which requires computing the  propagator.

Next, we provide a second-order time parallel algorithm based on parareal method for the heat equation (1). First, we select the backward Euler
method as . Note again that, upon convergence, the accuracy of parareal method is limited by what one would obtain if  is used in serial. We
utilize the second-order spectral deferred correction (SDC) sweep as  . Therefore we provide a simple introduction of SDC method.

The SDC method [27–29] is one kind of high-order numerical methods, which uses a low order numerical method to get an approximation
solution with higher-order accuracy by solving a series of deferred correction equations during each time step. Next we introduce the classical
formulation of SDC method by quoting symbols from the literature [29]. The initial value problem reads{

𝜙′(𝑡) = 𝐹 (𝑡,𝜙(𝑡)), 𝑡 ∈ [0, 𝑇],

𝜙(0) = 𝜙0,

with 𝜙(𝑡), 𝜙0 ∈ ℂ𝑑 and 𝐹 ∶ℝ ×ℂ𝑑 → ℂ𝑑 . Let us first divide the time interval [0, 𝑇] into several intervals [𝑡𝑛, 𝑡𝑛+1] = [𝑡𝑛, 𝑡𝑛 +Δ𝑡] with Δ𝑡 = 𝑇 ∕𝑁 . Then
choosing points 𝑡𝑚 for 𝑚 = 0, … , 𝑝 with 𝑡𝑛 = 𝑡0 < 𝑡1 < … < 𝑡𝑝 = 𝑡𝑛+1, so we obtain 𝑝 subintervals [𝑡𝑚, 𝑡𝑚+1] = [𝑡𝑚, 𝑡𝑚 +Δ𝑡𝑚]. If the approximate solutions
𝜙𝑚
1 , 𝑚 = 0, … , 𝑝, have been obtained by using the backward Euler method, then the SDC method based on the Euler methods is the following

formulation:

𝜙𝑚+1
𝑘+1 = 𝜙𝑚

𝑘+1 + Δ𝑡𝑚[𝐹 (𝑡𝑚+1, 𝜙𝑚+1
𝑘+1) − 𝐹 (𝑡𝑚+1, 𝜙𝑚+1

𝑘
)] + 𝐼𝑚+1

𝑚
(𝜙𝑘). (9)

𝐼𝑚+1
𝑚

(𝜙𝑘) denotes the numerical quadrature approximation to ∫ 𝑡𝑚+1

𝑡𝑚
𝐹 (𝜏, 𝜙𝑘(𝜏))𝑑𝜏 , and 𝜙𝑘 denotes the approximation solution with 𝑘 total iterations

or 𝑘 − 1 iterations of correction equation. As long as the accuracy of quadrature approximation 𝐼𝑚+1
𝑚

(𝜙𝑘) can be guaranteed, 𝜙𝑚+1
𝑘+1 is a numerical

solution with the global accuracy 𝑂(Δ𝑡𝑘+1). The readers are referred to [27–29] for the detailed discussion of order of accuracy for SDC method. In
this paper, in order to construct a second-order scheme based on SDC, there is no need to divide interval [𝑡𝑛, 𝑡𝑛+1] into subintervals and we only use
the two integral points 𝑡𝑛 and 𝑡𝑛+1 to approximate ∫ 𝑡𝑛+1

𝑡𝑛
𝐹 (𝜏, 𝜙𝑘(𝜏))𝑑𝜏 by utilizing the trapezoid formula, that is

𝐼𝑛+1
𝑛

(𝜙𝑘) =
1
2
Δ𝑡[𝐹 (𝑡𝑛+1, 𝜙𝑘(𝑡𝑛+1)) + 𝐹 (𝑡𝑛,𝜙𝑘(𝑡𝑛))]. (10)

In addition, if 𝜙𝑛
1 and 𝜙𝑛+1

1 for 𝑛 = 1, 2, … , 𝑁 −1 have been obtained by using the backward Euler method, one iteration step (9) is sufficient to obtain
𝜙𝑛+1
2 with the accuracy 𝑂(Δ𝑡2). Hence, combining (9)-(10) leads to a second-order SDC sweep as follows:

𝜙𝑛+1
2 = 𝜙𝑛

2 + Δ𝑡𝐹 (𝑡𝑛+1, 𝜙𝑛+1
2) − 1

2
Δ𝑡𝐹 (𝑡𝑛+1, 𝜙𝑛+1

1) + 1
2
Δ𝑡𝐹 (𝑡𝑛,𝜙𝑛

1). (11)

Now we are ready to propose the second-order parareal algorithm for the heat equation. Let us select the backward Euler method as  and a
second-order SDC sweep as  . For the time interval [0, 𝑇], we divide it into N subintervals [𝑡𝑛, 𝑡𝑛+1] = [𝑡𝑛, 𝑡𝑛 + Δ𝑡], 𝑛 = 0, 1, … , 𝑁 − 1 with the time
step length Δ𝑡 = 𝑇 ∕𝑁 . For the first step of the parareal method, let us serially compute the provisional solutions 𝑢𝑛+1

1,ℎ ∶= (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
1,ℎ) ∈ 𝑆ℎ

0 (Ω),
𝑛 = 0, … , 𝑁 − 1, by using the backward Euler method as follows: find 𝑢𝑛+1

1,ℎ ∈ 𝑆ℎ
0 (Ω) such that ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω)

⎧⎪⎨⎪⎩
(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑢𝑛+1

1,ℎ , 𝑣ℎ) = (𝑓𝑛+1, 𝑣ℎ),

𝑢01,ℎ = 𝑃ℎ𝑢0 = 0.
(12)

Then, we consider a second-order SDC sweep (11) as  to compute  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
1,ℎ), 𝑛 = 0, 1, … , 𝑁 −1 in parallel. It is important to emphasize that we

compute  with the initial values 𝑢𝑛
1,ℎ, which has been obtained by the first step. So that we can simultaneously compute  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

1,ℎ) on the 𝑁
subintervals [𝑡𝑛, 𝑡𝑛+1]. Hence, for the heat equation, 𝑢̃𝑛+1

𝐹
∶=  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

1,ℎ) ∈ 𝑆ℎ
0 (Ω) satisfies

𝑢̃𝑛+1
𝐹

= 𝑢𝑛
1,ℎ +Δ𝑡𝐹 (𝑡𝑛+1, 𝑢̃𝑛+1

𝐹
) − 1

2
Δ𝑡𝐹 (𝑡𝑛+1, 𝑢𝑛+1

1,ℎ) + 1
2
Δ𝑡𝐹 (𝑡𝑛, 𝑢𝑛

1,ℎ),

where 𝐹 (𝑡, 𝑢(𝑥, 𝑡)) = 𝑓 (𝑥, 𝑡) +Δ𝑢(𝑥, 𝑡). It is easy to obtain the following weak formulation: find 𝑢̃𝑛+1
𝐹

∈ 𝑆ℎ
0 (Ω) over Ω × [𝑡𝑛, 𝑡𝑛+1] such that ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω)

(
𝑢̃𝑛+1
𝐹

− 𝑢𝑛
1,ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑢̃𝑛+1

𝐹
, 𝑣ℎ) = 𝑎(

𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣ℎ). (13)

Last, considering the third step of parareal method (8), we compute the final solution as follows:

𝑢̃𝑛+1 = (𝑡𝑛+1, 𝑡𝑛, 𝑢̃𝑛) + (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛) − (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛) ∈ 𝑆ℎ(Ω), 𝑛 = 0,… ,𝑁 − 1. (14)
2,ℎ 2,ℎ 1,ℎ 1,ℎ 0

169

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Remark 3.1. In principle, the parareal method proceeds iteratively alternating between the parallel computation of  and the serial computation
of (14), which requires computing . Note that the accuracy of  determines the overall accuracy. The convergence order of the parareal method
[3,5] is decided by the order of  and the number of iterations used when it is coupled with a sufficient accuracy  . And the convergence results
are obtained under some assumptions for  and  . For example, let  be the exact solution and let  satisfy the Lipschitz condition. Since we select
the first-order backward Euler method as  for the heat equation, it is easy to verify that  satisfies the Lipschitz condition, and the convergence
order in time will increase by one time with each iteration. Since we want to construct a second order algorithm, so only 2 iterations are used in
our algorithms.

Normally in real calculation, if we want to use the parareal method to obtain almost the same accuracy of  , it indeed needs more iterations
of the alternative steps between  and . However, there are only two iterations in our algorithm, no more iterations. In Section 6, we compute
the algorithm with more than two iterations, but the errors are bigger than that one with two iterations. And the algorithm with two iterations is
enough to obtain almost the same accuracy of  , which is used in serial. Therefore, the expected results can be obtained through two iterations
while considering the calculation time and the accuracy of our parallel algorithm.

3.2. The local and parallel space-time scheme

In this part, we propose a local and parallel space-time algorithm for the heat equation. For the time parallelism, it is based on parareal method,
so we can compute the solutions over all time steps in parallel. Then we combine it with the expandable local and parallel method [19] to realize
the spatial parallelism over each subdomain. In our local and parallel space-time scheme, we choose the backward Euler method as , and a second-

order SDC sweep with the expandable local and parallel method as  . Let us denote 𝑢𝑛+1
2,ℎ ∈ 𝑆ℎ

0 (Ω), 𝑛 = 0, … , 𝑁 − 1 as the ultimate approximate
solution of our space-time parallel scheme. The following parts are the specific steps of this algorithm.

For the first step, we compute the global solution 𝑢𝑛+1
1,ℎ ∶= (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

1,ℎ) ∈ 𝑆ℎ
0 (Ω), 𝑛 = 0, … , 𝑁 − 1, by using the backward Euler method (12)

serially.

The second step is to compute the solutions 𝑢𝑛+1
𝐹

∶=  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
1,ℎ) ∈ 𝑆ℎ

0 (Ω), 𝑛 = 0, … , 𝑁 − 1 in parallel. Since the initial value 𝑢𝑛
1,ℎ has been

obtained from the first step, we can calculate 𝑢𝑛+1
𝐹

over 𝑁 subintervals [𝑡𝑛, 𝑡𝑛+1], 𝑛 = 0, … , 𝑁 − 1, concurrently. Meanwhile, over each time step, we
utilize the expandable local and parallel scheme to realize the spatial parallelism. From the idea of this spatial parallel method, we first need to
construct a residual equation. Let us denote 𝑤𝑛+1 = 𝑢̃𝑛+1

𝐹
− 𝑢𝑛+1

1,ℎ ∈ 𝑆ℎ
0 (Ω), then we can construct a residual equation from (13): ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω),

(𝑤
𝑛+1

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑤𝑛+1, 𝑣ℎ) = −(

𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
, 𝑣ℎ) − 𝑎(𝑢𝑛+1

1,ℎ , 𝑣ℎ) + 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣ℎ). (15)

In other words, (15) is also a correction step for the provisional solution 𝑢𝑛+1
1,ℎ . Next, we are going to divide this problem (15) into several subproblems

on different computational domains to realize the spatial parallelism.

Assume that {𝜙𝑗}𝑀
𝑗=1 is a partition of unity on Ω for given 𝑀 ≥ 1 such that Ω ⊂ ⋃𝑀

𝑗=1 supp𝜙𝑗 and ∑𝑀

𝑗=1 𝜙𝑗 ≡ 1 on Ω. What’s more, we define a
coarser grid triangulation 𝑇 𝐻 (Ω), which aligns with the global regular triangulation 𝑇 ℎ(Ω) on Ω with 𝐻 > ℎ. Let us denote 𝐷𝑗 = supp𝜙𝑗 which aligns
with 𝑇 𝐻 (Ω). Then the residual equation (15) can be rewritten as:

(𝑤
𝑛+1

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑤𝑛+1, 𝑣ℎ) = −(

𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
,

𝑀∑
𝑗=1

𝜙𝑗𝑣ℎ) − 𝑎(𝑢𝑛+1
1,ℎ ,

𝑀∑
𝑗=1

𝜙𝑗𝑣ℎ) + 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
,

𝑀∑
𝑗=1

𝜙𝑗𝑣ℎ) + (𝑓
𝑛+1 + 𝑓𝑛

2
,

𝑀∑
𝑗=1

𝜙𝑗𝑣ℎ).

By superposition principle, the above equation is equivalent to the summation of the following subproblems: ∀𝑣ℎ ∈ 𝑆ℎ
0 (Ω), 𝑗 = 1, … , 𝑀 ,

(𝑤
𝑗,𝑛+1

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑤𝑗,𝑛+1, 𝑣ℎ) = −(

𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
,𝜙𝑗𝑣ℎ) − 𝑎(𝑢𝑛+1

1,ℎ ,𝜙𝑗𝑣ℎ) + 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ). (16)

And 𝑤𝑛+1 =
∑𝑀

𝑗=1 𝑤𝑗,𝑛+1. Obviously, each subproblem is driven by right-hand side term of a very small compact support with homogeneous Dirichlet
boundary condition in the entire domain Ω. In order to reduce the computational scale, we restrict the above subproblem in a local domain Ω𝑗 ⊃ 𝐷𝑗

instead of the global domain Ω. For each local domain Ω𝑗 , we consider 𝑇 ℎ(Ω𝑗) = 𝑇 ℎ(Ω)|Ω𝑗
= {𝜏ℎ

Ω𝑗
} and ℎ = max

1≤𝑗≤𝑀
max

𝜏ℎ
Ω𝑗

∈𝑇 ℎ(Ω𝑗)
{diam(𝜏ℎ

Ω𝑗
)}. And we define

the following finite element spaces

𝑆ℎ(Ω𝑗) = {𝑣ℎ ∈ 𝐶0(Ω𝑗) ∶ 𝑣ℎ|𝜏ℎ
Ω𝑗

∈ 𝑃 𝑟

𝜏ℎ
Ω𝑗

, ∀𝜏ℎ
Ω𝑗

∈ 𝑇 ℎ(Ω𝑗)},

𝑆ℎ
0 (Ω𝑗) = 𝑆ℎ(Ω𝑗) ∩𝐻1

0 (Ω𝑗).

On the other hand, one can extend the functions in 𝑆ℎ
0 (Ω𝑗) to functions in 𝑆ℎ

0 (Ω) with zero value outside Ω𝑗 . In this sense, we can regard 𝑆ℎ
0 (Ω𝑗) as

a subspace of 𝑆ℎ
0 (Ω). Hence, we can assume

𝑆ℎ
0 (Ω) =

⋃
1≤𝑗≤𝑀

𝑆ℎ
0 (Ω𝑗).

Now we choose the piecewise linear Lagrange basis functions as the partition of unity {𝜙𝑗}𝑀
𝑗=1 of Ω, and it is associated with the global coarser

grid triangulation 𝑇 𝐻 (Ω). Here 𝑀 is the number of vertices of 𝑇 𝐻 (Ω) and includes the boundary vertices. Hence, for each vertex 𝑗 of the coarse grid
𝑇 𝐻 (Ω), we still denote 𝐷𝑗 = supp𝜙𝑗 and assume the local domain Ω𝑗 is obtained by extending 𝐷𝑗 by one mesh layer, i.e.

Ω𝑗 =
⋃{

𝐷 | 𝐷 and 𝐷𝑗 share at least one vertex, 𝐷 ∈ {𝐷1,𝐷2,… ,𝐷𝑀}
}

.

It is obvious that

diam𝐷𝑗 ≊𝐻, dist(𝜕𝐷𝑗∖𝜕Ω, 𝜕Ω𝑗∖𝜕Ω) ≊𝐻.
170

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Here, 𝑥 ≊ 𝑦 means that 𝑐1𝑥 ≤ 𝑦 ≤ 𝐶1𝑥, for constants 𝑐1 and 𝐶1 that are independent of mesh size and time step length. So let us approximate the local
residual equation (16) over Ω𝑗 × [𝑡𝑛, 𝑡𝑛+1], 𝑗 = 1, … , 𝑀 , as follows: find 𝑤𝑗,𝑛+1

ℎ
∈ 𝑆ℎ

0 (Ω𝑗) such that ∀𝑣ℎ ∈ 𝑆ℎ
0 (Ω𝑗)

(
𝑤

𝑗,𝑛+1
ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑤𝑗,𝑛+1

ℎ
, 𝑣ℎ) = −(

𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
,𝜙𝑗𝑣ℎ) − 𝑎(𝑢𝑛+1

1,ℎ ,𝜙𝑗𝑣ℎ) + 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ). (17)

Obviously, since 𝑢𝑛+1
1,ℎ and 𝑢𝑛

1,ℎ have been obtained from (12), all subproblems (17) are mutually independent over each computational domain.
Therefore, we can solve (17), concurrently, over each sub-domain Ω𝑗 . Next let us extend 𝑤𝑗,𝑛+1

ℎ
to the entire domain Ω with zero value outside Ω𝑗

in 𝐻1
0 (Ω) and still denote 𝑤𝑗,𝑛+1

ℎ
as the extension. Then define the approximate solution

𝑢𝑛+1
𝐹

=𝑤𝑛+1
ℎ

+ 𝑢𝑛+1
1,ℎ =

𝑀∑
𝑗=1

𝑤
𝑗,𝑛+1
ℎ

+ 𝑢𝑛+1
1,ℎ ∈ 𝑆ℎ

0 (Ω).

The third step of parareal method, which is also the last step of the space-time parallel algorithm, is to compute 𝑢𝑛+1
𝐺

∶= (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
2,ℎ) ∈ 𝑆ℎ

0 (Ω)
by using the backward Euler method such that

(
𝑢𝑛+1
𝐺

− 𝑢𝑛
2,ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑢𝑛+1

𝐺
, 𝑣ℎ) = (𝑓𝑛+1, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω). (18)

Last, we derive the final approximate solution

𝑢𝑛+1
2,ℎ = (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

2,ℎ) + (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
1,ℎ) − (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

1,ℎ)

∶= 𝑢𝑛+1
𝐺

+ 𝑢𝑛+1
𝐹

− 𝑢𝑛+1
1,ℎ ∈ 𝑆ℎ

0 (Ω).
(19)

In conclusion, we summarize the specific steps of our local and parallel space-time scheme in Algorithm 3.1.

Algorithm 3.1 (The local and parallel space-time scheme for the heat equation).

Step 1. Compute 𝑢𝑛+1
1,ℎ ∶= (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

1,ℎ) ∈ 𝑆ℎ
0 (Ω), 𝑛 = 0, … , 𝑁 − 1, by using (12) in serial.

Step 2. Compute 𝑢𝑛+1
𝐹

∶=  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
1,ℎ) ∈ 𝑆ℎ

0 (Ω), 𝑛 = 0, … , 𝑁 − 1 in parallel. Time parallelism is achieved by computing 𝑢𝑛+1
𝐹

over the 𝑁 intervals
[𝑡𝑛, 𝑡𝑛+1], 𝑛 = 0, … , 𝑁 − 1, concurrently. Let’s take the interval [𝑡𝑛, 𝑡𝑛+1] as an example to show how the spatial parallelism is implemented.

a) Solve (17) concurrently over Ω𝑗 × [𝑡𝑛, 𝑡𝑛+1], 𝑗 = 1, … , 𝑀 to obtain 𝑤𝑗,𝑛+1
ℎ

∈ 𝑆ℎ
0 (Ω𝑗).

b) We extend 𝑤𝑗,𝑛+1
ℎ

to the entire domain Ω with zero value outside Ω𝑗 in 𝐻1
0 (Ω), and still use 𝑤𝑗,𝑛+1

ℎ
to denote the extension. Then we

define 𝑢𝑛+1
𝐹

= 𝑤𝑛+1
ℎ

+ 𝑢𝑛+1
1,ℎ =

𝑀∑
𝑗=1

𝑤
𝑗,𝑛+1
ℎ

+ 𝑢𝑛+1
1,ℎ ∈ 𝑆ℎ

0 (Ω).

Step 3. Compute 𝑢𝑛+1
𝐺

∶= (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
2,ℎ) ∈ 𝑆ℎ

0 (Ω), 𝑛 = 0, … , 𝑁 − 1, by using (18) in serial. Last, we obtain the final approximate solution 𝑢𝑛+1
2,ℎ =

𝑢𝑛+1
𝐺

+ 𝑢𝑛+1
𝐹

− 𝑢𝑛+1
1,ℎ with the initial value 𝑢02,ℎ = 𝑃ℎ𝑢0 = 0.

4. The stability analysis

Before we present the analysis for our local and parallel space-time scheme, we give the analysis results of the standard Galerkin approximation
(12), which will be used in the next analysis. Since the proof is classic, we omit the details and only show the final results. We refer the readers to
[30–32] for the details.

Lemma 4.1. Assume 𝑢𝑚
1,ℎ, 𝑚 = 1, … , 𝑁 is the solution of (12), then the following results hold:

a) It satisfies the stability result

‖𝑢𝑚
1,ℎ‖2Ω + Δ𝑡

𝑚−1∑
𝑛=0

‖∇𝑢𝑛+1
1,ℎ ‖2Ω ≤ 𝐶Δ𝑡

𝑚∑
𝑛=0

‖𝑓𝑛‖2Ω. (20)

b) Assume the exact solution of (2) satisfies the following regularities

𝑢 ∈ 𝐿∞(0, 𝑇 ;𝐻𝑟+1(Ω)𝑑), 𝑢𝑡 ∈ 𝐿2(0, 𝑇 ;𝐻𝑟+1(Ω)𝑑), 𝑢𝑡𝑡 ∈𝐿2(0, 𝑇 ;𝐻𝑟(Ω)𝑑), 𝑢𝑡𝑡𝑡 ∈𝐿2(0, 𝑇 ;𝐿2(Ω)𝑑), (21)

and denote 𝑒𝑚
1,ℎ = 𝑢𝑚

1,ℎ − 𝑢𝑚, 𝑑𝑡𝑒
𝑚
1,ℎ =

𝑒𝑚
1,ℎ−𝑒𝑚−1

1,ℎ
Δ𝑡

. We have

‖𝑒𝑚
1,ℎ‖2Ω ≤ 𝐶(Δ𝑡2 + ℎ2𝑟+2), ‖𝑑𝑡𝑒

𝑚
1,ℎ‖2Ω +Δ𝑡

𝑚−1∑
𝑛=0

‖∇(𝑑𝑡𝑒
𝑛+1
1,ℎ)‖2Ω ≤ 𝐶(Δ𝑡2 + ℎ2𝑟). (22)

In addition, if assume

𝑢𝑡𝑡𝑡𝑡 ∈𝐿2(0, 𝑇 ;𝐿2(Ω)𝑑), (23)

and denote 𝑆𝑚
1,ℎ =

𝑑𝑡𝑒
𝑚
1,ℎ−𝑑𝑡𝑒

𝑚−1
1,ℎ

Δ𝑡
, we obtain

‖𝑆𝑚
1,ℎ‖2Ω + Δ𝑡

𝑚−1∑‖∇(𝑆𝑛+1
1,ℎ)‖2Ω ≤ 𝐶(Δ𝑡2 + ℎ2𝑟). (24)
𝑛=0

171

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
In order to extend the local residual equation (17) from Ω𝑗 to the entire domain Ω, we will use the fictitious domain method [33,34]. However
the extension requires a new variable defined only at the boundary of the sub-domain Ω𝑗 . So we give some symbols and finite element spaces for

the boundary. Denote Γ = 𝜕Ω, Γ𝑗 = 𝜕Ω𝑗∖Γ, 𝐻
1
2
ℎ
(Γ𝑗) = 𝑆ℎ

0 (Ω)|Γ𝑗
⊂ 𝐻

1
2 (Γ𝑗) and 𝐻− 1

2
ℎ

(Γ𝑗). Here 𝐻− 1
2

ℎ
(Γ𝑗) is the dual space of 𝐻

1
2
ℎ
(Γ𝑗) and is equipped

with the following norm:

‖𝜇‖
𝐻

− 1
2

ℎ
(Γ𝑗)

= sup

𝑣∈𝐻

1
2

ℎ
(Γ𝑗)

∫Γ𝑗
𝜇𝑣𝑑𝑠‖𝑣‖
𝐻

1
2

ℎ
(Γ𝑗)

.

We rewrite the local residual equation (17) as: find 𝑤𝑗,𝑛+1
ℎ

∈ 𝑆ℎ
0 (Ω𝑗) such that ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω𝑗)

(𝑤𝑗,𝑛+1
ℎ

, 𝑣ℎ) + Δ𝑡𝑎(𝑤𝑗,𝑛+1
ℎ

, 𝑣ℎ) = −Δ𝑡(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
,𝜙𝑗𝑣ℎ) − Δ𝑡𝑎(𝑢𝑛+1

1,ℎ ,𝜙𝑗𝑣ℎ) + Δ𝑡𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) + Δ𝑡(𝑓

𝑛+1 + 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ).

Using the idea of fictitious domain method, we need to consider the Dirichlet boundary condition on Γ𝑗 in a weak sense instead of being composed in

the space 𝑆ℎ
0 (Ω𝑗). Hence we provide the following saddle point problem: find (𝑤𝑗,𝑛+1

ℎ
, 𝜆𝑗,𝑛+1

ℎ
) ∈ 𝑆ℎ

0 (Ω) ×𝐻
− 1

2
ℎ

(Γ𝑗) such that ∀𝑣ℎ ∈ 𝑆ℎ
0 (Ω), 𝜇ℎ ∈ 𝐻

− 1
2

ℎ
(Γ𝑗)

⎧⎪⎪⎨⎪⎪⎩

(𝑤𝑗,𝑛+1
ℎ

, 𝑣ℎ) + Δ𝑡𝑎(𝑤𝑗,𝑛+1
ℎ

, 𝑣ℎ)− < 𝜆
𝑗,𝑛+1
ℎ

, 𝑣ℎ >Γ𝑗

= −Δ𝑡(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
,𝜙𝑗𝑣ℎ) − Δ𝑡𝑎(𝑢𝑛+1

1,ℎ ,𝜙𝑗𝑣ℎ) + Δ𝑡𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) + Δ𝑡(𝑓

𝑛+1 + 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ),

< 𝜇ℎ,𝑤
𝑗,𝑛+1
ℎ

>Γ𝑗
= 0.

(25)

Here

< 𝜇,𝑣 >Γ𝑗
= ∫

Γ𝑗

𝜇𝑣𝑑𝑠, ∀𝜇 ∈ 𝐻
− 1

2
ℎ

(Γ𝑗), 𝑣 ∈ 𝑆ℎ
0 (Ω).

Throughout this paper we use the letter 𝐶 to denote the generic positive constant which is different in different places but remains independent of
mesh size and time step length.

If we denote 𝑤𝑗,𝑛+1|Γ𝑗
= 𝑔𝑗,𝑛+1, then the equivalent saddle point problem for (16) is: find (𝑤𝑗,𝑛+1, 𝜁𝑗,𝑛+1

ℎ
) ∈ 𝑆ℎ

0 (Ω) × 𝐻
− 1

2
ℎ

(Γ𝑗) such that ∀(𝑣ℎ, 𝜇ℎ) ∈

𝑆ℎ
0 (Ω) ×𝐻

− 1
2

ℎ
(Γ𝑗)

⎧⎪⎪⎨⎪⎪⎩

(𝑤𝑗,𝑛+1, 𝑣ℎ) + Δ𝑡𝑎(𝑤𝑗,𝑛+1, 𝑣ℎ)− < 𝜁
𝑗,𝑛+1
ℎ

, 𝑣ℎ >Γ𝑗

= −Δ𝑡(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
,𝜙𝑗𝑣ℎ) − Δ𝑡𝑎(𝑢𝑛+1

1,ℎ ,𝜙𝑗𝑣ℎ) + Δ𝑡𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) + Δ𝑡(𝑓

𝑛+1 + 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ),

< 𝜇ℎ,𝑤𝑗,𝑛+1 − 𝑔𝑗,𝑛+1 >Γ𝑗
= 0.

(26)

Note that the Lagrange multiplier 𝜁𝑗,𝑛+1
ℎ

satisfies < 𝜁
𝑗,𝑛+1
ℎ

, 𝑣ℎ >Γ𝑗
= 0, ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω).
Next we denote

𝐸
𝑗,𝑛+1
ℎ

=𝑤
𝑗,𝑛+1
ℎ

−𝑤𝑗,𝑛+1.

Then subtracting (26) from (25) and taking 𝜇ℎ = 0, we have the following error equation:

(𝐸𝑗,𝑛+1
ℎ

, 𝑣ℎ) + Δ𝑡𝑎(𝐸𝑗,𝑛+1
ℎ

, 𝑣ℎ)− < 𝜆
𝑗,𝑛+1
ℎ

, 𝑣ℎ >Γ𝑗
= 0, ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω). (27)

Lemma 4.2. For the multiplier 𝜆𝑗,𝑛+1
ℎ

in (25), we have the following result:

‖𝜆𝑗,𝑛+1
ℎ

‖
𝐻

− 1
2

ℎ
(Γ𝑗)

≲ ‖𝐸𝑗,𝑛+1
ℎ

‖Ω +Δ𝑡‖∇𝐸
𝑗,𝑛+1
ℎ

‖Ω. (28)

Here, 𝑥 ≲ 𝑦 means that 𝑥 ≤ 𝐶𝑦 for the constant 𝐶 that is independent of mesh size and time step size.

Proof. In order to prove this result, we need to define a projection 𝛾−1 from 𝐻
1
2
ℎ
(Γ𝑗) to 𝑆ℎ

0 (Ω), similarly to the idea in [19]. First of all, we give two
finite element spaces

𝑆ℎ
𝐸
(Ω𝑗) = {𝑣 ∈ 𝑆ℎ(Ω𝑗) ∶ 𝑣|𝜕Ω𝑗∖Γ𝑗

= 0},

𝑆ℎ
𝐸
(Ω∖Ω𝑗) = {𝑣 ∈ 𝑆ℎ(Ω∖Ω𝑗) ∶ 𝑣|𝜕(Ω∖Ω𝑗)∖Γ𝑗

= 0}.

Then for any given 𝑔 ∈𝐻
1
2
ℎ
(Γ𝑗), we define two auxiliary problems

𝑎(𝑢1, 𝑣)Ω𝑗
= 0, 𝑢1|Γ𝑗

= 𝑔 ∀𝑣 ∈ 𝑆ℎ
0 (Ω𝑗),

and

𝑎(𝑢2, 𝑣)Ω∖Ω = 0, 𝑢2|Γ = 𝑔 ∀𝑣 ∈ 𝑆ℎ(Ω∖Ω𝑗).
𝑗 𝑗 0

172

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Therefore we could define two mapping 𝛾−11 and 𝛾−12 from 𝐻
1
2
ℎ
(Γ𝑗) to 𝑆ℎ

𝐸
(Ω𝑗) and 𝑆ℎ

𝐸
(Ω∖Ω𝑗), respectively. That is

𝑢1 = 𝛾−11 𝑔, 𝑢2 = 𝛾−12 𝑔.

From the regularity results, we have

‖𝛾−11 𝑔‖𝐻1(Ω𝑗) ≲ ‖𝑔‖
𝐻

1
2 (Γ𝑗)

, ‖𝛾−12 𝑔‖𝐻1(Ω∖Ω𝑗) ≲ ‖𝑔‖
𝐻

1
2 (Γ𝑗)

.

Then we can define an operator 𝛾−1 as follows: for any given 𝑔 ∈𝐻
1
2
ℎ
(Γ𝑗),

𝛾−1𝑔 =

{
𝛾−11 𝑔, in Ω𝑗 ,

𝛾−12 𝑔, in Ω∖Ω𝑗 .

It is easy to obtain the following property of 𝛾−1 :

‖𝛾−1𝑔‖
𝐻1

0 (Ω)
≲ ‖𝑔‖

𝐻
1
2 (Γ𝑗)

, ∀𝑔 ∈𝐻
1
2
ℎ
(Γ𝑗). (29)

From the definition of ‖ ⋅ ‖
𝐻

− 1
2

ℎ
(Γ𝑗)

, (27) and (29), we have

‖𝜆𝑗,𝑛+1
ℎ

‖
𝐻

− 1
2

ℎ
(Γ𝑗)

= sup

𝑔∈𝐻

1
2

ℎ
(Γ𝑗)

< 𝜆
𝑗,𝑛+1
ℎ

, 𝑔 >Γ𝑗‖𝑔‖
𝐻

1
2

ℎ
(Γ𝑗)

≲ sup

𝑔∈𝐻

1
2

ℎ
(Γ𝑗)

< 𝜆
𝑗,𝑛+1
ℎ

, 𝛾−1𝑔 >Γ𝑗‖𝛾−1𝑔‖
𝐻1

0 (Ω)
≲ sup

𝑣ℎ∈𝑆ℎ
0 (Ω)

< 𝜆
𝑗,𝑛+1
ℎ

, 𝑣ℎ >Γ𝑗‖𝑣ℎ‖𝐻1
0 (Ω)

= sup
𝑣ℎ∈𝑆ℎ

0 (Ω)

(𝐸𝑗,𝑛+1
ℎ

, 𝑣ℎ) + Δ𝑡𝑎(𝐸𝑗,𝑛+1
ℎ

, 𝑣ℎ)‖𝑣ℎ‖𝐻1
0 (Ω)

≲ ‖𝐸𝑗,𝑛+1
ℎ

‖Ω +Δ𝑡‖∇𝐸
𝑗,𝑛+1
ℎ

‖Ω. □

Lemma 4.3. Assume 𝑤𝑗,𝑛+1, 𝑗 = 1, … , 𝑀 , 𝑛 = 0, … , 𝑁 − 1, is the solution of (16), then we have

‖𝐸𝑗,𝑛+1
ℎ

‖2Ω + Δ𝑡‖∇𝐸
𝑗,𝑛+1
ℎ

‖2Ω ≲ ‖𝑤𝑗,𝑛+1‖2Ω + Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω. (30)

Proof. From the definition of 𝐸𝑗,𝑛+1
ℎ

and 𝑤𝑗,𝑛+1
ℎ

, we have

𝐸
𝑗,𝑛+1
ℎ

|Ω𝑗
= 𝑤𝑗,𝑛+1 −𝑤

𝑗,𝑛+1
ℎ

and 𝐸
𝑗,𝑛+1
ℎ

|Ω∖Ω𝑗
= 𝑤𝑗,𝑛+1.

Then considering the local error equation (27) leads to

⎧⎪⎨⎪⎩
(𝐸𝑗,𝑛+1

ℎ
, 𝑣ℎ) + Δ𝑡𝑎(𝐸𝑗,𝑛+1

ℎ
, 𝑣ℎ) = 0, ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω𝑗),

𝐸
𝑗,𝑛+1
ℎ

|𝜕Ω𝑗
= 𝑤𝑗,𝑛+1.

(31)

Thus we derive

‖𝐸𝑗,𝑛+1
ℎ

‖2Ω𝑗
+Δ𝑡‖∇𝐸

𝑗,𝑛+1
ℎ

‖2Ω𝑗
≤Δ𝑡‖𝑤𝑗,𝑛+1‖2

𝐻
1
2 (𝜕Ω𝑗)

.

Since 𝑤𝑗,𝑛+1 ∈ 𝑆ℎ
0 (Ω), we have

‖𝐸𝑗,𝑛+1
ℎ

‖2Ω𝑗
+Δ𝑡‖∇𝐸

𝑗,𝑛+1
ℎ

‖2Ω𝑗
≲Δ𝑡‖𝑤𝑗,𝑛+1‖2

𝐻
1
2 (𝜕Ω𝑗)

= Δ𝑡‖𝑤𝑗,𝑛+1‖2
𝐻

1
2 (𝜕(Ω∖Ω𝑗))

≲Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗
.

Hence

‖𝐸𝑗,𝑛+1
ℎ

‖2Ω + Δ𝑡‖∇𝐸
𝑗,𝑛+1
ℎ

‖2Ω = ‖𝐸𝑗,𝑛+1
ℎ

‖2Ω𝑗
+Δ𝑡‖∇𝐸

𝑗,𝑛+1
ℎ

‖2Ω𝑗
+ ‖𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗

+Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗

≲ Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗
+ ‖𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗

+Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗

≲ ‖𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗
+Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω∖Ω𝑗

≲ ‖𝑤𝑗,𝑛+1‖2Ω + Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω.

Thus we complete the proof. □

Lemma 4.4. If 𝑤𝑗,𝑛+1, 𝑗 = 1, … , 𝑀 , 𝑛 = 1, … , 𝑁 − 1 is the solution of (16), we have

‖𝑤𝑗,𝑛+1‖2Ω +Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω ≲ Δ𝑡4‖𝑆𝑛+1
1,ℎ ‖2

𝐷𝑗
+Δ𝑡3

𝑡𝑛+1

∫ ‖𝑢𝑡𝑡‖2𝐷𝑗
𝑑𝑡. (32)
𝑡𝑛−1

173

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Proof. Considering (16) and (12), we can obtain

(𝑤
𝑗,𝑛+1

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑤𝑗,𝑛+1, 𝑣ℎ) = −(

𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
,𝜙𝑗𝑣ℎ) − 𝑎(𝑢𝑛+1

1,ℎ ,𝜙𝑗𝑣ℎ) + 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ)

= −(𝑓𝑛+1, 𝜙𝑗𝑣ℎ) + 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ)

= 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝜙𝑗𝑣ℎ) − (𝑓

𝑛+1 − 𝑓𝑛

2
, 𝜙𝑗𝑣ℎ)

= −1
2
(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
−

𝑢𝑛
1,ℎ − 𝑢𝑛−1

1,ℎ

Δ𝑡
,𝜙𝑗𝑣ℎ)

= 1
2
Δ𝑡(𝑆𝑛+1

1,ℎ ,𝜙𝑗𝑣ℎ) −
1
2
(𝑢

𝑛+1 − 𝑢𝑛

Δ𝑡
− 𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
,𝜙𝑗𝑣ℎ).

Taking 𝑣ℎ =Δ𝑡𝑤𝑗,𝑛+1 in the above equation, we get

‖𝑤𝑗,𝑛+1‖2Ω +Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω = Δ𝑡2(𝑆𝑛+1
1,ℎ ,𝜙𝑗𝑤

𝑗,𝑛+1) − Δ𝑡(𝑢
𝑛+1 − 𝑢𝑛

Δ𝑡
− 𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
,𝜙𝑗𝑤

𝑗,𝑛+1).

Then using the Hölder and Young’s inequalities, we have

Δ𝑡2(𝑆𝑛+1
1,ℎ ,𝜙𝑗𝑤

𝑗,𝑛+1) ≤Δ𝑡2‖𝑆𝑛+1
1,ℎ ‖𝐷𝑗

‖𝑤𝑗,𝑛+1‖𝐷𝑗
≤ 1

4
‖𝑤𝑗,𝑛+1‖2

𝐷𝑗
+Δ𝑡4‖𝑆𝑛+1

1,ℎ ‖2
𝐷𝑗

,

and

Δ𝑡(𝑢
𝑛+1 − 𝑢𝑛

Δ𝑡
− 𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
,𝜙𝑗𝑤

𝑗,𝑛+1) ≤Δ𝑡‖ 𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
− 𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
‖𝐷𝑗

‖𝑤𝑗,𝑛+1‖𝐷𝑗

≤ 1
4
‖𝑤𝑗,𝑛+1‖2

𝐷𝑗
+Δ𝑡2‖ 𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
− 𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
‖2

𝐷𝑗
.

In addition, considering the Taylor series with the integral remainder, we can obtain

𝑢𝑛+1 = 𝑢𝑛 +Δ𝑡𝑢𝑛
𝑡
+

𝑡𝑛+1

∫
𝑡𝑛

(𝑡𝑛+1 − 𝑡)𝑢𝑡𝑡𝑑𝑡,

𝑢𝑛−1 = 𝑢𝑛 −Δ𝑡𝑢𝑛
𝑡
+

𝑡𝑛−1

∫
𝑡𝑛

(𝑡𝑛−1 − 𝑡)𝑢𝑡𝑡𝑑𝑡.

So we have

𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1 =

𝑡𝑛+1

∫
𝑡𝑛

(𝑡𝑛+1 − 𝑡)𝑢𝑡𝑡𝑑𝑡+

𝑡𝑛

∫
𝑡𝑛−1

(𝑡− 𝑡𝑛−1)𝑢𝑡𝑡𝑑𝑡.

Using the Minkowski and Hölder inequalities yields

‖𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1‖2
𝐷𝑗

≤ (‖‖‖
𝑡𝑛+1

∫
𝑡𝑛

(𝑡𝑛+1 − 𝑡)𝑢𝑡𝑡𝑑𝑡
‖‖‖𝐷𝑗

+ ‖‖‖
𝑡𝑛

∫
𝑡𝑛−1

(𝑡− 𝑡𝑛−1)𝑢𝑡𝑡𝑑𝑡
‖‖‖𝐷𝑗

)2

≤ 2‖‖‖
𝑡𝑛+1

∫
𝑡𝑛

(𝑡𝑛+1 − 𝑡)𝑢𝑡𝑡𝑑𝑡
‖‖‖2𝐷𝑗

+ 2‖‖‖
𝑡𝑛

∫
𝑡𝑛−1

(𝑡− 𝑡𝑛−1)𝑢𝑡𝑡𝑑𝑡
‖‖‖2𝐷𝑗

≤ 2

𝑡𝑛+1

∫
𝑡𝑛

(𝑡𝑛+1 − 𝑡)2𝑑𝑡

𝑡𝑛+1

∫
𝑡𝑛

‖𝑢𝑡𝑡‖2𝐷𝑗
𝑑𝑡+ 2

𝑡𝑛

∫
𝑡𝑛−1

(𝑡− 𝑡𝑛−1)2𝑑𝑡

𝑡𝑛

∫
𝑡𝑛−1

‖𝑢𝑡𝑡‖2𝐷𝑗
𝑑𝑡

≤ 𝐶Δ𝑡3

𝑡𝑛+1

∫
𝑡𝑛−1

‖𝑢𝑡𝑡‖2𝐷𝑗
𝑑𝑡.

Hence,

‖𝑤𝑗,𝑛+1‖2Ω +Δ𝑡‖∇𝑤𝑗,𝑛+1‖2Ω ≤ 𝐶Δ𝑡4‖𝑆𝑛+1
1,ℎ ‖2

𝐷𝑗
+𝐶Δ𝑡3

𝑡𝑛+1

∫
𝑡𝑛−1

‖𝑢𝑡𝑡‖2𝐷𝑗
𝑑𝑡.

Thus, we complete this proof. □
174

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Theorem 4.1. Assume that 𝑢𝑚
2,ℎ, 𝑚 = 1, … , 𝑁 , is obtained by Algorithm 3.1. Under the assumptions (21) and (23), we have

‖𝑢𝑚
2,ℎ‖2Ω +Δ𝑡

𝑚−1∑
𝑛=0

‖∇𝑢𝑛+1
2,ℎ ‖2Ω ≲ 1 +Δ𝑡

𝑚∑
𝑛=0

‖𝑓𝑛‖2Ω. (33)

Proof. Since ∑𝑀

𝑗=1 𝜙𝑗 = 1 and 𝑤𝑛+1
ℎ

=
∑𝑀

𝑗=1 𝑤
𝑗,𝑛+1
ℎ

, taking 𝜇ℎ = 0 in (25) and summing it from 𝑗 = 1 to 𝑀 lead to ∀𝑣ℎ ∈ 𝑆ℎ
0 (Ω),

(
𝑤𝑛+1

ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑤𝑛+1

ℎ
, 𝑣ℎ) =

1
Δ𝑡

𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑣ℎ𝑑𝑠− (
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

Δ𝑡
, 𝑣ℎ) − 𝑎(𝑢𝑛+1

1,ℎ , 𝑣ℎ) + 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣ℎ).

Since 𝑢𝑛+1
𝐹

= 𝑤𝑛+1
ℎ

+ 𝑢𝑛+1
1,ℎ ∈ 𝑆ℎ

0 (Ω), we obtain

(
𝑢𝑛+1
𝐹

− 𝑢𝑛
1,ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑢𝑛+1

𝐹
, 𝑣ℎ) =

1
Δ𝑡

𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑣ℎ𝑑𝑠+ 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣ℎ). (34)

Notice that the final approximate solution 𝑢𝑛+1
2,ℎ = 𝑢𝑛+1

𝐺
+ 𝑢𝑛+1

𝐹
− 𝑢𝑛+1

1,ℎ ∈ 𝑆ℎ
0 (Ω). Considering (18), (34) and (12), we obtain

(
𝑢𝑛+1
2,ℎ − 𝑢𝑛

2,ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑢𝑛+1

2,ℎ , 𝑣ℎ) =
1
Δ𝑡

𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑣ℎ𝑑𝑠+ 𝑎(
𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
, 𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣ℎ). (35)

Taking 𝑣ℎ = 2Δ𝑡𝑢𝑛+1
2,ℎ ∈ 𝑆ℎ

0 (Ω) and using the equality

2(𝑥− 𝑦,𝑥) = |𝑥|2 − |𝑦|2 + |𝑥− 𝑦|2, ∀𝑥, 𝑦 ∈ℝ𝑑 , (36)

we can get

‖𝑢𝑛+1
2,ℎ ‖2Ω − ‖𝑢𝑛

2,ℎ‖2Ω + ‖𝑢𝑛+1
2,ℎ − 𝑢𝑛

2,ℎ‖2Ω + 2Δ𝑡‖∇𝑢𝑛+1
2,ℎ ‖2Ω = 2

𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑢𝑛+1
2,ℎ 𝑑𝑠+Δ𝑡𝑎(𝑢𝑛+1

1,ℎ − 𝑢𝑛
1,ℎ, 𝑢𝑛+1

2,ℎ) + Δ𝑡(𝑓𝑛+1 + 𝑓𝑛, 𝑢𝑛+1
2,ℎ). (37)

For the first term on the right hand side, using the Hölder, Cauchy-Schwarz and Young’s inequalities yield

2
𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑢𝑛+1
2,ℎ 𝑑𝑠 ≲

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖
𝐻

− 1
2 (Γ𝑗)

‖𝑢𝑛+1
2,ℎ ‖

𝐻
1
2 (Γ𝑗)

≤
𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖
𝐻

− 1
2 (Γ𝑗)

‖𝑢𝑛+1
2,ℎ ‖𝐻1(Ω𝑗)

≲

(𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

) 1
2
(𝑀∑

𝑗=1
‖𝑢𝑛+1

2,ℎ ‖2
𝐻1(Ω𝑗)

) 1
2

≲ 𝜅
1
2

(𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

) 1
2 ‖𝑢𝑛+1

2,ℎ ‖𝐻1(Ω)

≤ 𝜀Δ𝑡‖∇𝑢𝑛+1
2,ℎ ‖2Ω + 𝐶𝜅

𝜀Δ𝑡

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

.

Here a positive integer 𝜅 independent of 𝑀 and 𝑥 ∈Ω, is the maximum number of sub-domain Ω𝑗 which includes the point 𝑥. For the remain terms
on the right hand sides of (37), using the Hölder and Young’s inequalities lead to

Δ𝑡𝑎(𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ, 𝑢𝑛+1
2,ℎ) ≤Δ𝑡(‖∇𝑢𝑛+1

1,ℎ ‖Ω + ‖∇𝑢𝑛
1,ℎ‖Ω)‖∇𝑢𝑛+1

2,ℎ ‖Ω
≤ 2𝜀Δ𝑡‖∇𝑢𝑛+1

2,ℎ ‖2Ω + 1
4𝜀

Δ𝑡(‖∇𝑢𝑛+1
1,ℎ ‖2Ω + ‖∇𝑢𝑛

1,ℎ‖2Ω),
and using the Poincaré inequality gets

Δ𝑡(𝑓𝑛+1 + 𝑓𝑛, 𝑢𝑛+1
2,ℎ) ≤Δ𝑡(‖𝑓𝑛+1‖Ω + ‖𝑓𝑛‖Ω)‖𝑢𝑛+1

2,ℎ ‖Ω ≤ 𝐶𝑝Δ𝑡(‖𝑓𝑛+1‖Ω + ‖𝑓𝑛‖Ω)‖∇𝑢𝑛+1
2,ℎ ‖Ω

≤ 2𝜀Δ𝑡‖∇𝑢𝑛+1
2,ℎ ‖2Ω +

𝐶2
𝑝

4𝜀
Δ𝑡(‖𝑓𝑛+1‖2Ω + ‖𝑓𝑛‖2Ω).

Combining the above estimations with (37) and setting 𝜀 = 1∕5, we obtain

‖𝑢𝑛+1
2,ℎ ‖2Ω − ‖𝑢𝑛

2,ℎ‖2Ω + Δ𝑡‖∇𝑢𝑛+1
2,ℎ ‖2Ω ≤ 5𝐶𝜅

Δ𝑡

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

+ 5
4
Δ𝑡‖∇𝑢𝑛+1

1,ℎ ‖2Ω + 5
4
Δ𝑡‖∇𝑢𝑛

1,ℎ‖2Ω + 5
4
𝐶2

𝑝
Δ𝑡‖𝑓𝑛+1‖2Ω + 5

4
𝐶2

𝑝
Δ𝑡‖𝑓𝑛‖2Ω.

Considering 𝑢02,ℎ = 0 and summing the above equation from 𝑛 = 0 to 𝑛 = 𝑚 − 1, we get

‖𝑢𝑚
2,ℎ‖2Ω +Δ𝑡

𝑚−1∑
𝑛=0

‖∇𝑢𝑛+1
2,ℎ ‖2Ω ≤ 5𝐶𝜅

Δ𝑡

𝑚−1∑
𝑛=0

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2 (Γ)

+ 5
2
Δ𝑡

𝑚∑
𝑛=0

‖∇𝑢𝑛
1,ℎ‖2Ω + 5

2
𝐶2

𝑝
Δ𝑡

𝑚∑
𝑛=0

‖𝑓𝑛‖2Ω.
ℎ 𝑗

175

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Then using (21), (24), (28), (30), (32) and the Young’s inequality, we have

𝜅

Δ𝑡

𝑚−1∑
𝑛=0

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

≲
𝜅

Δ𝑡

𝑚−1∑
𝑛=0

𝑀∑
𝑗=1

(
Δ𝑡4‖𝑆𝑛+1

1,ℎ ‖2
𝐷𝑗

+Δ𝑡3

𝑡𝑛+1

∫
𝑡𝑛−1

‖𝑢𝑡𝑡‖2𝐷𝑗
𝑑𝑡

)

≲
𝜅

Δ𝑡

𝑚−1∑
𝑛=0

(
Δ𝑡4‖𝑆𝑛+1

1,ℎ ‖2Ω + Δ𝑡3

𝑡𝑛+1

∫
𝑡𝑛−1

‖𝑢𝑡𝑡‖2Ω𝑑𝑡

)

≲ 𝜅

𝑚−1∑
𝑛=0

Δ𝑡3‖𝑆𝑛+1
1,ℎ ‖2Ω + 𝜅Δ𝑡2

𝑚−1∑
𝑛=0

𝑡𝑛+1

∫
𝑡𝑛−1

‖𝑢𝑡𝑡‖2Ω𝑑𝑡

≲Δ𝑡2(Δ𝑡2 + ℎ2𝑟) + Δ𝑡2‖𝑢𝑡𝑡‖2𝐿2(0,𝑇 ;𝐿2(Ω))

≲Δ𝑡2 + ℎ2𝑟+2 ≲ 1.

(38)

From the stability result (20), we can obtain the final result (33). □

5. The error analysis

We decompose the error between the true solution 𝑢𝑛+1 and the numerical solution 𝑢𝑛+1
2,ℎ of Algorithm 3.1 into the numerical error and the

approximate error as follows:

𝑢𝑛+1
2,ℎ − 𝑢𝑛+1 = (𝑢𝑛+1

2,ℎ − 𝑃ℎ𝑢𝑛+1) − (𝑢𝑛+1 − 𝑃ℎ𝑢𝑛+1) ∶= 𝑒𝑛+1
2,ℎ − 𝜉𝑛+1

ℎ
.

According to these symbols, in the following proof process, an error equation is first constructed. Then the final convergence result is obtained by
appropriate estimations.

Theorem 5.1. Assume that 𝑢𝑚
2,ℎ, 𝑚 = 1, … , 𝑁 , is obtained by Algorithm 3.1. Under the assumptions (21), (23) and Δ𝑡 ≤ ℎ𝑟+1, we have the following result

‖𝑢𝑚
2,ℎ − 𝑢𝑚‖2Ω ≤ 𝐶(Δ𝑡4 + ℎ2𝑟+2). (39)

Proof. If we take the average of (2) at time 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1, 𝑛 = 0, … , 𝑁 − 1, we obtain

(
𝑢𝑛+1
𝑡

+ 𝑢𝑛
𝑡

2
, 𝑣) + 𝑎(𝑢

𝑛+1 + 𝑢𝑛

2
, 𝑣) = (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣), ∀𝑣 ∈𝐻1

0 (Ω).

It is easy to obtain

(𝑢
𝑛+1 − 𝑢𝑛

Δ𝑡
, 𝑣) + 𝑎(𝑢𝑛+1, 𝑣) = (𝑢

𝑛+1 − 𝑢𝑛

Δ𝑡
−

𝑢𝑛+1
𝑡

+ 𝑢𝑛
𝑡

2
, 𝑣) + 𝑎(𝑢

𝑛+1 − 𝑢𝑛

2
, 𝑣) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣). (40)

Then taking 𝑣 = 𝑣ℎ in (40) and subtracting it from (35), we have

(
𝑒𝑛+1
2,ℎ − 𝑒𝑛

2,ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑒𝑛+1

2,ℎ , 𝑣ℎ) = (
𝜉𝑛+1
ℎ

− 𝜉𝑛
ℎ

Δ𝑡
, 𝑣ℎ) + 𝑎(𝜉𝑛+1

ℎ
, 𝑣ℎ) +

1
Δ𝑡

𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑣ℎ𝑑𝑠+ (
𝑢𝑛+1
𝑡

− 𝑢𝑛
𝑡

Δ𝑡
− 𝑢𝑛+1 + 𝑢𝑛

2
, 𝑣ℎ) + 𝑎(

𝑒𝑛+1
1,ℎ − 𝑒𝑛

1,ℎ

2
, 𝑣ℎ). (41)

Considering the definition of 𝑃ℎ (3) leads to

𝑎(𝜉𝑛+1
ℎ

, 𝑣ℎ) = 0.

Taking 𝑣ℎ = 2Δ𝑡𝑒𝑛+1
2,ℎ ∈ 𝑆ℎ

0 (Ω) in (41) and using (36), we obtain

‖𝑒𝑛+1
2,ℎ ‖2Ω − ‖𝑒𝑛

2,ℎ‖2Ω + ‖𝑒𝑛+1
2,ℎ − 𝑒𝑛

2,ℎ‖2Ω + 2Δ𝑡‖∇𝑒𝑛+1
2,ℎ ‖2Ω

= 2Δ𝑡(
𝜉𝑛+1
ℎ

− 𝜉𝑛
ℎ

Δ𝑡
, 𝑒𝑛+1

2,ℎ) + 2
𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑒𝑛+1
2,ℎ 𝑑𝑠+ 2Δ𝑡(

𝑢𝑛+1
𝑡

− 𝑢𝑛
𝑡

Δ𝑡
− 𝑢𝑛+1 + 𝑢𝑛

2
, 𝑒𝑛+1

2,ℎ) + Δ𝑡2𝑎(𝑑𝑡𝑒
𝑛+1
1,ℎ , 𝑒𝑛+1

2,ℎ).
(42)

Using the Hölder, Poincaré (5) and Young’s (6) inequalities, we have

2Δ𝑡(
𝜉𝑛+1
ℎ

− 𝜉𝑛
ℎ

Δ𝑡
, 𝑒𝑛+1

2,ℎ) ≤ 2𝐶𝑝Δ𝑡‖ 𝜉𝑛+1
ℎ

− 𝜉𝑛
ℎ

Δ𝑡
‖Ω‖∇𝑒𝑛+1

2,ℎ ‖Ω
≤ 𝜀Δ𝑡‖∇𝑒𝑛+1

2,ℎ ‖2Ω +
𝐶2

𝑝

𝜀
Δ𝑡‖ 𝜉𝑛+1

ℎ
− 𝜉𝑛

ℎ

Δ𝑡
‖2Ω.

For the second term on the right hand side of (41), by using the Hölder, Cauchy-Schwarz and Young’s inequalities, we have
176

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
2
𝑀∑
𝑗=1

∫
Γ𝑗

𝜆
𝑗,𝑛+1
ℎ

𝑒𝑛+1
2,ℎ 𝑑𝑠 ≲

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖
𝐻

− 1
2 (Γ𝑗)

‖𝑒𝑛+1
2,ℎ ‖

𝐻
1
2 (Γ𝑗)

≤
𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖
𝐻

− 1
2 (Γ𝑗)

‖𝑒𝑛+1
2,ℎ ‖𝐻1(Ω𝑗)

≲

(𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

) 1
2
(𝑀∑

𝑗=1
‖𝑒𝑛+1

2,ℎ ‖2
𝐻1(Ω𝑗)

) 1
2

≲ 𝜅
1
2

(𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

) 1
2 ‖𝑒𝑛+1

2,ℎ ‖𝐻1(Ω)

≤ 𝜀Δ𝑡‖∇𝑒𝑛+1
2,ℎ ‖2Ω + 𝐶𝜅

𝜀Δ𝑡

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

.

Here a positive integer 𝜅 independent of 𝑀 and 𝑥 ∈Ω, is the maximum number of sub-domain Ω𝑗 which includes the point 𝑥. Then using Poincaré,
Hölder and Young’s inequalities, we have

2Δ𝑡(
𝑢𝑛+1
𝑡

+ 𝑢𝑛
𝑡

2
− 𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
, 𝑒𝑛+1

2,ℎ) ≤ 2𝐶𝑝Δ𝑡‖ 𝑢𝑛+1
𝑡

+ 𝑢𝑛
𝑡

2
− 𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
‖Ω‖∇𝑒𝑛+1

2,ℎ ‖Ω
≤ 𝜀Δ𝑡‖∇𝑒𝑛+1

2,ℎ ‖2Ω +
𝐶2

𝑝

𝜀
Δ𝑡‖ 𝑢𝑛+1

𝑡
+ 𝑢𝑛

𝑡

2
− 𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
‖2Ω,

and

Δ𝑡2𝑎(𝑑𝑡𝑒
𝑛+1
1,ℎ , 𝑒𝑛+1

2,ℎ) ≤Δ𝑡2‖∇𝑑𝑡𝑒
𝑛+1
1,ℎ ‖Ω‖∇𝑒𝑛+1

2,ℎ ‖Ω
≤ 𝜀Δ𝑡‖∇𝑒𝑛+1

2,ℎ ‖2Ω + 1
4𝜀

Δ𝑡3‖∇𝑑𝑡𝑒
𝑛+1
1,ℎ ‖2Ω.

Combining the above estimates with (42) and setting 𝜀 = 1∕4, we derive

‖𝑒𝑛+1
2,ℎ ‖2Ω − ‖𝑒𝑛

2,ℎ‖2Ω + ‖𝑒𝑛+1
2,ℎ − 𝑒𝑛

2,ℎ‖2Ω +Δ𝑡‖∇𝑒𝑛+1
2,ℎ ‖2Ω

≤ 4𝐶2
𝑝
Δ𝑡‖ 𝜉𝑛+1

ℎ
− 𝜉𝑛

ℎ

Δ𝑡
‖2Ω + 𝐶𝜅

Δ𝑡

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

+ 4𝐶2
𝑝
Δ𝑡‖ 𝑢𝑛+1

𝑡
+ 𝑢𝑛

𝑡

2
− 𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
‖2Ω + Δ𝑡3‖∇𝑑𝑡𝑒

𝑛+1
1,ℎ ‖2Ω.

From the Hölder’s inequality, we obtain

‖ 𝜉𝑛+1
ℎ

− 𝜉𝑛
ℎ

Δ𝑡
‖2Ω = ‖ 1

Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

1 ⋅ (𝜉ℎ)𝑡𝑑𝑡‖2Ω ≤ 𝐶

Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

‖(𝜉ℎ)𝑡‖2Ω𝑑𝑡,

and

‖ 𝑢𝑛+1
𝑡

+ 𝑢𝑛
𝑡

2
− 𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
‖2Ω = ‖ 1

Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

𝑢𝑡𝑑𝑡−
𝑢𝑛+1
𝑡

+ 𝑢𝑛
𝑡

2
‖2Ω

≤ ‖ 1
2Δ𝑡

𝑡𝑛+1

∫
𝑡𝑛

(𝑡− 𝑡𝑛)(𝑡− 𝑡𝑛+1)𝑢𝑡𝑡𝑡𝑑𝑡‖2Ω
≤ 𝐶

Δ𝑡2

𝑡𝑛+1

∫
𝑡𝑛

(𝑡− 𝑡𝑛)2(𝑡− 𝑡𝑛+1)2𝑑𝑡

𝑡𝑛+1

∫
𝑡𝑛

‖𝑢𝑡𝑡𝑡‖2Ω𝑑𝑡

≤ 𝐶Δ𝑡3

𝑡𝑛+1

∫
𝑡𝑛

‖𝑢𝑡𝑡𝑡‖2Ω𝑑𝑡.

So that

‖𝑒𝑛+1
2,ℎ ‖2Ω − ‖𝑒𝑛

2,ℎ‖2Ω + ‖𝑒𝑛+1
2,ℎ − 𝑒𝑛

2,ℎ‖2Ω +Δ𝑡‖∇𝑒𝑛+1
2,ℎ ‖2Ω

≤ 𝐶

𝑡𝑛+1

∫
𝑡𝑛

‖(𝜉ℎ)𝑡‖2Ω𝑑𝑡+ 𝐶𝜅

Δ𝑡

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

+𝐶Δ𝑡4

𝑡𝑛+1

∫
𝑡𝑛

‖𝑢𝑡𝑡𝑡‖2Ω𝑑𝑡.+Δ𝑡3‖∇𝑑𝑡𝑒
𝑛+1
1,ℎ ‖2Ω.

Note that 𝑒0 = 0, then summing the above equation from 𝑛 = 0 to 𝑛 = 𝑚 − 1 and considering (4) and (21) yield
2,ℎ

177

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Fig. 1. The system energy changes of Algorithm 3.1 with different time steps Δ𝑡 and fixed mesh size ℎ = 1∕32.

‖𝑒𝑚
2,ℎ‖2Ω + ‖𝑒𝑛+1

2,ℎ − 𝑒𝑛
2,ℎ‖2Ω + Δ𝑡

𝑚∑
𝑛=0

‖∇𝑒𝑛+1
2,ℎ ‖2Ω

≤ 𝐶

𝑚∑
𝑛=0

𝑡𝑛+1

∫
𝑡𝑛

‖(𝜉ℎ)𝑡‖2Ω𝑑𝑡+ 𝐶𝜅

Δ𝑡

𝑚∑
𝑛=0

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

+𝐶Δ𝑡4
𝑚∑

𝑛=0

𝑡𝑛+1

∫
𝑡𝑛

‖𝑢𝑡𝑡𝑡‖2Ω𝑑𝑡.+Δ𝑡3
𝑚∑

𝑛=0
‖∇𝑑𝑡𝑒

𝑛+1
1,ℎ ‖2Ω

≤ 𝐶

𝑇

∫
0

‖(𝜉ℎ)𝑡‖2Ω𝑑𝑡+ 𝐶𝜅

Δ𝑡

𝑚∑
𝑛=0

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

+𝐶Δ𝑡4

𝑇

∫
0

‖𝑢𝑡𝑡𝑡‖2Ω𝑑𝑡+Δ𝑡3
𝑚∑

𝑛=0
‖∇𝑑𝑡𝑒

𝑛+1
1,ℎ ‖2Ω

≤ 𝐶ℎ2𝑟+2‖𝑢𝑡‖2𝐿2(0,𝑇 ;𝐻𝑟+1(Ω)) +
𝐶𝜅

Δ𝑡

𝑚∑
𝑛=0

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

+𝐶Δ𝑡4‖𝑢𝑡𝑡𝑡‖2𝐿2(0,𝑇 ;𝐿2(Ω)) + Δ𝑡3
𝑚∑

𝑛=0
‖∇𝑑𝑡𝑒

𝑛+1
1,ℎ ‖2Ω.

From (38) and the assumption Δ𝑡 ≤ ℎ𝑟+1, we have

𝜅

Δ𝑡

𝑚−1∑
𝑛=0

𝑀∑
𝑗=1

‖𝜆𝑗,𝑛+1
ℎ

‖2
𝐻

− 1
2

ℎ
(Γ𝑗)

≤ 𝐶(Δ𝑡2 + ℎ2𝑟+2) ≤ 𝐶ℎ2𝑟+2.

From (22), we have

Δ𝑡3
𝑚∑

𝑛=0
‖∇𝑑𝑡𝑒

𝑛+1
1,ℎ ‖2Ω ≤ 𝐶Δ𝑡2(Δ𝑡2 + ℎ2𝑟) ≤ 𝐶(Δ𝑡4 + ℎ2𝑟+2).

Considering (4) and using the triangle inequality, we obtain the final result. □

6. Numerical experiments

In this section, we present some 2D numerical experiments to confirm the effectiveness of our local and parallel space-time scheme. All codes are
implemented by using the software package FreeFem++ [35]. Experiment 1 and Experiment 2 respectively verify the stability and convergence of
Algorithm 3.1. For other experiments, we further verify the effectiveness of our space-time parallel algorithm.

6.1. Experiment 1: the stability

Let the computational domain be the unit square Ω = (0, 1) × (0, 1) with the uniform triangulation 𝑇 ℎ(Ω) = {𝜏ℎ
Ω}. For the finite element spaces, we

choose the piecewise linear finite element spaces as follows:

𝑆ℎ(Ω) = {𝑣∈ 𝐶0(Ω) ∶ 𝑣|
𝜏ℎ
Ω
∈ 𝑃 1

𝜏ℎ
Ω
,∀𝜏ℎ

Ω ∈ 𝑇 ℎ(Ω)}.

In this experiment, we assume the density of heat source 𝑓 = 0 and the initial value of temperature

𝑢(0) = (𝑥4 − 2𝑥3 + 𝑥2)(2𝑦3 − 3𝑦2 + 𝑦).

To verify the stability of Algorithm 3.1, we define the system energy 𝐸(𝑡𝑚) = 1
2‖𝑢𝑚

2,ℎ‖2Ω. However, for a system with no energy exchange and no
external force, the system energy would decay with time. So we test the stability of Algorithm 3.1 by calculating the system energy and observing
whether the energy decays with 𝑓 = 0. Let us choose different time steps Δ𝑡 = 1∕5, 1∕10, 1∕100, 1∕1000 and the fixed mesh size ℎ = 1∕32. What’s
more, we choose another grid triangulation 𝑇 𝐻 (Ω) with 𝐻 = 1∕8 to obtain the partition of unity on Ω and the local computational domain Ω𝑗 . Then
we calculate the system energy 𝐸(𝑡𝑚) at time 𝑡𝑚 ∈ [0, 1]. We show the variable trend of system energy in Fig. 1, which illustrates the stability of
Algorithm 3.1.
178

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Table 1

The convergence orders with respect to the
time step Δ𝑡 at time 𝑡𝑚 = 1, with the fixed
mesh size ℎ = 1∕16.

Δ𝑡 ‖𝑢𝑚,Δ𝑡

2,ℎ − 𝑢
𝑚,

Δ𝑡

2
2,ℎ ‖Ω 𝜌𝑢𝑚

2,ℎ ,Δ𝑡,0 Order

1/5 9.981e-5 4.179 2.063

1/10 2.115e-5 4.636 2.213

1/20 4.562e-6

Table 2

The convergence orders with respect to the
mesh size ℎ at time 𝑡𝑚 = 1, with the fixed
time step length Δ𝑡 = 1∕10.

ℎ ‖𝑢𝑚,ℎ

2,ℎ − 𝑢
𝑚,

ℎ

2
2,ℎ ‖Ω 𝜌𝑢𝑚

2,ℎ ,ℎ,0 Order

1/8 1.194e-5 6.742 2.753

1/16 1.771e-6 10.12 3.339

1/32 1.750e-7

6.2. Experiment 2: the order of convergence

To examine the orders of convergence with respect to the time step Δ𝑡 or the mesh size ℎ, we give the following measure of the convergence. If
we assume that

𝑢Δ𝑡
ℎ
(𝑥, 𝑡𝑚) ≈ 𝑢(𝑥, 𝑡𝑚) +𝐶1(𝑥, 𝑡𝑚)Δ𝑡𝛾 +𝐶2(𝑥, 𝑡𝑚)ℎ𝜇,

where 𝛾 and 𝜇 are positive constants. Then the measures testing the convergence order of the time step Δ𝑡 and the mesh size ℎ are defined as
follows:

𝜌𝑢,Δ𝑡,0 =
∥ 𝑢Δ𝑡

ℎ
(𝑥, 𝑡𝑚) − 𝑢

Δ𝑡

2
ℎ

(𝑥, 𝑡𝑚) ∥0

∥ 𝑢
Δ𝑡

2
ℎ

(𝑥, 𝑡𝑚) − 𝑢
Δ𝑡

4
ℎ

(𝑥, 𝑡𝑚) ∥0

≈ 4𝛾 − 2𝛾

2𝛾 − 1
,

𝜌𝑢,ℎ,0 =
∥ 𝑢Δ𝑡

ℎ
(𝑥, 𝑡𝑚) − 𝑢Δ𝑡

ℎ

2
(𝑥, 𝑡𝑚) ∥0

∥ 𝑢Δ𝑡
ℎ

2
(𝑥, 𝑡𝑚) − 𝑢Δ𝑡

ℎ

4
(𝑥, 𝑡𝑚) ∥0

≈ 4𝜇 − 2𝜇

2𝜇 − 1
.

(43)

Let us still choose the computational domain Ω = (0, 1) × (0, 1) with the uniform triangulation 𝑇 ℎ(Ω). We consider a smooth problem with exact
solution

𝑢(𝑥, 𝑦, 𝑡) = 𝑥2(1 − 𝑥)2𝑦(1 − 𝑦)(1 − 2𝑦) cos(2𝜋𝑡). (44)

Then the initial condition and 𝑓 are obtained by (1) following the exact solution. For the finite element spaces, we choose the piecewise P2
continuous finite element spaces as follows:

𝑆ℎ(Ω) = {𝑣∈ 𝐶0(Ω) ∶ 𝑣|
𝜏ℎ
Ω
∈ 𝑃 2

𝜏ℎ
Ω
,∀𝜏ℎ

Ω ∈ 𝑇 ℎ(Ω)}.

That means 𝑟 = 2. So for Algorithm 3.1, while 𝜌𝑢,Δ𝑡,0 and 𝜌𝑢,𝐻,0 approach 4.0 and 8.0, the convergence order will be 2.0 and 3.0, respectively.

In Table 1 we give the convergence order with respect to the time step Δ𝑡 with the fix mesh size ℎ = 1∕16 and the varying time step length
Δ𝑡 = 1∕5, 1∕10, 1∕20. And we fix the coarser grid triangulation 𝑇 𝐻 (Ω) with 𝐻 = 1∕4 to realize the partition of unity on Ω. These results display
that the second convergence order with respect to the time step Δ𝑡. In Table 2, we present the results of convergence order with respect to ℎ for
Algorithm 3.1. In these experiments, we fix Δ𝑡 = 1∕10 and choose ℎ = 1∕8, 1∕16, 1∕32. And the numerical experiment results are consistent with the
theoretical analysis.

6.3. Experiment 3: the parallel speedup

Notice that the accuracy of parareal method is determined by the accuracy of  , which is used in serial. This conclusion also applies to the
space-time parallel algorithm, Algorithm 3.1. So we define the parallel speedup, the ration of the serial to parallel cost, to verify the efficiency of
parallel scheme. For the sake of content completeness, we provide the following serial second-order SDC algorithm (Algorithm 6.1).

Algorithm 6.1 (The spectral deferred correction method for the heat equation).

Step 1. The prediction step of SDC: Compute 𝑢𝑛+1
1,ℎ ∈ 𝑆ℎ

0 (Ω), 𝑛 = 0, … , 𝑁 − 1, by using (12).

Step 2. One iteration step of SDC based on (9)-(10): find 𝑢𝑛+1
𝑆

∈ 𝑆ℎ
0 (Ω), 𝑛 = 0, … , 𝑁 − 1, such that

⎧⎪⎨⎪(
𝑢𝑛+1
𝑆

− 𝑢𝑛
𝑆

Δ𝑡
, 𝑣ℎ) + 𝑎(𝑢𝑛+1

𝑆
, 𝑣ℎ) = 𝑎(

𝑢𝑛+1
1,ℎ − 𝑢𝑛

1,ℎ

2
.𝑣ℎ) + (𝑓

𝑛+1 + 𝑓𝑛

2
, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑆ℎ

0 (Ω),

𝑢0 = 𝑃 𝑢0 = 0.
⎩ 𝑆 ℎ

179

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
Table 3

Comparisons of the serial and space-time parallel algorithms with Δ𝑡 = 1∕64.

ℎ = 1∕8 ℎ = 1∕64

Algorithm Algorithm 6.1 Algorithm 3.1 Algorithm 6.1 Algorithm 3.1‖𝑢𝑚 − 𝑢𝑚
ℎ
‖Ω 3.096e-4 3.027e-4 5.363e-6 5.527e-6

CPU(s) 1.691 0.53 100.5 34.78

Speedup – 3.19 – 2.89

Table 4

The numerical errors at time 𝑡𝑚 = 1 of Algorithm 6.2, with Δ𝑡 = 1∕100 and
ℎ = 1∕32.

Iteration 𝐾 = 2 𝐾 = 4 𝐾 = 6 𝐾 = 8 𝐾 = 10‖𝑢𝑚
𝐾,ℎ

− 𝑢𝑚‖Ω 2.024e-5 2.048e-5 2.077e-5 2.109e-5 2.149e-5

Now we are ready to analyze the computation of parallel speedup of our local and parallel space-time algorithm. We further discuss the allocation
of processors for the spatial and temporal parallelism. We assume that each processor is identical and the communication time between the different
processors is negligible. Recall that for the effectiveness of parareal method,  must be computationally less expensive than  . Let Υ𝐺 denote the
computational time for one processor to compute one time step of the backward Euler method. For the correction procedure over Ω × [𝑡𝑛, 𝑡𝑛+1],
the cost can be approximately equal to Υ𝐺 over each time step. Considering the computational time for one processor to compute one time step
of the local residual equation based on  , we denote the time over each subdomain Ω𝑗 and the global domain Ω as Υ𝐹 ,Ω𝑗

and Υ𝐹 ,Ω, respectively.
Notice that 𝑁 = 𝑇 ∕Δ𝑡 is the number of time subintervals and 𝑀 is the number of subdomains. For the serial SDC algorithm (Algorithm 6.1), the
total computational time is 𝑁Υ𝐺 +𝑁Υ𝐹 ,Ω with one processor. It is worth noting that even if we provide more processors, the total computational
time of this serial scheme does not decrease. This is because one has to solve each step in sequence. Next, assume that there are 𝑁𝑀 ′ processors
for our space-time parallel algorithm (Algorithm 3.1) with 𝑁 time subintervals, so we distribute 𝑀 ′ processors over each time step for the spatial
parallelism. In addition, we utilize the idea of pipelined parareal [9] for the computational cost of time parallel. Hence, the space-time parallel
speedup of Algorithm 3.1 is

𝑆𝑠𝑝𝑎𝑐𝑒,𝑡𝑖𝑚𝑒 =
⎧⎪⎨⎪⎩

𝑁Υ𝐺+𝑁Υ𝐹 ,Ω
𝑁Υ𝐺+Υ𝐹 ,Ω𝑗

+Υ𝐺
, if 𝑀 ′ > 𝑀,

𝑁Υ𝐺+𝑁Υ𝐹 ,Ω
𝑁Υ𝐺+(𝛼+1)Υ𝐹 ,Ω𝑗

+Υ𝐺
, if 𝛼𝑀 ′ < 𝑀 ≤ (𝛼 + 1)𝑀 ′ and 𝛼 ≥ 0 is an integer.

For simplicity, we pick the piecewise linear continuous finite element spaces

𝑆ℎ(Ω) = {𝑣∈ 𝐶0(Ω) ∶ 𝑣|
𝜏ℎ
Ω
∈ 𝑃 1

𝜏ℎ
Ω
,∀𝜏ℎ

Ω ∈ 𝑇 ℎΩ)}.

We still consider the computational domain Ω = (0, 1) × (0, 1) and the exact solution (44) for the heat equation (1). Let us fix the time step length
Δ𝑡 = 1∕64. And we fix the grid triangulation 𝑇 𝐻 (Ω) with 𝐻 = 1∕4 to obtain the partition of unity on Ω. Assume that there are 950 processors, so
there are 15 processors over each time step used for the spatial parallelism in our space-time parallel algorithm (Algorithm 3.1). Next, we denote
𝑢𝑚
ℎ

as the numerical solutions at time 𝑡𝑚. Table 3 shows the 𝐿2-error between the numerical solutions and true solution, CPU time and the parallel
speedup results. So, with almost the same accuracy, our space-time parallel algorithm has the lower CPU time than the serial algorithm.

6.4. Experiment 4: the space-time parallel algorithm with more iterations

In fact, the parareal method is one kind of iterate methods, which proceeds iteratively alternating between the parallel computation of  and the
serial computation of . However there are only two iterations in our algorithms. Next, we take Algorithm 3.1 as an example to show the reasons
why there are no more iterations in this parallel algorithm. First of all, Experiment 2 has verified that Algorithm 3.1 has second-order convergence
in time. Next, we give the space-time parallel iterative algorithm, Algorithm 6.2. Here, we denote 𝐾 ≥ 2 as the number of iterations. Obviously,
when 𝐾 = 2, it is Algorithm 3.1.

Algorithm 6.2 (The space-time parallel iterative algorithm).

Step 1. Let 𝑘 = 1 and compute 𝑢𝑛+1
1,ℎ ∶= (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛

1,ℎ) ∈ 𝑆ℎ
0 (Ω), 𝑛 = 0, … , 𝑁 − 1, by using (12) in serial.

Step 2. Compute 𝑢𝑛+1
𝐹

∶=  (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
𝑘,ℎ

) ∈ 𝑆ℎ
0 (Ω), 𝑛 = 0, … , 𝑁 − 1 in parallel by using the same methods in Step 2 of Algorithm 3.1.

Step 3. Compute 𝑢𝑛+1
𝐺

∶= (𝑡𝑛+1, 𝑡𝑛, 𝑢𝑛
𝑘+1,ℎ) ∈ 𝑆ℎ

0 (Ω), 𝑛 = 0, … , 𝑁 − 1, by using (18) in serial. Then, we update the approximate solution 𝑢𝑛+1
𝑘+1,ℎ =

𝑢𝑛+1
𝐺

+ 𝑢𝑛+1
𝐹

− 𝑢𝑛+1
𝑘,ℎ

with the initial value 𝑢0
𝑘+1,ℎ = 𝑃ℎ𝑢0 = 0.

Step 4. Let 𝑘 = 𝑘 + 1. If 𝑘 = 𝐾 , then stop. Otherwise, go to Step 2.

Let us compute the errors between the exact solution and numerical solution of Algorithm 6.2 with different iterations. We still consider the
same computational domain, triangulation and exact solution as Experiment 1. If we take Δ𝑡 = 1∕100 and ℎ = 1∕32, the numerical error at time 𝑡𝑚 = 1
of the serial second-order SDC method (Algorithm 6.1) is 2.056e-5. We compute the numerical errors of Algorithm 6.2 and show these results in
Table 4. We can find that, as the number of iterations increases, the errors also increase. That is, the accuracy is not improved with the increase
of iterations. And the iterative algorithm with 𝐾 = 2, Algorithm 3.1, can obtain almost the same accuracy as the serial algorithm (Algorithm 6.1).
Therefore, two iterations are enough to get the results we want.
180

D. Xue, Y. Hou and Y. Li Computers and Mathematics with Applications 100 (2021) 167–181
7. Conclusion

In this paper, we propose a local and parallel space-time scheme for the heat equation based on the parareal with spectral deferred correction
and the expandable local and parallel finite element methods. We prove the stability and second-order accuracy in time of our space-time parallel
algorithm. At last, the numerical experiments verify the effectiveness of our scheme. In the future work, in order to verify the practicality of
this space-time parallel algorithm, we will apply this idea to more complex systems, such as the Navier-Stokes/Darcy system, the Cahn–Hilliard
equations and so on. On the other hand, we will consider other parallel methods, such as the local and parallel two-grid method, to further improve
the speedup and accuracy of parallel algorithms.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11971378, 11571274 and 12101494), the Natural Science
Foundation of Shaanxi Province (No. 2021JQ-426) and the Scientific Research Program funded by Education Department of Shaanxi Provincial
Government (No. 21JK0935).

References

[1] J.L. Lions, Y. Maday, G. Turinici, A “parareal” in time discretization of PDE’s, C. R. Acad. Sci., Ser. I Math. 332 (7) (2001) 661–668.

[2] G.A. Staff, E.M. Rønquist, Stability of the Parareal Algorithm, Springer Berlin Heidelberg, 2005.

[3] M.J. Gander, E. Hairer, Nonlinear Convergence Analysis for the Parareal Algorithm, Springer Berlin Heidelberg, 2008.

[4] M.J. Gander, S. Vandewalle, On the superlinear and linear convergence of the parareal algorithm, in: Domain Decomposition Methods in Science and Engineering XVI, vol. 55,
Springer Berlin Heidelberg, 2007, pp. 291–298.

[5] G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, in: Domain Decomposition Methods in Science and Engineering,
Springer Berlin Heidelberg, 2005, pp. 425–432.

[6] M.J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput. 29 (2) (2007) 556–578.

[7] E. Aubanel, Scheduling of tasks in the parareal algorithm, Parallel Comput. 37 (3) (2011) 172–182.

[8] M.L. Minion, S.A. Williams, Parareal and spectral deferred corrections, AIP Conf. Proc. 1048 (1) (2008) 388–391.

[9] M.L. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl. Math. Comput. Sci. 5 (5) (2011) 265–301.

[10] C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications, Int. J. Numer. Methods Eng.
58 (2003) 1397–1434.

[11] M. Bolten, D. Moser, R. Speck, A multigrid perspective on the parallel full approximation scheme in space and time, Numer. Linear Algebra Appl. 24 (2017).

[12] S. Bu, J.Y. Lee, An enhanced parareal algorithm based on the deferred correction methods for a stiff system, J. Comput. Appl. Math. 255 (285) (2014) 297–305.

[13] Y. Maday, J. Salomon, G. Turinici, Monotonic parareal control for quantum systems, SIAM J. Numer. Anal. 45 (6) (2007) 2468–2482.

[14] X. Dai, Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems, SIAM J. Sci. Comput. 35 (1) (2013) A52–A78.

[15] P.F. Fischer, F. Hecht, Y. Maday, A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations, Springer Berlin Heidelberg, 2005.

[16] D. Xue, Y. Hou, W. Liu, Analysis of the parareal method with spectral deferred correction method for the Stokes/Darcy equations, Appl. Math. Comput. 387 (2020) 124625.

[17] C. Farhat, J. Cortial, C. Dastillung, H. Bavestrello, Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses, Int. J. Numer. Methods
Eng. 67 (5) (2010) 697–724.

[18] T.P. Mathew, M. Sarkis, C.E. Schaerer, Analysis of block parareal preconditioners for parabolic optimal control problems, SIAM J. Sci. Comput. 32 (3) (2010) 1180–1200.

[19] Y. Hou, G. Du, An expandable local and parallel two-grid finite element scheme, Comput. Math. Appl. 71 (12) (2016) 2541–2556.

[20] J. Xu, A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comput. 69 (231) (2000) 881–909.

[21] J. Xu, A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems, Adv. Comput. Math. 14 (4) (2001) 293–327.

[22] Y. He, J. Xu, A. Zhou, J. Li, Local and parallel finite element algorithms for the Stokes problem, Numer. Math. 109 (3) (2008) 415–434.

[23] G. Du, L. Zuo, Local and parallel finite element post-processing scheme for the Stokes problem, Comput. Math. Appl. 73 (1) (2017) 129–140.

[24] Y. He, J. Xu, A. Zhou, Local and parallel finite element algorithms for the Navier-Stokes problem, J. Comput. Math. (2006) 227–238.

[25] J. Xu, A. Zhou, Local and parallel finite element algorithms for eigenvalue problems, Acta Math. Appl. Sin. 18 (2) (2002) 185–200.

[26] Q. Liu, Y. Hou, Local and parallel finite element algorithms for time-dependent convection-diffusion equations, Appl. Math. Mech. 30 (6) (2009) 787–794.

[27] A. Dutt, L. Greengard, V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT Numer. Math. 40 (2) (2000) 241–266.

[28] M.L. Minion, Semi-implicit projection methods for incompressible flow based on spectral deferred corrections, Appl. Numer. Math. 48 (3) (2004) 369–387.

[29] M.L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci. 1 (3) (2002) 2127–2157.

[30] C. Bernardi, A.Y. Orfi, A priori error analysis of the fully discretized time-dependent coupled Darcy and Stokes equations, SeMA J. 38 (3) (2004) 1–23.

[31] M. Mu, X. Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comput. 79 (270) (2010) 707–731.

[32] D. Xue, Y. Hou, Numerical analysis of a second order algorithm for a non-stationary Navier–Stokes/Darcy model, J. Comput. Appl. Math. 369 (2020).

[33] F. Collino, P. Joly, F. Millot, Fictitious domain method for unsteady problems, J. Comput. Phys. 138 (2) (1997) 907–938.

[34] V. Girault, R. Glowinski, H. López, J.-P. Vila, A boundary multiplier/fictitious domain method for the steady incompressible Navier-Stokes equations, Numer. Math. 88 (1) (2001)
75–103.

[35] F. Hecht, New development in freefem++, J. Numer. Math. 20 (3–4) (2012) 251–266.
181

http://refhub.elsevier.com/S0898-1221(21)00335-7/bibBABDD4D25222ADA54C5367F9753DE4F3s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibD4C2750B28B220DA40FF364D17EB4C63s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibD524861687A2CF305BD2863E587425BCs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib513540E1962994361411715BB722C26As1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib513540E1962994361411715BB722C26As1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib1D38D6B7E09B8F4E3C2A1402D0C26F4Bs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib1D38D6B7E09B8F4E3C2A1402D0C26F4Bs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib6E4E46DD110038D44F46CB2FE7C03A31s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib784F297056CEA920E012AA22CD4D668Fs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibB59A208CBA0BF72DA609C579B63AB1B2s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib80ECD4F1DCB34F8D16573AD08CFA3BCDs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibD341C0FDC55B9A65C52C4232631D8112s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibD341C0FDC55B9A65C52C4232631D8112s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib63E94119EFFA6C3F65AB1F32F93B4873s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib2727C985AA83D54C879184C8EBD1104Es1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib62CD95BC0393128200F7EF4A4962907Cs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibBB76CC99068C39DFED9917743B9DC46As1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib45F30906CA700D45C09BF28FD4F4D91Bs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib082D77DA1BC041A74FC0F4DA69EBAE55s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib9F567DB3CC32AE769C0F766238AE3D7Ds1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib9F567DB3CC32AE769C0F766238AE3D7Ds1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib4CB7B78A7641B4F830C282564774A7F1s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib1236D9D91093355628E31F120159A0D4s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibC66B2CAF26D3BDA5602FB6E1605E1AB7s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib32C73A35B723FBD8A980F934BBD4D174s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibC71BAACECF4F6D66D34E8D13ACA7BDE2s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib2D4F5AEA3A23485C5275C39EC7CDBB84s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib44F9AFC0D636A2176D0D67A8015471E5s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib125128FFD3F1832A76BA0EA2F620A008s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib6BEDCA91163E3B50CA9B18A4FBE977EEs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib24B237263B4442C4631FDF34E44AD835s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibA02579CB24530C540171013282AE7D70s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibDD9DC07F66ED4465BFD14DA5251C0F17s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib8F693AD133403E1618FD71821886E8DAs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib9103CFA5DFA285AB3D8D762DC3C3C225s1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bib96314D8DB7A45E94E978C5E97682140Bs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibFBA9BF4093D8921CA50C0F66755950BEs1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibCEBAEA187A8AA45B5B78803BB9A15E6Ds1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibCEBAEA187A8AA45B5B78803BB9A15E6Ds1
http://refhub.elsevier.com/S0898-1221(21)00335-7/bibA6025C928BC3184B974ABCB72E20E61Ds1

	Analysis of the local and parallel space-time algorithm for the heat equation
	1 Introduction
	2 Preliminaries
	3 The local and parallel space-time scheme
	3.1 The parareal method
	3.2 The local and parallel space-time scheme

	4 The stability analysis
	5 The error analysis
	6 Numerical experiments
	6.1 Experiment 1: the stability
	6.2 Experiment 2: the order of convergence
	6.3 Experiment 3: the parallel speedup
	6.4 Experiment 4: the space-time parallel algorithm with more iterations

	7 Conclusion
	Acknowledgements
	References

