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A B S T R A C T

The Generalized Finite Element Method (GFEM) is developed from the Partition of the Unity Method
(PUM), which expands the standard finite element space by using non-polynomial function spaces called the
enrichment spaces. GFEM has been successfully applied to various problems, but it still has some drawbacks.
It lacks robustness in adjusting meshes when solving interface problems, and the condition number of the
stiffness matrix will increase dramatically when the interface is close to the mesh boundary. This phenomenon
can lead to ill-conditioned linear equations. A stable GFEM called SGFEM is proposed for the Stokes interface
problem in this paper, which modifies the enrichment space. The SGFEM space of the velocity is divided into
a basic part S𝐹𝐸𝑀 and an enrichment part S∗𝐸𝑁𝑅. The discretization of space (S𝐹𝐸𝑀 ×Qℎ) uses 𝑄1 −𝑄0 element
or the Taylor-Hood element for the study. S∗𝐸𝑁𝑅 uses different interpolation functions. Numerical studies show
that SGFEM has the optimal convergence order of the error and robustness. The growth rate of the scaled
condition number of the stiffness matrix is the same as that of a standard FEM.
1. Introduction

Partial differential equation models appear in many real world ap-
plications, such as elastodynamics, fluid mechanics, materials science,
etc. Among them problems with discontinuous coefficients and inter-
faces are important research topics. Discontinuous problems include
crack extensions, fluid–structure couplings, multiphase flows and flows
in porous media, etc. For two-phase flow problems, the Navier–Stokes
equation with discontinuous viscosity coefficients (interface problem)
is a frequently encountered model. If the viscosities of a two-phase flow
are large, the Stokes equation with discontinuous viscosity coefficients
is a more convenient model. In this paper, we adopt the Stable Gen-
eralized Finite Element Method (SGFEM) to solve the Stokes interface
problem.

Let 𝛺 ⊂ R2 be a bounded, simply connected domain with a smooth
boundary 𝜕𝛺. Consider two subdomains, denoted as 𝛺1 ⊂ 𝛺 and
𝛺2 ⊂ 𝛺, which satisfy 𝛺1∩𝛺2 = ∅, 𝛺1∪𝛺2 = 𝛺. The interface is defined
as the boundary between the two subdomains, denoted as 𝛺1∩𝛺2 = 𝛤 .
This paper discusses circular interface and straight interface problems,
as shown in Fig. 1. Consider the Stokes interface problems

−∇ ⋅ (2𝜇𝝐(𝐮)) + ∇𝑝 = 𝐟 , in 𝛺1 ∪𝛺2,

∇ ⋅ 𝐮 = 0, in 𝛺,
(1.1)

with the Dirichlet boundary condition

𝐮 = 𝐠𝐷, on 𝜕𝛺, (1.2)

∗ Corresponding author at: College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China.
E-mail address: jpzhao@xju.edu.cn (J. Zhao).

where 𝐮 is the velocity, 𝑝 is the pressure, 𝐟 is the body force and
𝝐(𝐮) = 1

2 (∇𝐮 + (∇𝐮)𝑇 ) is the strain tensor. Assume that the viscosity
coefficient 𝜇(𝐱) is a piecewise constant,

𝜇 =
{

𝜇1, in 𝛺1,
𝜇2, in 𝛺2,

and the jump conditions are

[𝐮]𝛤 = 0, on 𝛤 ,

[𝝈(𝜇,𝐮, 𝑝)𝐧]𝛤 = 0, on 𝛤 ,
(1.3)

where the 𝝈(𝜇,𝐮, 𝑝) = 2𝜇𝜖(𝐮) − 𝑝I is the stress tensor, I is the identity
matrix, 𝐧 is the unit normal vector to the interface 𝛤 pointing to the
region outside the circle or on a straight line, and [𝐯]𝛤 denotes the jump
of the function 𝐯(𝑥) across the interface, i.e.[𝐯(𝐱)] = 𝐯𝟏(𝐱)|𝛤−𝐯𝟐(𝐱)|𝛤 . Here
𝐯𝟏(𝐱) = 𝐯(𝐱)|𝛺1

and 𝐯𝟐(𝐱) = 𝐯(𝐱)|𝛺2
. In addition, the second equation in

(1.1) provides an additional condition for jumps across the interface

[∇ ⋅ 𝐮]|𝛤 = 0, on 𝛤 .

The non body-fitted mesh methods for interface problems include
Immersed Interface Method (IIM), Immersed Finite Element Method
(IFEM), Generalized Finite Element Method (GFEM), or Extended Finite
Element Method (XFEM), etc. In 1972, Peskin proposed the Immersed
vailable online 4 April 2024
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Fig. 1. Diagram of different interfaces: (a) A circular interface. (b) A straight line interface.
w
a
S
b
i
2
f

𝐷

w
t
e
t
e

p
d
i
p
c
e

2

c
d
t
i
v
I
v
i

2

Boundary Method (IBM) to solve the blood flow in the heart [1]. The
main idea is to use a uniform mesh and use a continuous function
to smoothly connect the solutions to be solved on both sides of the
interface, resulting in a numerical method with first-order accuracy.
This breakthrough enabled significant progress in numerical simula-
tions of interface problems. In 1994, Li and LeVeque proposed the
IIM [2], which constructs a second-order numerical method for solving
elliptic interface problems based on finite differences. The authors
in [3] improved IIM by using piecewise quadratic polynomials. In the
field of finite element methods, the earliest work for elliptic equations
with discontinuous coefficients was presented by Babuška [4], with the
aim of dealing with the problem of discontinuous coefficients.

In 1996, Melenk and Babuška proposed the Partition of the Unity
Method (PUM) [5]. It is a groundbreaking work. In the following
decades, the GFEM and XFEM have been developed based on PUM
with the aim of constructing numerical methods for solving discon-
tinuous problems and have been widely used to solve various types
of problems. Among them, XFEM was first proposed in 1999 by J. E.
Dolbow [6] and Ted Belytschko and Blacks [7], with the idea of using
independent meshes for solving crack extensions and adding expanding
shape functions near the crack surfaces or tips. Quasi-static cracks,
multi-cracks, and hole models were studied in [8,9]. PUM was called
GFEM in [10–12] and GFEM is the PUM with a special PU. It was
later recognized that the two methods are equivalent and the condition
number of the stiffness matrix in GFEM/XFEM can be large, leading
to ill-conditioned systems in [13]. And GFEM may be unstable and
lacks robustness in adjusting meshes. In [14], Hansbo first proposed a
new method for elliptic interface problems called Nitsche-XFEM, which
combines the Nitsche method with the extended finite element method
and achieves uniform optimal convergence order with respect to the
interface location. They later applied this method to Stokes interface
problems, as seen in [15,16]. More studies on the interface problems
of the Stokes equation can be found in [17–20].

In 2012, Babuška proposed the Stable Generalized Finite Element
Method (SGFEM) [21], which solves the ill-conditioned system issue in
GFEM. He starts from the construction of the finite element space and
argues that if the enrichment function space is orthogonal or almost
orthogonal to the standard function space, the condition number of
the stiffness matrix and the convergence order of the error are the
same as those of the standard FEM. The main idea is to modify the
enrichment space by subtracting the interpolation of the enrichment
function. In [22], a definition was proposed: if the ‘‘angle’’ between
the enrichment space and the standard space is significantly larger
than 0 with respect to the mesh, GFEM is called SGFEM. In 2013, the
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stabilization idea was applied to the pressure-discontinuous Navier–
Stokes interface problem [23], and the enrichment function used a
symbol distance function, namely

𝜓(𝐱, 𝑡) = sign(𝜙(𝐱, 𝑡)) =
⎧

⎪

⎨

⎪

⎩

−1, 𝜙(𝐱, 𝑡) < 0,
0, 𝜙(𝐱, 𝑡) = 0,
1, 𝜙(𝐱, 𝑡) > 0,

here 𝜙(𝐱, 𝑡) is the level set function of the interface. In [24], the
uthors applied SGFEM to 3D fracture mechanics. The two degree
GFEM for interface problems and higher-order SGFEM are investigated
y Zhang and Babuška et al. [25,26]. And they applied it to elliptic
nterface problems and parabolic interface problems, respectively [22,
7,28]. Among them, the authors in [28] modified the enrichment
unction 𝐷(𝐱) = 𝑑𝑖𝑠𝑡(𝐱,Γ) to a one-sided distance function, namely

̃ (𝐱) ∶=
{

𝐷(𝐱), 𝐱 ∈ 𝛺1,
0, 𝐱 ∈ 𝛺2.

here 𝛺1 and 𝛺2 are two areas separated by the interface. In order
o further investigate the stability and robustness of SGFEM, as well as
xplore different interpolation functions in the stabilization approach,
his paper extends SGFEM to the interface problem of the Stokes
quation.

The organization of this paper is as follows. In Section 2, we
resent some notations and make a brief introduction to GFEM. The
etailed algorithm for solving the Stokes interface problem by SGFEM
s described in Section 3. And the weak form is modified by adding a
enalty for the study of the scaled condition number. In Section 4, The
onvergence and robustness of SGFEM are analyzed through numerical
xamples. Finally, Section 5 provides the conclusion of this paper.

. Preliminaries

Discontinuities are usually categorized into strong and weak dis-
ontinuities, which refer to the discontinuity of the solution and the
iscontinuity of its gradient across the interface, respectively. From
he interface condition (1.3), 𝐮 is continuous on the interface 𝛤 , while
ts gradient is discontinuous on the interface due to the discontinuous
iscosity coefficient 𝜇. And we assume that the pressure 𝑝 is continuous.
n this paper, more attention is paid to the weak discontinuity of the
elocity 𝐮. In fact, the pressure 𝑝 may also involve jumps across the
nterface.

.1. Notations

Denote the standard Sobolev spaces by 𝑊 𝑘
𝑚 (𝛺) with the norm

⋅ ‖ and the seminorm | ⋅ | . As usual, using 𝐻𝑘(𝛺), ‖ ⋅
𝑊 𝑘
𝑚 (𝛺) 𝑊 𝑘

𝑚 (𝛺)
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V



‖𝐻𝑘(𝛺), | ⋅ |𝐻𝑘(𝛺) to describe the above items respectively for 𝑚 = 2
and 𝐿2(𝛺), ‖ ⋅ ‖𝐿2(𝛺), | ⋅ |𝐿2(𝛺) for 𝑘 = 0, 𝑚 = 2. Specially, 𝐻1

0 (𝛺) =
{𝐯 ∈ 𝐻1(𝛺) ∶ 𝐯 = 0 on 𝜕𝛺}. Next we define the velocity space and the
pressure space as follows:

V =
[

𝐻1
0 (𝛺)

]2, Q =
{

𝑞 ∈ 𝐿2(𝛺) ∶ ∫𝛺
𝑞 𝑑𝛺 = 0

}

.

Then the weak formulation of the problem (1.1)−(1.2) is to find (𝐮, 𝑝) ∈
×Q such that

(𝐮, 𝐯) + (𝐯, 𝑝) = (𝐟 , 𝐯),
(𝐮, 𝑞) = 0,

(2.1)

for any (𝐯, 𝑞) ∈ V ×Q , where

(𝐮, 𝐯) = ∫𝛺
2𝜇𝝐(𝐮) ∶ 𝝐(𝐯) 𝑑𝛺 , (𝐯, 𝑝)

= −∫𝛺
𝑞∇ ⋅ 𝐯 𝑑𝛺 , (𝐟 , 𝐯) = ∫𝛺

𝐟 ⋅ 𝐯 𝑑𝛺,

with

𝐴 ∶ 𝐵 =
(

𝑎11 𝑎12
𝑎21 𝑎22

)

∶
(

𝑏11 𝑏12
𝑏21 𝑏22

)

= 𝑎11𝑏11 + 𝑎12𝑏12 + 𝑎21𝑏21 + 𝑎22𝑏22.

In addition, we define the energy norm ‖ ⋅ ‖ℰ (𝛺) by

‖𝐯‖2ℰ (𝛺) = ∫𝛺
𝜇∇𝐯 ⋅ ∇𝐯 𝑑𝛺.

Remark 1. When using the finite element method to solve the Stokes
equation without interface, if the linear element is used for velocity 𝐮
and the piecewise constant for pressure 𝑝, the convergence orders of the
𝐿2 error for 𝐮, the energy error for 𝐮 and the 𝐿2 error for 𝑝 are 𝑂(ℎ2),
𝑂(ℎ) and 𝑂(ℎ), respectively. If 𝐮 is the quadratic element and 𝑝 is the
linear element, they are 𝑂(ℎ3), 𝑂(ℎ2) and 𝑂(ℎ2), respectively [29].

2.2. GFEM

GFEM is the PUM with a special PU. Compared to the traditional
FEM, GFEM does not require meshes redivision or refinement. The
meshes are independent and fixed.

Let ℎ be the uniform mesh on 𝛺 with nodes 𝐱𝑖, 𝑖 ∈ 𝐼ℎ, where 𝐼ℎ
is the index set of the nodes and 𝐱𝑖 = (𝑥𝑖, 𝑦𝑖)𝑇 . The elements 𝜏𝑠 related
to the mesh ℎ are closed quadrilaterals and their set is described as
{𝜏𝑠 ∶ 𝑠 ∈ 𝐸ℎ}, where 𝐸ℎ is the index of the elements. For an element
𝜏𝑠, {𝐱𝑖 ∶ 𝑖 ∈ 𝐼𝑠ℎ} are all nodes of it, where 𝐼𝑠ℎ ⊂ 𝐼ℎ is the index set.
Similarly we define the set of all elements associated with the node 𝐱𝑖
as {𝜏𝑠 ∶ 𝑠 ∈ 𝐸𝑖ℎ ∈ 𝐸ℎ}. In addition, we use 𝐸𝛤 to denote the index set of
the elements intersecting the interface, namely 𝐸𝛤 = {𝑠 ∶ 𝜏𝑠 ∩ 𝛤 ≠ ∅}.

We enrich the space of velocity 𝐮 if the GFEM is used for the spatial
approximation of the variational (2.1).

2.2.1. 𝑄1 and 𝑄0
The standard FEM space uses 𝑄1 element and 𝑄0 element, namely

the velocity 𝐮 uses the 𝑄1 element and the pressure 𝑝 uses 𝑄0 element.
Then, the velocity and the pressure approximation spaces are defined
as follow:
S1𝐹𝐸𝑀 = V1

ℎ = span{𝑁𝑢
𝑖 ∶ 𝑁𝑢

𝑖 is the bilinear Lagrange basis function, 𝑖 ∈ 𝐼𝑢ℎ},

S1𝐸𝑁𝑅 = span{𝑤𝑁𝑢
𝑖 ∶ 𝑁𝑢

𝑖 is bilinear, 𝑖 ∈ 𝐼𝐸𝑁𝑅 ⊂ 𝐼
𝑢
ℎ},

S1𝐺𝐹𝐸𝑀 = S1𝐹𝐸𝑀 ⊕ S1𝐸𝑁𝑅 = {𝐯 = 𝐯1 + 𝐯2 ∶ 𝐯1 ∈ S1𝐹𝐸𝑀 , 𝐯2 ∈ S1𝐸𝑁𝑅},

and

0
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Qℎ = span{1}.
2.2.2. Taylor-Hood
The standard FEM space uses Taylor-Hood element, namely the

velocity 𝐮 uses the 𝑄2 element and the pressure 𝑝 uses 𝑄1 element.
Then the velocity and the pressure approximation spaces are defined
as follows:
S2𝐹𝐸𝑀 = V2

ℎ = span{𝑁𝑢
𝑖 ∶ 𝑁𝑢

𝑖 is the biquadratic Lagrange basis function, 𝑖 ∈ 𝐼𝑢ℎ},

S2𝐸𝑁𝑅 = span{𝑤𝑁𝑢
𝑖 ∶ 𝑁𝑢

𝑖 is biquadratic, 𝑖 ∈ 𝐼𝐸𝑁𝑅 ⊂ 𝐼
𝑢
ℎ},

S2𝐺𝐹𝐸𝑀 = S2𝐹𝐸𝑀 ⊕ S2𝐸𝑁𝑅 = {𝐯 = 𝐯1 + 𝐯2 ∶ 𝐯1 ∈ S2𝐹𝐸𝑀 , 𝐯2 ∈ S2𝐸𝑁𝑅},

and

Q1
ℎ = span{𝑁𝑝

𝑖 ∶ 𝑁𝑝
𝑖 is the bilinear Lagrange basis function, 𝑖 ∈ 𝐼𝑝ℎ}.

Since the pressure 𝑝 is continuous, only the velocity space is en-
riched. We call S𝑘𝐸𝑁𝑅 the enrichment space of GFEM, 𝑤(𝐱) the enrich-
ment function, and {𝐱𝑖, 𝑖 ∈ 𝐼𝐸𝑁𝑅} the enrichment nodes. 𝐼𝑢ℎ and 𝐼𝑝ℎ
are the index sets of the finite element nodes of the discretized 𝐮 and
𝑝, respectively. They are related to the form of the basis functions.
Note that 𝐼𝑢ℎ does not include enrichment nodes. We use 𝑁𝑢

𝑖 and 𝑁𝑝
𝑖

to represent the shape functions for 𝐮 and 𝑝 uniformly in the following.
For the convenience of discussions, S𝐺𝐹𝐸𝑀 is uniformly represented as

S𝑘𝐺𝐹𝐸𝑀 = S𝑘𝐹𝐸𝑀 ⊕ S𝑘𝐸𝑁𝑅 = {𝐯 = 𝐯1 + 𝐯2 ∶ 𝐯1 ∈ S𝑘𝐹𝐸𝑀 , 𝐯2 ∈ S𝑘𝐸𝑁𝑅}, 𝑘 = 1, 2.

(2.2)

Different GFEM can be obtained by selecting different enrichment
functions and enrichment nodes. For the problems of weak discontinu-
ities, the enrichment function is chosen to be

𝑤(𝐱) = 𝑑𝑖𝑠𝑡(𝐱, 𝛤 ).

Clearly, 𝑤(𝐱) is continuous on 𝛺 and 𝑤(𝐱) = 0 for 𝐱 ∈ 𝛤 . If we do not
enrich the space of the FEM, the space of the GFEM is a standard finite
element space, namely

S𝑘𝐺𝐹𝐸𝑀 = S𝑘𝐹𝐸𝑀 = V𝑘ℎ, 𝑘 = 1, 2.

3. The stable GFEM and the scaled condition number

In the previous application of the GFEM to interface problems (1.1),
it tends to produce ill-conditioned stiffness matrix. Especially when the
interface is very close to the mesh, the condition number of the stiffness
matrix will increase sharply. As shown in Fig. 2, 𝑆𝑐𝑢𝑡 represents the
smaller area formed when the support of the enrichment node 𝐱𝑖 is cut
by the interface. 𝑆𝑠𝑢𝑝𝑝𝑜𝑟𝑡 represents the area of the support of 𝐱𝑖, namely
the sum of the areas of the four rectangles. If

𝑆𝑐𝑢𝑡 < 𝐶𝑆𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝐶 ≪ 1,

the usual approach is to no longer expand this node, which avoids
the rapid increase of the stiffness matrix condition number. But the
numerical process is relatively cumbersome. The SGFEM avoids this
problem in the numerical process.

3.1. The SGFEM for Stokes interface problem

In 2012, Babuška proposed the SGFEM [21]. The idea is to subtract
the interpolation of the enrichment function 𝑤(𝐱) from itself, namely

𝑤∗(𝐱) = 𝑤(𝐱) − ℎ𝑤(𝐱),

where ℎ𝑤(𝐱) is a piecewise linear or quadratic interpolation of 𝑤(𝐱).
Particular attention should be paid to the choice of the interpolation
function ℎ𝑤(𝐱) in 𝑤∗(𝐱). The two degree SGFEM for the interface
problems was investigated in [25]. The form restricted to the element
𝜏𝑠 is

𝜏𝑠𝑤(𝐱) =
𝑛𝑢
∑

𝑤(𝐱𝑘)𝑁𝑢
𝑘

|

|

|

|

, 𝑠 ∈ 𝐸𝛤 ,

𝑘=1 |𝜏𝑠
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Fig. 2. Enrichment strategy for GFEM.
Fig. 3. An illustration of the enrichment nodes {𝐱𝑖 ∶ 𝑖 ∈ 𝐼𝛤 }: (a) Circular and bilinear discretization. (b) Straight and biquadratic discretization.
where 𝑛𝑢 is the number of the finite element nodes in 𝜏𝑠, which is
related to 𝑁𝑢

𝑘 being a linear or quadratic function. Clearly, the support
of 𝑤∗(𝐱) is

𝑠𝑢𝑝𝑝{𝑤∗(𝐱)} =
⋃

𝑠∈𝐸𝛤

𝜏𝑠.

Remark 2. Let 𝐼𝛤 represent the index set of the finite element nodes
of the element {𝜏𝑠 ∶ 𝑠 ∈ 𝐸𝛤 }. Note that for the condition (1.2) of
the straight interface problem, 𝐼𝛤 does not include the nodes on 𝜕𝛺.
The selection of enrichment nodes is given by 𝐼𝐸𝑁𝑅 = 𝐼𝛤 in SGFEM,
as shown in Fig. 3. The green triangles in the graph represent an
enrichment nodes.

After modifying the enrichment function and determining the en-
richment nodes, we define the SGFEM space of velocity as

S𝑘𝑆𝐺𝐹𝐸𝑀 = S𝑘𝐹𝐸𝑀 ⊕ S𝑘∗𝐸𝑁𝑅 and S𝑘∗𝐸𝑁𝑅 = span{𝑤∗𝑁𝑢
𝑖 , 𝑖 ∈ 𝐼𝛤 }, 𝑘 = 1, 2.

The 𝑁𝑢
𝑖 in S𝑘∗𝐸𝑁𝑅 and the 𝑁𝑢

𝑘 in ℎ are bilinear for 𝑘 = 1 and biquadratic
for 𝑘 = 2. In the case of continuous pressure, the discretized spaces
for velocity and pressure are denoted as S𝑘𝑆𝐺𝐹𝐸𝑀 and Q𝑘−1

ℎ , 𝑘 = 1, 2,
respectively.

The same Lagrange basis functions 𝑁𝑢
𝑖 are used as the PU in S𝑘𝐹𝐸𝑀

and S𝑘∗𝐸𝑁𝑅, and we choose the interpolation function of the same order
as it. After adding additional degrees of freedom, the forms of the
velocity solution 𝐮ℎ and the pressure solution 𝑝ℎ are given by

𝐮ℎ =
∑

𝑖∈𝐼𝑢ℎ

𝒂𝑖𝑁𝑢
𝑖 +

∑

𝑘∈𝐼𝛤

𝒃𝑘𝑤∗𝑁𝑢
𝑘 ,

𝑝ℎ =
∑

𝑝
𝑝𝑖𝑁

𝑝
𝑖 ,
477

𝑖∈𝐼ℎ
where 𝐮ℎ = (𝑢1ℎ, 𝑢2ℎ)𝑇 , 𝒂𝑖 = (𝑎1𝑖, 𝑎2𝑖)𝑇 , 𝒃𝑘 = (𝑏1𝑘, 𝑏2𝑘)𝑇 . This leads to
solving the following linear system

𝐴𝑈 = 𝐹 ,

where

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 𝐴13 𝐴14 𝐴15

𝐴𝑇12 𝐴22 𝐴23 𝐴24 𝐴25

𝐴𝑇13 𝐴𝑇23 𝐴33 𝐴34 𝐴35

𝐴𝑇14 𝐴𝑇24 𝐴𝑇34 𝐴𝑒𝑛𝑟11 𝐴𝑒𝑛𝑟12

𝐴𝑇15 𝐴𝑇25 𝐴𝑇35 𝐴𝑒𝑛𝑟21 𝐴𝑒𝑛𝑟22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑈 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⃖⃖⃖⃗𝑎1
⃖⃖⃖⃗𝑎2
⃖⃗𝑝
⃖⃖⃖⃗𝑏1
⃖⃖⃖⃗𝑏2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹1
𝐹2
0
𝐹 𝑒𝑛𝑟
1
𝐹 𝑒𝑛𝑟
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Details as follows:
[

𝐴11 𝐴12

𝐴𝑇12 𝐴22

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣



(

(

𝑁𝑢
𝑗
0

)

,
(

𝑁𝑢
𝑖
0

)

)



(

(

0
𝑁𝑢
𝑗

)

,
(

𝑁𝑢
𝑖
0

)

)



(

(

𝑁𝑢
𝑗
0

)

,
(

0
𝑁𝑢
𝑖

)

)



(

(

0
𝑁𝑢
𝑗

)

,
(

0
𝑁𝑢
𝑖

)

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦𝑖,𝑗∈𝐼𝑢ℎ

,

[

𝐴13
𝐴23

]

=
[


((

𝑁𝑢
𝑖
0

)

, 𝑁𝑝
𝑗

)


((

0
𝑁𝑢
𝑖

)

, 𝑁𝑝
𝑗

)]𝑇

𝑖∈𝐼𝑢ℎ, 𝑗∈𝐼
𝑝
ℎ

,

[

𝐴14 𝐴15
𝐴24 𝐴25

]

=

⎡

⎢

⎢

⎢

⎢

⎣


((

𝑤∗𝑁𝑢
𝑘

0

)

,
(

𝑁𝑢
𝑖
0

))


((

0
𝑤∗𝑁𝑢

𝑘

)

,
(

𝑁𝑢
𝑖
0

))


((

𝑤∗𝑁𝑢
𝑘

0

)

,
(

0
𝑁𝑢

))


((

0
𝑤∗𝑁𝑢

)

,
(

0
𝑁𝑢

))

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑖 𝑘 𝑖 𝑖∈𝐼𝑢ℎ, 𝑘∈𝐼𝛤
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T
d
Q
(
t
5
a

e
R
c
l
w

c
r
𝑂
h
T
m

4

(
w

𝐮

T
e
f

𝐴33 = 𝐎𝑚×𝑚, and 𝑚 is the degree of freedom of the pressure 𝑝,
[

𝐴34 𝐴35
]

=
[


((

𝑤∗𝑁𝑢
𝑘

0

)

, 𝑁𝑝
𝑖

)


((

0
𝑤∗𝑁𝑢

𝑘

)

, 𝑁𝑝
𝑖

)]

𝑖∈𝐼𝑝ℎ,𝑘∈𝐼𝛤

,

[

𝐴𝑒𝑛𝑟11 𝐴𝑒𝑛𝑟12

𝐴𝑒𝑛𝑟21 𝐴𝑒𝑛𝑟22

]

=

⎡

⎢

⎢

⎢

⎢

⎣


((

𝑤∗𝑁𝑢
𝑘

0

)

,
(

𝑤∗𝑁𝑢
𝑙

0

))


((

0
𝑤∗𝑁𝑢

𝑘

)

,
(

𝑤∗𝑁𝑢
𝑙

0

))


((

𝑤∗𝑁𝑢
𝑘

0

)

,
(

0
𝑤∗𝑁𝑢

𝑙

))


((

0
𝑤∗𝑁𝑢

𝑘

)

,
(

0
𝑤∗𝑁𝑢

𝑙

))

⎤

⎥

⎥

⎥

⎥

⎦𝑘,𝑙∈𝐼𝛤

and 𝐴𝑒𝑛𝑟21 = (𝐴𝑒𝑛𝑟12 )
𝑇 ,

[

𝐹1
𝐹2

]

=
[ (

𝐟 ,
(

𝑁𝑢
𝑖
0

)) (

𝐟 ,
(

0
𝑁𝑢
𝑖

)) ]𝑇

𝑖∈𝐼𝑢ℎ

,

[

𝐹 𝑒𝑛𝑟
1
𝐹 𝑒𝑛𝑟
2

]

=
[ (

𝐟 ,
(

𝑤∗𝑁𝑢
𝑙

0

)) (

𝐟 ,
(

0
𝑤∗𝑁𝑢

𝑙

)) ]𝑇

𝑙∈𝐼𝛤

.

The 3 × 3 block matrix in the upper left corner of matrix 𝐴 is the
stiffness matrix for the standard FEM, namely

𝐴𝑓𝑒𝑚3×3 =

⎡

⎢

⎢

⎢

⎣

𝐴11 𝐴12 𝐴13

𝐴𝑇12 𝐴22 𝐴23

𝐴𝑇13 𝐴𝑇23 𝐴33

⎤

⎥

⎥

⎥

⎦

.

And the subscripts 3 × 3 in the following matrix all refer to the
corresponding block matrix. The size of the enrichment is related to the
𝐼𝛤 . In addition, 𝑤∗ would make the diagonal elements of the matrices
𝐴𝑒𝑛𝑟11 and 𝐴𝑒𝑛𝑟22 very small, so we will modify the linear system next.

3.2. The scaled condition number (SCN)

Let 𝐻 = 𝐷𝐴𝐷, where 𝐷 is the diagonal matrix with 𝐷𝑖𝑖 = 𝐴−1∕2
𝑖𝑖 .

Because of the −1∕2, the diagonal elements of the stiffness matrix 𝐴
must be greater than 0. So the zero matrix 𝐴33 is modified with the
addition of a penalty [29,30]. The weak form (2.1) is changed to ∀𝜀 > 0,
find (𝐮𝜀, 𝑝𝜀) ∈ (S𝑘𝑆𝐺𝐹𝐸𝑀 ×Q𝑘−1

ℎ ), 𝑘 = 1, 2, such that

(𝐮𝜀, 𝐯) + (𝐯, 𝑝𝜀) = (𝐟 , 𝐯),
(𝜀𝑝𝜀, 𝑞) − (𝐮𝜀, 𝑞) = 0.

(3.1)

There exists a unique solution to this problem. In this case, 𝐴33 =
[(𝜀𝑁𝑝

𝑗 , 𝑁
𝑝
𝑖 )]𝑖,𝑗∈𝐼𝑝ℎ . Since the coefficient of (𝐮𝜀, 𝑞) becomes −1, the final

stiffness matrix is

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 𝐴13 𝐴14 𝐴15

𝐴𝑇12 𝐴22 𝐴23 𝐴24 𝐴25

−𝐴𝑇13 −𝐴𝑇23 𝐴33 −𝐴34 −𝐴35

𝐴𝑇14 𝐴𝑇24 𝐴𝑇34 𝐴𝑒𝑛𝑟11 𝐴𝑒𝑛𝑟12

𝐴𝑇15 𝐴𝑇25 𝐴𝑇35 𝐴𝑒𝑛𝑟21 𝐴𝑒𝑛𝑟22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that 𝐴𝑓𝑒𝑚3×3 also changes accordingly. The scaled condition
numbers (SCNs) of 𝐴 and 𝐴𝑓𝑒𝑚3×3 are defined by

(𝐴) = 𝜅(𝐻) = ‖𝐻‖2‖𝐻
−1
‖2,

(𝐴𝑓𝑒𝑚3×3 ) = 𝜅(𝐻𝑓𝑒𝑚
3×3 ) = ‖𝐻𝑓𝑒𝑚

3×3 ‖2‖(𝐻
𝑓𝑒𝑚
3×3 )

−1
‖2,

(3.2)

where 𝜅(⋅) is the condition number based on the ‖ ⋅ ‖2 vector norm.
In the next section the SGFEM is investigated through some numerical
examples.

4. Numerical experiments

ℎ is a uniform quadrilateral mesh associated with the parameter
ℎ. The elements {𝜏𝑠 ∶ 𝑠 ∉ 𝐸𝛤 } that do not intersect with the interface
use the standard quadrilateral Gauss integration rule. For the elements
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{𝜏𝑠 ∶ 𝑠 ∈ 𝐸𝛤 } that intersect with the interface: b
(a) if the element is divided into a triangle and a polygon (quadrilat-
eral or pentagon) by the interface, we add the centroid to the polygon
and then triangulate it;

(b) if the element is divided into two triangles or two quadrilaterals,
we add the centroid to each polygon and then triangulate them.

The triangular Gauss integration rule is used in the obtained tri-
angles. In addition, for the circular interface problem, we replace it
with the polygon obtained by connecting the intersection points of the
interface and the element edges. We calculate the SCNs (3.2) of the
stiffness matrix for each example and the relative error as follows:

‖

‖

𝑒𝐮‖‖𝐿2 ∶=
‖

‖

𝐮 − 𝐮𝜀‖‖𝐿2(𝛺)

‖𝐮‖𝐿2(𝛺)
, ‖

‖

𝑒𝐮‖‖ℰ (𝛺) ∶=
‖

‖

𝐮 − 𝐮𝜀‖‖ℰ (𝛺)

‖𝐮‖ℰ (𝛺)
,

‖

‖

‖

𝑒𝑝
‖

‖

‖𝐿2 ∶=
‖

‖

𝑝 − 𝑝𝜀‖‖𝐿2(𝛺)

‖𝑝‖𝐿2(𝛺)
.

4.1. An circular interface problem

Consider the region 𝛺 = (−1, 1)×(−1, 1) with a uniform quadrilateral
mesh. The interface is 𝛤 = {𝐱 = (𝑥, 𝑦)𝑇 ∈ R2 ∶ 𝑥2+𝑦2 = 𝑟20} with 𝑟0 = 0.5
and 𝛺1 = {(𝑥, 𝑦) ∈ 𝛺 ∶ 𝑥2 + 𝑦2 < 𝑟20}, 𝛺2 = {(𝑥, 𝑦) ∈ 𝛺 ∶ 𝑥2 + 𝑦2 > 𝑟20}.
The solution 𝐮(𝐱) and 𝑝(𝐱) of (3.1) are

𝐮(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟20−|𝐱|
2

𝜇1

(

−𝑦
𝑥

)

, if 𝐱 ∈ 𝛺1,

𝑟20−|𝐱|
2

𝜇2

(

−𝑦
𝑥

)

, if 𝐱 ∈ 𝛺2,
and 𝑝(𝐱) = 𝑦2 − 𝑥2, 𝐱 ∈ 𝛺.

he right-hand side term 𝐟 and the Dirichlet boundary condition 𝐠𝐷 are
etermined by (1.1)−(1.2). In this example, for (𝐮𝜀, 𝑝𝜀) ∈ (S1𝑆𝐺𝐹𝐸𝑀 ×
0
ℎ), namely using 𝑄1 − 𝑄0 element for the discretization of the space
S1𝐹𝐸𝑀 × Q0

ℎ) and the linear interpolation function in 𝑤∗, we compute
he viscosity coefficients for small and large jumps [18]: 𝜇1 = 1, 𝜇2 =
; 𝜇1 = 5, 𝜇2 = 1; 𝜇1 = 1000, 𝜇2 = 1 and 𝜀 = 10−6 in (3.1). The errors
nd their convergence orders are shown in Tables 1–3.

From the results, both the relative 𝐿2 error and the relative en-
rgy error for velocity 𝐮 at the same optimal convergence orders as
emark 1, which are 𝑂(ℎ2) and 𝑂(ℎ), respectively. And the order of
onvergence of the relative 𝐿2 error for pressure 𝑝 is 𝑂(ℎ). The abso-
ute errors are only slightly larger than the relative errors. Compared
ith [18], most of the errors are smaller.

The study of SCNs for 𝐴 and 𝐴𝑓𝑒𝑚3×3 as shown in Fig. 4. It shows the
omparison between (𝐴) and (𝐴𝑓𝑒𝑚3×3 ) under three different viscosity
atio values. As the grid is refined, the growth rate of (𝐴) remains at
(ℎ−2), which is the same as (𝐴𝑓𝑒𝑚3×3 ) in the standard FEM. Although 𝐴
as more degrees of freedom than 𝐴𝑓𝑒𝑚3×3 , their SCNs are very similar.
hese results indicate that SGFEM has a well-conditioned stiffness
atrix and avoids pathological problems.

.2. An straight interface problem

Consider the example 4.1 from [19]. The region is 𝛺 = (−1, 1) ×
−1, 1) with a straight interface 𝛤 = {𝐱 = (𝑥, 𝑦)𝑇 ∈ R2 ∶ 2𝑥 + 𝑦 − 𝑐 = 0},
here 𝑐 =

√

2. And 𝛺1 = {(𝑥, 𝑦) ∈ 𝛺 ∶ 2𝑥 + 𝑦 − 𝑐 > 0}, 𝛺2 = {(𝑥, 𝑦) ∈
𝛺 ∶ 2𝑥 + 𝑦 − 𝑐 < 0}. The solution 𝐮(𝐱) and 𝑝(𝐱) are

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

(2𝑥 + 𝑦 − 𝑐)3∕(2𝜇1)
−(2𝑥 + 𝑦 − 𝑐)3∕𝜇1

)

, (𝑥, 𝑦) ∈ 𝛺1,
(

(2𝑥 + 𝑦 − 𝑐)3∕(2𝜇2)
−(2𝑥 + 𝑦 − 𝑐)3∕𝜇2

)

, (𝑥, 𝑦) ∈ 𝛺2,
and 𝑝 = 𝑒𝑥 − 𝑒𝑦.

he discretization of the space (S2𝐹𝐸𝑀 × Q1
ℎ) uses the Taylor-Hood

lement for (𝐮𝜀, 𝑝𝜀) ∈ (S2𝑆𝐺𝐹𝐸𝑀 × Q1
ℎ). Note here that the interpolation

unction in 𝑤∗ is quadratic. We test the convergence performance for
oth small and large jumps, namely 𝜇 = 1, 𝜇 = 10; 𝜇 = 10, 𝜇 =
1 2 1 2
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Table 1
Relative error of the SGFEM with 𝜇1 = 1, 𝜇2 = 5, 𝜀 = 10−6.

ℎ−1 ‖

‖

𝑒𝐮‖‖𝐿2 Order ‖

‖

𝑒𝐮‖‖ℰ (𝛺) Order ‖

‖

‖

𝑒𝑝
‖

‖

‖𝐿2
Order

8 1.5175 × 10−2 – 8.6560 × 10−2 – 1.4178 × 10−1 –
16 3.8048 × 10−3 1.9958 4.4828 × 10−2 0.9493 7.4429 × 10−2 0.9298
32 1.0229 × 10−3 1.8951 2.2463 × 10−2 0.9968 3.9645 × 10−2 0.9087
64 2.5690 × 10−4 1.9934 1.1728 × 10−2 0.9376 1.9172 × 10−2 1.0482
128 6.5399 × 10−5 1.9739 5.7943 × 10−3 1.0173 9.9365 × 10−3 0.9482
256 1.7597 × 10−5 1.8939 3.0108 × 10−3 0.9445 5.0008 × 10−3 0.9906
Table 2
Relative error of the SGFEM with 𝜇1 = 5, 𝜇2 = 1, 𝜀 = 10−6.

ℎ−1 ‖

‖

𝑒𝐮‖‖𝐿2 Order ‖

‖

𝑒𝐮‖‖ℰ (𝛺) Order ‖

‖

‖

𝑒𝑝
‖

‖

‖𝐿2
Order

8 1.3707 × 10−2 – 8.1777 × 10−2 – 1.4167 × 10−1 –
16 3.4363 × 10−3 1.9960 4.1015 × 10−2 0.9956 7.3364 × 10−2 0.9495
32 8.6069 × 10−4 1.9973 2.0520 × 10−2 0.9991 3.6064 × 10−2 1.0245
64 2.1534 × 10−4 1.9989 1.0292 × 10−2 0.9956 1.8121 × 10−2 0.9929
128 5.3845 × 10−5 1.9997 5.1441 × 10−3 1.0005 9.1008 × 10−3 0.9936
256 1.3465 × 10−5 1.9996 2.5772 × 10−3 0.9971 4.6435 × 10−3 0.9708
Table 3
Relative error of the SGFEM with 𝜇1 = 1000, 𝜇2 = 1, 𝜀 = 10−6.

ℎ−1 ‖

‖

𝑒𝐮‖‖𝐿2 Order ‖

‖

𝑒𝐮‖‖ℰ (𝛺) Order ‖

‖

‖

𝑒𝑝
‖

‖

‖𝐿2
Order

8 2.1477 × 10−2 – 4.6880 × 10−1 – 6.6372 × 10−1 –
16 5.2980 × 10−3 2.0193 1.3394 × 10−1 1.8074 5.9079 × 10−1 0.1679
32 1.0560 × 10−3 2.3269 2.8968 × 10−2 2.2091 1.7653 × 10−1 1.7427
64 2.2956 × 10−4 2.2016 1.0879 × 10−2 1.4129 7.5925 × 10−2 1.2173
128 5.4775 × 10−5 2.0673 5.2056 × 10−3 1.0634 2.7969 × 10−2 1.4407
256 1.3571 × 10−5 2.0130 2.5767 × 10−3 1.0146 1.6699 × 10−2 0.7441
Table 4
Relative error of the SGFEM with 𝜇1 = 1, 𝜇2 = 10, 𝜀 = 10−8.

ℎ−1 ‖

‖

𝑒𝐮‖‖𝐿2 Order ‖

‖

𝑒𝐮‖‖ℰ (𝛺) Order ‖

‖

‖

𝑒𝑝
‖

‖

‖𝐿2
Order

4 8.1943 × 10−4 – 4.6850 × 10−3 – 3.2223 × 10−2 –
8 1.0114 × 10−4 3.0183 1.1617 × 10−3 2.0119 6.8160 × 10−3 2.2411
16 1.2711 × 10−5 2.9923 2.9298 × 10−4 1.9873 8.1907 × 10−4 3.0569
32 1.5857 × 10−6 3.0028 7.3195 × 10−5 2.0010 1.5076 × 10−4 2.4417
64 1.9930 × 10−7 2.9921 1.8389 × 10−5 1.9929 2.5699 × 10−5 2.5525
128 2.5082 × 10−8 2.9902 4.5952 × 10−6 2.0006 5.6675 × 10−6 2.1809
Fig. 4. Comparison of (𝐴) and (𝐴𝑓𝑒𝑚3×3 ) under different 𝜇1 and 𝜇2 in the circular
interface example.

1; 𝜇1 = 1000, 𝜇2 = 1 and 𝜀 = 10−8 in (3.1). The errors and their
onvergence orders are shown in Tables 4–6.
479
Fig. 5. Comparison of (𝐴) and (𝐴𝑓𝑒𝑚3×3 ) under different 𝜇1 and 𝜇2 in the straight
interface example.

Similarly, the relative 𝐿2 error and relative energy error for velocity
𝐮 also achieve the same optimal convergence orders as Remark 1, which
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Table 5
Relative error of the SGFEM with 𝜇1 = 10, 𝜇2 = 1, 𝜀 = 10−8.

ℎ−1 ‖

‖

𝑒𝐮‖‖𝐿2 Order ‖

‖

𝑒𝐮‖‖ℰ (𝛺) Order ‖

‖

‖

𝑒𝑝
‖

‖

‖𝐿2
Order

4 1.8643 × 10−4 – 2.8203 × 10−3 – 1.7016 × 10−2 –
8 2.3294 × 10−5 3.0006 7.0721 × 10−4 1.9956 2.8801 × 10−3 2.5627
16 2.9177 × 10−6 2.9971 1.7714 × 10−4 1.9973 5.5722 × 10−4 2.3698
32 3.6490 × 10−7 2.9992 4.4337 × 10−5 1.9983 1.0505 × 10−4 2.4071
64 4.5655 × 10−8 2.9987 1.1094 × 10−5 1.9988 2.4392 × 10−5 2.1066
128 5.7168 × 10−9 2.9975 2.7738 × 10−6 1.9998 5.3152 × 10−6 2.1982
Table 6
Relative error of the SGFEM with 𝜇1 = 1000, 𝜇2 = 1, 𝜀 = 10−8.

ℎ−1 ‖

‖

𝑒𝐮‖‖𝐿2 Order ‖

‖

𝑒𝐮‖‖ℰ (𝛺) Order ‖

‖

‖

𝑒𝑝
‖

‖

‖𝐿2
Order

4 2.4034 × 10−4 – 3.7808 × 10−3 – 5.1234 × 10−1 –
8 2.6446 × 10−5 3.1839 7.7361 × 10−4 2.2890 6.1362 × 10−2 3.0617
16 3.1628 × 10−6 3.0638 1.8261 × 10−4 2.0828 1.1476 × 10−2 2.4188
32 3.7480 × 10−7 3.0770 4.4644 × 10−5 2.0322 1.0579 × 10−3 3.4394
64 4.6634 × 10−8 3.0067 1.1102 × 10−5 2.0076 2.4378 × 10−4 2.1175
128 5.7345 × 10−9 3.0236 2.7544 × 10−6 2.0110 4.3495 × 10−5 2.4867
Fig. 6. The change of the interface with 𝛿: (a) 𝛤1 with 𝛿1. (b) 𝛤2 with 𝛿2.
are 𝑂(ℎ3) and 𝑂(ℎ2), respectively. And the order of convergence of
the relative 𝐿2 error for pressure 𝑝 is 𝑂(ℎ2). The study on SCNs are
shown in Fig. 5. It also demonstrates the comparison between (𝐴)
and (𝐴𝑓𝑒𝑚3×3 ) under three different viscosity ratio values. We can draw
the same conclusion as the circular example: the growth rate of (𝐴)
is the same as that of (𝐴𝑓𝑒𝑚3×3 ), both being 𝑂(ℎ−2). And the SCNs of 𝐴
and 𝐴𝑓𝑒𝑚3×3 are similar.

4.3. The SCNs of stiffness matrix and robustness

In this section, the scaled condition number of the stiffness matrix
and the robustness of the SGFEM are investigated by using the straight
interface. The interface too close to the mesh nodes or edges often
occurs in moving interface problems. Therefore, here we artificially
make the straight interface closer to the mesh nodes by adding a
parameter 𝛿1 or 𝛿2. Consider the interface of Section 4.2

𝛤1 = {𝐱 = (𝑥, 𝑦)𝑇 ∈ R2 ∶ 2𝑥 + 𝑦 − 𝑐 − 𝛿1 = 0}.

Consider another interface parallel to the mesh edges

𝛤2 = {𝐱 = (𝑥, 𝑦)𝑇 ∈ R2 ∶ 𝑦 = 𝛿2}.

The mesh step ℎ is fixed to ( 1
16 ,

1
16 ) and we gradually change 𝛿1 and

𝛿2. The straight interface moves from solid line to dashed line so that
it is close to the mesh nodes or edges, see Fig. 6. The interface 𝛤1
approaches the nodes continuously and 𝛤2 almost coincides with the
mesh lines.
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The results of SCNs are shown in Fig. 7. Obviously, as 𝛿1 or 𝛿2
changes, no matter how close the interface is to the mesh, the scaled
condition number of the stiffness matrix (𝐴) is almost unchanged. It
means that SGFEM avoids the problem of the surge in the condition
number in traditional GFEM and has robustness in adjusting the grid.
This conclusion is ideal.

In addition, the enrichment nodes were treated according to Fig. 2
during the study, but the errors were not stable. This further illustrates
the convenience and stability of SGFEM.

5. Conclusion

This paper investigates the error convergence and robustness of the
SGFEM when applied to the Stokes interface problems. The study of
two numerical examples reveals that the error convergence order of
the SGFEM is the same as that of the traditional FEM solving Stokes
equations without an interface. The SCN of the stiffness matrix has the
same growth order as that of the standard FEM part. Even when the
interface is close to the mesh nodes or edges, the SCN of the SGFEM
does not change significantly. These results demonstrate that SGFEM
overcomes the interface problems and the drawbacks of the traditional
GFEM. It has a well-conditioned stiffness matrix, robustness and the
optimal error convergence order. This is important for further research
on moving interface problems.
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Fig. 7. Variation of (𝐴) with interface movement: (a) 𝛤1 with 𝛿1. (b) 𝛤2 with 𝛿2.
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