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A B S T R A C T

In this article, the rheological effects of an Oldroyd 8-constant fluid model in the presence and absence of
magnetic force (MHD) are investigated while traveling between the two rolls rotates in the same direction. The
governing equations of the fluid flow have been simplified using the lubrication approximation theory (LAT).
Analytical solutions in the presence and absence of MHD are presented using (i) Adomian’s decomposition
method (ADM), (ii) Homotopy analysis method (HAM), and numerical simulations are performed by (iii)
the finite difference method. We present the results of our findings through various graphs and validate
the numerical and analytical methods through detailed tables of error comparisons. It has been found that
non-Newtonian and magnetic parameters have a significant impact on the velocity profiles, pressure gradient,
pressure distribution, separation points, and coating thickness. The material parameters 𝛼1 (dilatant parameter)
and 𝛼2 (pseudoplastic parameter) notably affect the velocity profile of the fluid flow between two rolls.
Increasing 𝛼1 causes shear thickening and decreases the velocity profile, while increasing 𝛼2 results in shear
thinning and increases the velocity profile due to diminished internal resistance. A relationship exists between
the MHD parameter 𝑚 and the flow velocity. The greater the MHD force, the higher the resistance in fluid
flow, resulting in lower velocity. A reasonable agreement has been found between Newtonian fluid and Oldroyd
8-constant fluid, assuming all the non-Newtonian parameters to be zero. The results provided a comprehensive
methodology for regulating the coating thickness by adjusting the modified Capillary’s number in the industry.
Introduction

Classical Navier–Stokes theory is inadequate for describing rheo-
logically complex fluids, leading to the need for non-Newtonian fluid
theories. Researchers are increasingly interested in understanding non-
Newtonian fluids, which are commonly used in numerous industrial,
medical, and engineering applications, such as blood, drilling opera-
tions, petroleum engineering, soap solutions, cosmetics, paint thinners,
crude oils, sludge, metals, polymers, and many more. The use of
non-Newtonian fluids in the coating industry is undoubtedly useful
in creating a uniform thin liquid film over a substrate. Various rhe-
ological models are used to represent the relationship between the
rate of deformation tensor and stress. These fluid models include Jef-
frey, Sisko, Casson, differential types fluid models, different types of
grade 𝑛 [1] fluids, including Phan Thien and Tanner, third and fourth
grade, Maxwell, Oldroyd’s family, elastic-viscous, power-law, and vis-
cous fluids. Mathematicians study non-Newtonian fluids in depth using
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differential equation theory to come up with solutions that help engi-
neers make coated materials with the best parameters. The non-linear
characteristics of non-Newtonian fluids pose challenges for obtaining
solutions through analytical, numerical, or computational methods.

The conservation of mass and linear momentum are the fundamen-
tal governing equations of physical systems. To formulate the governing
equations based on the physics of the problem, the momentum equa-
tion is altered by incorporating the stress tensor derived from the
constitutive equation. The lubrication approximation method (LAT) is
used to simplify the system of equations. Based on the formulated
problem, the boundary conditions that are required have been applied
appropriately. The optimal homotopy analysis method (OHAM), the
variational iteration method (VIM), and the homotopy perturbation
method (HPM) are some methods that have been proposed and studied
in the literature to solve such problems. The article discusses analytical
solutions using Adomian’s decomposition method (ADM), homotopy
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analysis method (HAM), and numerical by finite difference method
(FDM).

Roll coating is a technique used to apply homogeneous, thin liquid
coats to different surfaces, including wallpapers, tenacious video tapes,
books, plastic wraps, fabric protectors, X-ray & photographic films, cos-
metics, carpets, and foils. Roll coating has gained significant attention
in both research and industry recently. A range of instruments and
techniques are employed in the coating industry includes roll, wire,
blade, and dip coatings. In roll coating process, the substrate must pass
between two or multiple rolls with different roll characteristics, such
as diameter, speed, etc. Experimental, theoretical, computational, and
numerical investigations have all contributed to a greater understand-
ing of the engineering parameters and fluid dynamics incorporated
into the various roll coating processes that have been the subject of
research advancements. Roll coating can be categorized into metering
(MRC), forward (FRC), and reverse roll coating (RRC). Hintermaier and
White [2] conducted research on the water flow between two rolls.
Their conclusions, aligned with their experiments, were confirmed by
the lubricating principle. Greener and Middleman [3] created excellent
models based on the concept of lubrication theory that disregarded
the benefits of face pressure and vacuity. A three-dimensional model
for non-Newtonian fluid flow of the reverse roll-coating process was
created by Jang and Chen [4] using the volume of fluids (VoF) free
face and finite volume (FVM) approaches, and their research mainly
focused on studying inelastic non-Newtonian fluids. Balzarotti and
Rosen [5] concluded that when the diameter of the rotating rollers is
considerably larger than the gap between these; controls the thickness
and uniformity of the applied liquid film. The thickness of the coating
is significantly influenced by the rollers and their speed [6]. In the
literature, along with several other non-Newtonian fluid models, the
Oldroyd 8-constant has been put forward to describe the flow behavior
of fluids with distinct rheological properties, and it comprises a number
of other fluids as limiting instances. These models cover fluids of
the differential, rate, integral, and shear thickening as well as shear
thinning types. Hayat et al. [7] has researched the Oldroyd 8-constant
fluid in a finite domain to obtain the analytical solution using the
homotopy analysis method (HAM). Ellahi et al. [8] researched the
nonlinear slip conditions for the Oldroyd 8-constant fluid. For three
significant flows (including Poiseuille, Couette, and generalized Cou-
ette), the precise solution has been found and is thoroughly explored. S.
[9] conduted a research on Oldroyd 8-constant fluid in a convergant
channel. With such extensive use, the forward roll coating technique
for the investigation is taking into consideration the Oldroyd 8-constant
fluid. The applications of the forward roll coating idea with non-
Newtonian fluid in industrial, polymer processes, and extrusion systems
are the driving force behind this consideration. The nip of the two
rolls behaves similarly in FRC. Usman et al. [10,11] utilized the LAT to
produce analytical results of viscoelastic and Oldroyd 4-constant fluids
using soft computing during the forward roll coating process. Zahid
et al. [12] statistically discussed the Rabinowitz fluid. Daprà and Scarpi
[13] considered the physical engineering parameters flow rate, roll
temperatures, web coating thickness, separation location, force, and
stress distribution. Zahid et al. [14] made a contribution to the flow of
a porous moving web by using the roll coating process in viscoelastic
material.

Magnetohydrodynamics (MHD) is an intriguing subject of study
related to materials that transmit electricity. Applications for mag-
netic force include astrophysics, magnetoacoustics, thermal systems,
magnetic equipment, industrial processes, etc. Sarpkaya [15] was the
pioneer in the study of non-Newtonian fluids in the presence of the
magnetic field. Hayat and Sajid [16] discovered a mathematical solu-
tion for the MHD flow of the Upper Convected Maxwell fluid. Also,
the same author investigated the MHD flows of an Oldroyd 8-constant
fluid with porosity [17]. Khan et al. [18] used a finite differences
method and an iterative technique to explore the numerical MHD
2

flow of an Oldroyd 8-constant fluid under the influence of partial slip
boundary conditions. An analytical non-linear flow solution has been
found for the Oldroyd 8-constant fluid by Ellahi et al. [19]. In the
recent studies Hamid et al. [20] studied the impact of Hall current
and homogeneous and heterogeneous reactions on MHD flow of GO-
MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past
a vertical stretching surface and concluded that the thermal profile
declines near convectively heated surface and upsurges away from the
surface for incline in mixed convection parameter. The Biot number
and volume fraction act as controlling parameters. Raza et al. [21]
studied the fractional model for the kerosene oil and water-based
Casson nanofluid with inclined magnetic force and observed the en-
hancement in heat transfer is comparatively higher for the water-based
nanofluid as compared to kerosene oil-based nanofluid. Raja et al. [22]
conducted a research on the dynamics of entropy optimized nanoflu-
idic system under impacts of MHD along thick surface via artificial
Levenberg–Marquardt back propagated neural networks. The purpose
of the current research is to develop a mathematical framework for
MHD Oldroyd 8-constant fluid during the forward roll coating mech-
anism. The minuscule space created by two forward coating rollers
covers a thin layer of pseudoplastic material. Many researchers have
focused on the variety of non-Newtonian fluids with MHD, thermal ra-
diation effects, energy dissipation, and heat transfer over the stretching
sheets and coating process. These researchers have used analytical and
numerical methods to examine the impact of the physical parameters,
heat, entropy, energy, and MHD on the velocity field. This emphasis
can also be seen in the literature [23–30].

The current article deals with the mathematical formulation of
the governing equations in the next section. The problem formulation
section describes the physics of the proposed problem, and the modeled
equation is then converted into dimensionless form and applying rele-
vant boundary conditions. Finally, simplifications are carried out using
LAT. In the section on the solution of the problem, the detailed solu-
tions are presented. The solution uses MATLAB®and Maple®software to
deal with analytical and numerical approaches. Adomian’s decomposi-
tion method (ADM) [31–35], Homotopy analysis method (HAM) [36,
37], and numerical via finite difference method (FDM) are subjected
to achieve the analytical and numerical solutions of the resulting
nonlinear differential equation for MHD and non-MHD instances. The
impact of physical parameters on velocity, pressure gradients, pressure
profiles, coating thickness, and separation points was then interpreted
using a parametric approach in the results and discussion section.
According to the study, physical and MHD factors are vital for regulat-
ing pressure distributions and velocity profiles. The coating thickness
can be controlled by adjusting the modified Capillary’s number. It
is asserted that the analytical and numerical results exhibit excellent
agreement. To support the claim of comparing various methodolo-
gies, an in-depth investigation of the findings has been carried out,
integrating detailed graphs and tables. Furthermore, comprehensive
conclusions are offered based on the findings. More interpreted results
as well as an analysis of the methods and algorithm under study are
given in the Appendix. According to the authors’ knowledge, no prior
studies have been done on the governing equations for the steady
magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid.

Governing equations

In this article, the motion of an electrically conducting fluid is inves-
tigated. The conservation principles of mass and momentum regulate
the steady-state flow of the conducting fluid in the Cartesian coordinate
system and are governed by:

𝜌(𝐕 ⋅ ∇)𝐕 = ∇ ⋅ 𝐓 + 𝐉 × 𝐁, (1)

𝑑𝑖𝑣𝐕 = 0, (2)

the velocity vector is represented by 𝐕 = (𝑢, 0, 0), the current density is

represented 𝐉, the density is expressed as 𝜌, and the total magnetic field
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is denoted by 𝐁, and the total magnetic field is expressed as 𝐁 = 𝐁𝟎+𝐛,
where 𝑏 represents the induced magnetic field. The Maxwell equations
and the generalized Ohm’s law are implemented in the absence of
consideration for displacement currents.

∇ ⋅ 𝐁 = 0,

∇ × 𝐁 = 𝜇𝑚𝐉,
∇ × 𝐄 = 0,

(3)

𝐉 = 𝜎(𝐄 + 𝐕 × 𝐁), (4)

where 𝜎 is the electric conductivity, 𝜇𝑚 is the magnetic permeability,
and 𝐄 is the electric field.

The following are the underlying assumptions:

• Across the entire flow field, the values of 𝜌, 𝜇𝑚, and 𝜎 remain
constant.

• The magnetic field 𝐁 and velocity field 𝐕 are perpendicular,
and compared to the imposed magnetic field, the induced mag-
netic field 𝑏 is negligible, resulting in a low magnetic Reynolds
number [38].

• The existence of an electric field is considered to be absent.

Based on the assumptions mentioned earlier, the electromagnetic
body force described in Eq. (1) takes on the following form:

(𝐉 × 𝐁) = 𝜎
[

𝐁𝟎(𝐕 ⋅ 𝐁𝟎 − 𝐕(𝐁𝟎 ⋅ 𝐁𝟎)
]

= −𝜎𝐵0
2𝐕. (5)

The Cauchy stress tensor, denoted by 𝐓 [39,40], for an Oldroyd
8-constant fluid can be defined as follows:

𝐓 = −𝑝1𝐈 + 𝐒, (6)

in which 𝑝1 represents pressure, 𝐒 is the extra stress, and 𝐈 denotes
identity tensor, yields

𝐒 + 𝜆1
𝐷𝐒
𝐷𝑡

+
𝜆3
2
(𝐒𝐀𝟏 + 𝐀𝟏𝐒) +

𝜆5
2
(𝑡𝑟𝐒)𝐀𝟏 +

𝜆6
2
[𝑡𝑟(𝐒𝐀𝟏)]𝐈

= 𝜇
[

𝐀𝟏 + 𝜆2
𝐷𝐀𝟏
𝐷𝑡

+ 𝜆4𝐀2
𝟏 +

𝜆7
2
[𝑡𝑟(𝐀2

𝟏)]𝐈
]

,
(7)

𝐀𝟏 = 𝐋 + 𝐋𝑇 , 𝐋 = 𝑔𝑟𝑎𝑑𝐕, (8)

where the first Rivlin–Ericksen tensor is 𝐀𝟏, the material constants are
𝜇, 𝜆𝑖(𝑖 = 1…7), and the contravariant convected derivative for steady
flow is 𝐷

𝐷𝑡
is as follows:

𝐷𝐒
𝐷𝑡

= (𝐕 ⋅ 𝐕)𝐒 − 𝐒𝐋𝑇 − 𝐋𝐒. (9)

The velocity and the stress tensor are represented as:

𝐕(𝑦) =
⎛

⎜

⎜

⎝

𝑢
0
0

⎞

⎟

⎟

⎠

, 𝐒(𝑦) =
⎛

⎜

⎜

⎝

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧
𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧
𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

⎞

⎟

⎟

⎠

. (10)

When Eq. (10) is used, Eq. (2) is precisely attained. Eqs. (1), (5),
nd (6)–(10) result to the scalar equations shown below:
𝜕𝑝1
𝜕𝑥

= 𝑑
𝑑𝑦

𝑆𝑥𝑦 − 𝜎𝐵2
0𝑢, (11)

𝜕𝑝1
𝜕𝑦

= 𝑑
𝑑𝑦

𝑆𝑦𝑦, (12)

𝜕𝑝1
𝜕𝑧

= 𝑑
𝑑𝑦

𝑆𝑧𝑦, (13)

𝑆𝑥𝑥 + (𝜆3 + 𝜆6 − 2𝜆1)𝑆𝑥𝑦
𝑑𝑢
𝑑𝑦

= 𝜇(𝜆4 + 𝜆7 − 2𝜆2)
(

𝑑𝑢
𝑑𝑦

)2
, (14)

𝑆𝑥𝑦 − 𝜆1𝑆𝑦𝑦
𝑑𝑢
𝑑𝑦

+
(

𝜆3 + 𝜆5
2

)

(𝑆𝑥𝑥 + 𝑆𝑦𝑦)
𝑑𝑢
𝑑𝑦

+
𝜆5
2
𝑆𝑧𝑧

𝑑𝑢
𝑑𝑦

= 𝜇 𝑑𝑢
𝑑𝑦

,
(15)

𝑧𝑥 +
(

𝜆3 − 2𝜆1
)

𝑆𝑧𝑦
𝑑𝑢 = 0, (16)
3

2 𝑑𝑦
𝑦𝑦 + (𝜆3 + 𝜆6)𝑆𝑥𝑦
𝑑𝑢
𝑑𝑦

= 𝜇(𝜆4 + 𝜆7)
(

𝑑𝑢
𝑑𝑦

)2
, (17)

𝑆𝑧𝑦 +
𝜆3
2
𝑆𝑧𝑥

𝑑𝑢
𝑑𝑦

= 0, (18)

𝑧𝑧 + 𝜆6𝑆𝑥𝑦
𝑑𝑢
𝑑𝑦

= 𝜇𝜆7

(

𝑑𝑢
𝑑𝑦

)2
, (19)

𝑆𝑥𝑥 + 𝑆𝑦𝑦 = 2𝜇(𝜆4 + 𝜆7 − 𝜆2)
(

𝑑𝑢
𝑑𝑦

)2
− 2(𝜆3 + 𝜆6 − 𝜆1)𝑆𝑥𝑦

𝑑𝑢
𝑑𝑦

. (20)

By utilizing Eqs. (16) and (18), we have

𝑆𝑧𝑥 = 𝑆𝑧𝑦 = 0. (21)

Using Eqs. (13), (15), (19), and (21), we obtain
𝜕𝑝1
𝜕𝑧

= 0, (22)

𝑥𝑦 − 𝜆1𝑆𝑦𝑦
𝑑𝑢
𝑑𝑦

+
(

𝜆3 + 𝜆5
2

)

(𝑆𝑥𝑥 + 𝑆𝑦𝑦)
𝑑𝑢
𝑑𝑦

−
𝜆5𝜆6
2

𝑆𝑥𝑦

(

𝑑𝑢
𝑑𝑦

)2
+

𝜇𝜆5𝜆7
2

(

𝑑𝑢
𝑑𝑦

)3
= 𝜇 𝑑𝑢

𝑑𝑦
.

(23)

Taking

𝑝̂ = 𝑝1 − 𝑆𝑦𝑦, (24)

using Eqs. (11), (12) and (22), we can write:
𝜕𝑝̂
𝜕𝑥

= 𝑑
𝑑𝑦

𝑆𝑥𝑦 − 𝜎𝐵2
0𝑢, (25)

𝜕𝑝̂
𝜕𝑦

=
𝜕𝑝̂
𝜕𝑧

= 0. (26)

We observe from Eq. (26) that 𝑝̂ = 𝑝̂(𝑥) only, and independent of 𝑦
and 𝑧. Therefore, Eq. (25) becomes:
𝑑𝑝̂
𝑑𝑥

= 𝑑
𝑑𝑦

𝑆𝑥𝑦 − 𝜎𝐵2
0𝑢. (27)

Using Eqs. (14) to (17), (20) and (23) we get:

𝑆𝑥𝑥 = 1
𝑀

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜇[(𝜆4 + 𝜆7) − (𝜆3 + 𝜆6) + 2(𝜆1 − 𝜆2)]
(

𝑑𝑢
𝑑𝑦

)2

+ 𝜇[𝜆4 + 𝜆7)𝛼2 − 𝛼1(𝜆3 + 𝜆6)

+ 2(𝛼1𝜆1 + 𝛼2𝜆2)]
(

𝑑𝑢
𝑑𝑦

)4

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (28)

𝑆𝑥𝑦 =
1
𝑀

{

𝜇 𝑑𝑢
𝑑𝑦

+ 𝜇𝛼1

(

𝑑𝑢
𝑑𝑦

)3
}

, (29)

𝑦𝑦 =
1
𝑀

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇[−(𝜆3 + 𝜆6) + (𝜆4 + 𝜆7)]
(

𝑑𝑢
𝑑𝑦

)2

+ 𝜇[−𝛼1(𝜆3 + 𝜆6) + 𝛼2(𝜆4 + 𝜆7)]
(

𝑑𝑢
𝑑𝑦

)4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (30)

In the equations mentioned above:

1 = 𝜆1(𝜆4 + 𝜆7) − (𝜆4 + 𝜆7 − 𝜆2)(𝜆3 + 𝜆5) −
𝜆5𝜆7
2

, (31)

𝛼2 = 𝜆1(𝜆3 + 𝜆6) − (𝜆3 + 𝜆6 − 𝜆1)(𝜆3 + 𝜆5) −
𝜆5𝜆6
2

, (32)

𝑀 = 1 + 𝛼2

(

𝑑𝑢
𝑑𝑦

)2
. (33)

By utilizing the Eq. (29) in Eq. (27), a nonlinear differential equa-
tion can be derived in the following manner:

𝑑2𝑢
𝑑𝑦2

+

[

(3𝛼1 − 𝛼2) + 𝛼1𝛼2

(

𝑑𝑢
𝑑𝑦

)2
]

(

𝑑𝑢
𝑑𝑦

)2 𝑑2𝑢
𝑑𝑦2

− 1
(

𝜎𝐵2
0𝑢 +

𝑑𝑝̂
)

[

1 + 𝛼2

(

𝑑𝑢
)2

]2

= 0.

(34)
𝜇 𝑑𝑥 𝑑𝑦
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Fig. 1. Schematic representation of the forward roll-coating process (FRC).

Problem formulation

Consider the steady flow of an incompressible fluid with an Oldroyd
8-constant between two rolls that are rotating in the same direction.
Fig. 1 depicts the geometric representation of the forward roll coating
process as a two-dimensional flow that takes place in the small area
between the rolls and the substrate. The substrate is propelled at a
velocity of 𝑈 in the 𝑥-direction as the fluid passes the narrow space
between the rolls. The rolls remain set at 𝑦 = ℎ(𝑥). The minimum gap
between rolls is denoted by 2𝐻0, and the length between the attach-
ment and detachment points of the roll is denoted as 𝐿. By pushing
the fluid through the rollers, a uniform coating layer of thickness 𝐻 is
produced.

Fig. 1 demonstrates a close approximation to the free surface, as
shown:

The appropriate dimensionless parameters Greener and Middleman
[41] are shown as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥∗ = 𝑥
√

𝐻0𝑅
, 𝑦∗ =

𝑦
𝐻0

, 𝑢∗ = 𝑢
𝑈
, 𝑃 ∗ =

√

𝐻0
𝑅

𝑝̂𝐻0
𝜇𝑈

,

𝑆∗
𝑥𝑦 =

𝑆𝑥𝑦𝐻0

𝜇𝑈
, 𝑆∗

𝑥𝑥 =
𝑆𝑥𝑥𝐻0
𝜇𝑈

, 𝑆∗
𝑦𝑦 =

𝑆𝑦𝑦𝐻0

𝜇𝑈
,

𝛼∗1 =
𝛼1

(𝐻0∕𝑈 )2
, 𝛼∗2 =

𝛼2
(𝐻0∕𝑈 )2

, 𝑚
∗2

=
𝜎𝐵2

0
𝜇∕𝐻0

.

(35)

After substituting all the dimensionless parameters into Eq. (34) and
simplifying by removing the (*) symbol, the equation is expressed as

𝑑2𝑢
𝑑𝑦2

+

[

(3𝛼1 − 𝛼2) + 𝛼1𝛼2

(

𝑑𝑢
𝑑𝑦

)2
]

(

𝑑𝑢
𝑑𝑦

)2 𝑑2𝑢
𝑑𝑦2

−
(

𝑚2𝑢 + 𝑑𝑃
𝑑𝑥

)

[

1 + 𝛼2

(

𝑑𝑢
𝑑𝑦

)2
]2

= 0.

(36)

To solve the nonlinear differential equation denoted by Eq. (36), it
is necessary to specify the correct boundary conditions, which are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑢
𝑑𝑦

= 0 at 𝑦 = 0,

𝑢 = 1 at 𝑦 = ℎ(𝑥),
𝑑𝑃
𝑑𝑥

= 𝑝 = 0 at 𝑥 = −∞.

(37)

The distance between the line of symmetry and the roll surface is
expressed as a dimensionless value represented by the function ℎ(𝑥).
Two further boundary conditions are necessary in order to assess the
separation point 𝑥𝑠𝑝, which was previously unknown. The separation
point on the axis of symmetry became a stagnation point, allowing the
following boundary conditions to be specified:

𝑢 = 0, 𝑦 = 0, 𝑥 = 𝑥𝑠𝑝. (38)

The terminal boundary condition sets up a connection between
the pressure 𝑃 and the surface tension, pointing to a force/pressure
equilibrium at the separation point 𝑥𝑠𝑝.

𝑃 = −
𝛾 at 𝑥 = 𝑥 or 𝑃 = −

𝐻0
(

𝑁
)−1

at 𝑥 = 𝑥 . (39)
4

𝑟 𝑠𝑝 𝑟 𝐶𝑎2 𝑠𝑝
The parameter 𝑁𝐶𝑎2 =
𝜇𝑈
𝛾

(

𝑅
𝐻0

)
1
2

represents the modified Capil-
lary’s number.

2𝑟 + 2𝐻 = 2𝐻0ℎ(𝑥𝑠𝑝),

or

ℎ𝑠𝑝 − 𝜆 = 𝑟
𝐻0

. (40)

It is established that ℎ𝑠𝑝 = 1 + 𝑥2

2
, expressed as follows:

ℎ𝑠𝑝 = 1 +
𝑥2𝑠𝑝
2

. (41)

and

𝜆 = 𝐻
𝐻0

, (42)

where the separation points 𝑥𝑠𝑝 and the dimensionless coating thickness
𝜆, are the important parameters calculated through this model.

Solution of the problem

This section comprises three subsections. The first two subsections
deal with the analytical solution, while the third subsection discusses
the numerical solution. In the first subsection, Adomian’s decomposi-
tion method (ADM) is utilized for obtaining the analytical solution. The
second subsection delves into homotopy perturbation method (HAM).
Numerical results are obtained using the finite difference method in
the third subsection. The expressions of the derived analytical results
are only available for non-MHD case because other expressions take up
much space to write within.

Adomian’s Decomposition Method (ADM)

The solution to the non-linear differential equation modeled in
Eq. (36), along with the boundary conditions made in Eqs. (37)–(42),
will be determined. The analysis of the methodology has been discussed
in Appendix A. It should be noted that the convergence of this method
has been discussed in a previous study [42].

Zero order solution
The zero-order solution for the nonlinear boundary value problem

formulated in Eq. (36) subjected to the suitable boundary condition
Eq. (37) is given by:

𝑢0 = 1 +
(

𝑦2

2
− ℎ2

2

)

𝑑𝑃0
𝑑𝑥

. (43)

In Eq. (43), the term
𝑑𝑃0
𝑑𝑥

is unknown and could be determined by
considering the zero-order dimensionless volumetric flow rate of 𝑄0:

𝑄0 = ∫

ℎ

0
(𝑢0) = 𝜉0. (44)

By applying Eq. (43) to Eq. (44) and separating for zero-order
pressure gradient, we get:

𝑑𝑃0
𝑑𝑥

=

(

−
3
(

𝜉0 − ℎ
)

ℎ3

)

, (45)

integrating the Eq. (45) and boundary condition yields the zero-order
pressure distribution

𝑃0(𝑥𝑠𝑝) = −∫

𝑥𝑠𝑝

−∞

(

−
3
(

𝜉0 − ℎ
)

ℎ3

)

𝑑𝑥. (46)

By using Eq. (45) into equation. (43), we get

𝑢 = 1 −
3
(

𝑦2

2 − ℎ2

2

)

(𝜉0 − ℎ)
, (47)
0 ℎ3
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1

b

𝑥

s
t

𝑃

z

s
d

F

(

𝑢

b
c

𝑄

𝜉

i

f

𝑢

i

by substituting the conditions provided in Eq. (38) into Eq. (47), we
obtain

1 − 3
2

(

𝜉0 − ℎ1
)

ℎ31

(

−ℎ21
)

= 0, (48)

declaring ℎ1 (𝑥) as:

ℎ1 = 3𝜉0. (49)

Also for 𝑥 = 𝑥1, will become

− 3
2

(

𝜉0 − ℎ1 (𝑥)
)

ℎ31 (𝑥)

(

−ℎ21 (𝑥)
)

= 0. (50)

Since

ℎ1
(

𝑥1
)

= 1 +
𝑥21
2
, (51)

y use of ℎ1(𝑥1) in Eq. (45), the relation in term of 𝑥1 is expressed as:

1 =
[

2
(

3𝜉0 − 1
)]

1
2 . (52)

The final boundary condition indicates that there is pressure on the
eparation point at 𝑥1. The pressure 𝑃 can be related to the surface
ension 𝛾.

= −
𝛾
𝑟

at 𝑥 = 𝑥1,

or

𝑃 = −
𝐻0
𝑟

(

𝑁𝐶𝑎2

)−1
at 𝑥 = 𝑥1.

The modified capillary number 𝑁𝐶𝑎2 can be used to express the
ero-order pressure distribution at 𝑥 = 𝑥1.

𝑃0(𝑥1) = − 1
(

ℎ1 − 𝜆0
)

𝑁𝐶𝑎2

= −∫

𝑥1

−∞

(

−
3
(

𝜉0 − ℎ
)

ℎ3

)

𝑑𝑥. (53)

The zero-order solution acquired in this particular section corre-
ponds to the Middleman Greener and Middleman [41] for both the
etachment point and the velocity distribution.

irst order solution
The first-order solution can be assessed by employing Eqs. (73) and

74)

1 =
(

𝑦6

6
− ℎ6

6

)

𝑙1 +
(

𝑦4

4
− ℎ4

4

)

𝑙2 +
(

𝑦2

2
− ℎ2

2

)

𝑑𝑃1
𝑑𝑥

, (54)

In Eq. (54), the term
𝑑𝑃1
𝑑𝑥

is still not known and can be determined
y calculating the dimensionless volumetric flow rate 𝑄1 in a manner
omparable to zero order:

1 = ∫

ℎ

0
(𝑢1) = 𝜉1, (55)

1 =
1
7
𝑙4ℎ

7 + 1
5
𝑙3ℎ

5 − 1
3
𝑑𝑃1
𝑑𝑥

ℎ3 − 1
6
𝑙1ℎ

7 − 1
4
𝑙2ℎ

5. (56)

To set up the pressure gradient of first-order, we can use Eq. (55)
n Eq. (56),

𝑑𝑃1
𝑑𝑥

= −
ℎ4𝑙1
2

−
3ℎ2𝑙2
4

− 3
ℎ3

(

𝜉𝑙1 −
1
7
𝑙4ℎ

7 − 1
5
𝑙3ℎ

5
)

. (57)

By substituting the expression for the pressure gradient of first-order
rom Eq. (57) to Eq. (54), the solution can be written as:

1 =
( 1
6
𝑦6 − 1

4
ℎ4𝑦2 + 1

12
ℎ6

)

𝑙1 +
( 1
4
𝑦4 − 3

8
ℎ2𝑦2 + 1

8
ℎ4

)

𝑙2

+
( 3
10

ℎ2𝑦2 − 3
10

ℎ4
)

𝑙3 +
( 3
14

ℎ4𝑦2 − 3
14

ℎ6
)

𝑙4

−
3𝜉𝑙1𝑦2 +

3𝜉𝑙1 .

(58)
5

2ℎ3 2ℎ
By incorporating the conditions from Eq. (38), into the velocity
equation, one can obtain an approximation of the coating thickness as
follows:
𝑙1ℎ6

12
+

𝑙2ℎ4

8
−

3ℎ4𝑙3
10

−
3ℎ6𝑙4
14

+
3𝜉1
2ℎ

= 0, (59)

nserting ℎ = 1 + 𝑥2

2
, the expression for first-order coating thickness is

obtained

𝜉1 =
9
(

𝑥2 − 2𝜉0 + 2
)3 (−𝛼2 + 𝛼1

)

5
(

𝑥2 + 2
)8

(

𝑥8 + 8𝑥6 +
(

48𝛼2
7

+ 24
)

𝑥4

+ 16 +
(

32 +
(

−
192𝜉0
7

+ 192
7

)

𝛼2

)

𝑥2 +
192

(

𝜉0 − 1
)2 𝛼2

7

)

. (60)

where 𝑙1, 𝑙2, 𝑙3 and 𝑙4 are constant containing the auxiliary constants
also are given in . We obtained an approximate second-order solution
by combining zeroth order (Eq. (47)) and first order (Eq. (58)) of
the velocity field in Eq. (78). Due to lengthy expressions obtained for
the second component, only the graphical representation up to the
second-order approximation is presented.

Homotopy Analysis Method (HAM)

Based on the methodology presented in Appendix B, the second-
order approximation solution for the non-linear differential Eq. (36)
together with suitable boundary conditions in Eq. (37) for non-MHD
case can be computed as:

𝑢0 =
1
2
𝑦2 + 1 − 1

2
ℎ2, (61)

𝑢1 = ℏ

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
30

5𝛼1𝛼2𝑦
6 − 1

12
3𝛽𝑦4 + 1

2
𝑦2

(

2𝛼2 + 1
)2 

− 1
2
𝑦2 + 1

30
5𝛼1𝛼2ℎ

6 − 1
2
5ℎ2𝛼22

+ 1
12

3𝛽ℎ4 − 3ℎ2𝛼2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (62)

𝑢2 =
ℏ2

2!

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
50

9𝛼21𝛼
2
2𝑥

10 + 1
15

7𝛽𝛼1𝛼2𝑥
8 − 7

15
7𝑥6𝛼22𝛼1

− 3
10

9𝑥6𝛼32𝛼1 +
1
18

5𝛽𝑥6 − 7
12

7𝑥4𝛼22𝛽

− 5
6
5𝑥4𝛽𝛼2 + 45𝑥2𝛼22 + 67𝑥2𝛼32 + 29𝑥2𝛼42

− 1
50

9𝛼21𝛼
2
2ℎ

10 + 3
10

9ℎ6𝛼32𝛼1 −
1
15

7𝛽𝛼1𝛼2ℎ
8

+ 7
15

7ℎ6𝛼22𝛼1 − 29ℎ2𝛼42 +
7
12

7ℎ4𝛼22𝛽

− 1
18

5𝛽ℎ6 − 67ℎ2𝛼32 +
5
6
5ℎ4𝛽𝛼2 − 45ℎ2𝛼22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (63)

where  = 𝑑𝑃
𝑑𝑥

and ℏ = −0.1. The solution has been represented as a
series given in Eq. (87).

Numerical

We aim to numerically solve the differential equation Eq. (36) with
its suitable boundary conditions Eq. (37) using appropriate methods.
Due to the non-linearity of the differential Eq. (36), the BVP cannot be
solved directly with the finite-difference method. It is common practice
to use iterative methods to solve nonlinear equations. An iterative
procedure successive under-relaxation (SOR) can be constructed as
follows:

𝑑2𝑢(𝑛+1)

𝑑𝑦2
+

[

(3𝛼1 − 𝛼2) + 𝛼1𝛼2

(

𝑑𝑢(𝑛)

𝑑𝑦

)2
]

(

𝑑𝑢(𝑛)

𝑑𝑦

)2 𝑑2𝑢(𝑛+1)

𝑑𝑦2

−
(

𝑚2𝑢(𝑛+1) + 𝑑𝑃 )

[

1 + 𝛼2

(

𝑑𝑢(𝑛)
)2

]2

= 0.

(64)
𝑑𝑥 𝑑𝑦
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Fig. 2. Non-dimensional velocity profiles at the nip (𝑥 = 0) for different dilatant parameter values 𝛼1, with constant pseudoplastic parameter 𝛼2.
herein (𝑛) represents the iterative step. Confirming that Eq. (64) is
onsistent with Eq. (36) is easy if we remove indices (𝑛) and (𝑛 + 1).
q. (64) and the corresponding boundary conditions are

𝑑𝑢(𝑛+1)

𝑑𝑦
= 0 at 𝑦 = 0,

𝑢 = 𝑈0 at 𝑦 = ℎ(𝑥),
(65)

in which 𝑈0 = 1, the formulation of the linear differential BVP for
𝑢(𝑛 + 1). For each iterative step (𝑛 + 1), it is possible to derive the
discretizated form and solve a linear algebraic equation system using
the finite-difference method. Consequently, we establish a sequence of
functions 𝑢(𝑛)(𝑦), 𝑛 = 0, 1, 2,… by the subsequent method: if an initial
estimation of 𝑢(0)(𝑦) is provided, then 𝑢(𝑛)(𝑦), 𝑛 = 1, 2,… are determined
respectively as solutions to the boundary value problem posed by the
Eqs. (64) and (65).

The method of successive under-relaxation is a popular technique
used to improve the convergence of an iterative process. We solve the
BVP in Eq. (64) and the boundary condition in Eq. (65) for step 𝑛 + 1
to estimate 𝑢(𝑛+1) ∶ 𝑢̃(𝑛+1). Then, the formula defines 𝑢(𝑛+1) as

𝑢(𝑛+1) = 𝑢(𝑛) + 𝜏(𝑢̃(𝑛+1) − 𝑢(𝑛)), 𝜏 ∈ (0, 1]. (66)

where 𝜏 ∈ (0, 1] is a parameter for under-relaxation. To ensure con-
vergence, we need to select a small value for 𝜏 and iterate until it
converges. The iterative procedure ought to continue until the differ-
ence between 𝑢(𝑛+1) and 𝑢(𝑛) is less than a specified error of 10−8. The
algorithm and procedure has been discussed in Appendix C.

Results and discussion

In this current article, the coating material of Oldroyd 8-constant
fluid was modeled during the forward roll coating process. The velocity
profile is considerably impacted by physical parameters such as the
dilatant constant 𝛼1, pseudoplastic constant 𝛼2, pressure gradient 𝑑𝑃

𝑑𝑥
,

and magnetic parameter 𝑚 is shown in Figs. 2 to 8. In Fig. 9, we
examine the pressure gradient and pressure profile in the absence of the
MHD parameter. Table 1 shows the relation of Capillary’s number with
separation points 𝑥𝑠𝑝 and thickness of coated fluid 𝜉 without involving
the MHD parameter.

The Adomian’s decomposition method (ADM), Homotopy analysis
method (HAM), and finite difference method (FDM) were used to
obtain analytical and numerical solutions. The FDM followed by suc-
cessive under-relaxation, was also employed to achieve better conver-
gence. The impact of different parameters on velocity profiles, pressure
gradient and pressure distribution are displayed in several graphs.
Velocity profiles analyzed at the nip (𝑥 = 0) and away from the nip
(𝑥 = 0.75) are compared for both analytical and numerical solutions,
with and without MHD effects, displayed in Tables 2–11.
6

Table 1
Separation points 𝑥𝑠𝑝 and coating thickness 𝜉 at
different modified Capillary’s Number 𝑁𝑐𝑎2 .

𝑁𝑐𝑎2 𝑥𝑠𝑝 𝜉

0.1 5.81232 1.88741
0.2 5.44197 1.65506
0.3 5.26952 1.56395
0.4 5.16347 1.51472
0.5 5.08895 1.48381
0.6 5.03224 1.46261
0.7 4.98669 1.44718
0.8 4.94863 1.43547
0.9 4.91587 1.42631
1 4.88699 1.41893
5 4.41478 1.37209
10 4.33715 1.36692
50 4.28421 1.36245
100 4.27802 1.36182
200 4.27495 1.36153

Effect on physical parameters on velocity profiles

Figs. 2 and 3 shows the impact of the dilatant parameter 𝛼1 varies
with the non-dimensional velocity profile for both cases at 𝑥 = 0
and 0.75 respectively. It has been observed that when the dilatant
parameter 𝛼1 is increased from 𝛼1 = 0.1 to 0.9, the velocity of the
fluid is found to decrease the phenomenon of shear thickening has
been observed. This is due to increased internal fluid resistance as
the flow rate increases. At lower values of 𝛼1, the velocity variation
is comparable to the Newtonian case (when 𝛼1 = 𝛼2). However, as
the value of 𝛼1 increases, velocity profiles are prone to decrease. In
Figs. 2(a) and 2(b), the velocity trends seem to be the same for both
cases at the nip region, i.e., at 𝑥 = 0 except that for increasing 𝛼1
the velocity profiles are much closer to each other when the MHD
parameter is involved. When the flow of the fluid moves away from the
nip region and reaches 𝑥 = 0.75, the difference between the velocity
profiles for both cases becomes prominent, and the MHD parameter
causes the flow to decrease, which will be discussed in Section ‘‘Effect
of MHD parameter on velocity profiles’’.

The velocity profiles for both cases at 𝑥 = 0 and 0.75 are shown in
Figs. 4 and 5 with the effect of pseudoplastic parameter 𝛼2. It can be
observed that the behavior is indicative of an increase in 𝛼2 from 0.1
to 0.9, which is investigated and found to be quite opposite to that of
the behavior of 𝛼1. It can be further stated that the dilatant parameter
reduces velocity, whereas the pseudoplastic parameter (which describes
the melt polymer in an Oldroyd 8-constant fluid) increases velocity and
shear thinning phenomenon is observed. This because reduced friction
forces at higher flow rates allow for faster movement. The dilatant and
pseudoplastic characteristics of the coating fluid can be used to manage
the desired quality of coating since the velocity of the coating fluid
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Fig. 3. Non-dimensional velocity profiles away from the nip (𝑥 = 0.75) for different dilatant parameter values 𝛼1, with constant pseudoplastic parameter 𝛼2.
Fig. 4. Non-dimensional velocity profiles at the nip (𝑥 = 0) for different pseudoplastic parameter values 𝛼2, with constant dilatant parameter 𝛼1.
Fig. 5. Non-dimensional velocity profiles away from the nip (𝑥 = 0.75) for different pseudoplastic parameter values 𝛼2, with constant dilatant parameter 𝛼1.
e
s a crucial component of design. The coating thickness is observed
o increase with increasing dilatant parameter 𝛼1 values; however, the
ffect of the pseudoplastic parameter 𝛼2 is the opposite. To conclude,
e observe that velocity profiles depend on dilatant and pseudoplastic
arameters.

ffect of pressure gradient on velocity profiles

The behavior of the velocity profiles has been examined in Figs. 6
nd 7 by assuming the dilatant 𝛼1 and pseudoplastic 𝛼2 parameters to
e constant with varying pressure gradient 𝑑𝑃

𝑑𝑥
for non-MHD (Figs. 4(a)

nd 5(a)) and MHD (Figs. 4(b) and 5(b)) cases at 𝑥 = 0 and 0.75
espectively. When dealing without the MHD parameter, the velocity
rofiles tend to decrease with increasing pressure gradient. As discussed
7

p

arlier, the MHD parameter decreases the velocity for dilatant 𝛼1 and
pseudoplastic 𝛼2 parameters; the same behavior has been found here,
but when the pressure gradient is quite smaller, a bit increase in
velocity can be found. The strength of the pressure gradient has a sig-
nificant impact on the magnitudes of the velocity profiles, and the flow
directions are the opposite of the pressure gradient’s direction. The flow
velocities are significantly higher than those of the Newtonian fluid
when 𝛼1 and 𝛼2 are fixed. Nevertheless, this finding is not applicable to
other Oldroyd 8-constant fluids with different material parameters.

Effect of MHD parameter on velocity profiles

The implications of the magnetic parameter (MHD) 𝑚 is demon-
strated in Fig. 8 at 𝑥 = 0 and 0.75 (Figs. 8(a) and 8(b)) for the velocity
rofiles. As the magnetic parameter rises, we note decreases in the
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Fig. 6. Non-dimensional velocity profiles for varying pressure gradient values at the nip (𝑥 = 0) for fixed dilatant 𝛼1 & pseudoplastic parameters 𝛼2.
Fig. 7. Non-dimensional velocity profiles for varying pressure gradient 𝑑𝑃
𝑑𝑥

values away from the nip (𝑥 = 0.75) for fixed dilatant 𝛼1 & pseudoplastic parameters 𝛼2.
Fig. 8. Non-dimensional velocity profiles for magnetic forces MHD values for fixed dilatant 𝛼1 & pseudoplastic parameters 𝛼2.
elocity profile and find that there is a prominent change in velocity
t the nip region and when the flow of the fluid moves away from the
ip region, but there is no significant change in the behavior of the
elocity profiles throughout. A higher Lorentz force is generated when
he magnetic parameter 𝑚 is increased, resulting in a corresponding
ise in the resistance in the motion of the fluid. It slows down the
elocity of the fluid due to this resistance. As the magnetic parameter
alue increases, the Lorentz force also increases, resulting in a stronger
esistance to the fluid’s motion and ultimately leading to a reduced fluid
elocity.

It is significant to note that if 𝛼1 = 𝛼2, an Oldroyd 8-constant fluid
xhibits identical behavior to a Newtonian fluid. In addition, when
here is no pressure gradient or magnetic parameter, Eq. (36) simplifies
o 𝑑2𝑢 = 0 for both types of fluids, resulting in a linear flow velocity.
8

𝑑𝑦2
It is conceivable to observe the impact of shear thickening of the non-
Newtonian fluid with 𝛼1 varying between 0.1 and 0.9. The Eq. (36)
makes it clear that compared to Newtonian fluids, Oldroyd fluids have
a greater (smaller) flow velocity if 𝛼1 < 𝛼2 (𝛼1 > 𝛼2).

Effect of physical parameters on pressure distributions

Fig. 9 shows the impact of 𝛼1 and 𝛼2 on the pressure gradient and
pressure distribution in the absence of MHD parameter. According to
the data stipulated, it seems that the pressure gradient decreases as 𝛼1
values increase in the vicinity of the nip region 9(a). The relationship
between pressure distribution and distance 𝑥 is illustrated in the graph
presented in Fig. 9(b), providing a detailed insight that as 𝛼1 increases,

the pressure 𝑃 tends to increase in the vicinity of the nip region.
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c
f
b

Fig. 9. Non-dimensional (a) pressure gradient 𝑑𝑃
𝑑𝑥

and (b) pressure 𝑃 profiles for different dilatant parameter values 𝛼1, with constant pseudoplastic parameter 𝛼2.
Table 2
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0 with fixed pseudoplastic parameter 𝛼2 and absence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.64605 1.64259 3.46 × 10−3 1.65441 8.36 × 10−3 2.11298 2.08585 2.71 × 10−2 2.11583 2.82 × 10−3

0.3 1.63524 1.63064 4.59 × 10−3 1.64101 5.77 × 10−3 2.08167 2.09681 1.51 × 10−2 2.08641 4.73 × 10−3

0.5 1.62460 1.61862 5.98 × 10−3 1.62594 1.34 × 10−3 2.05118 2.05816 6.97 × 10−3 2.05232 1.11 × 10−3

0.7 1.61413 1.60865 5.49 × 10−3 1.61136 2.77 × 10−3 2.02152 2.02277 1.25 × 10−3 2.02845 6.88 × 10−3

0.9 1.60385 1.59838 5.46 × 10−3 1.60298 8.73 × 10−4 1.99266 1.98972 2.95 × 10−3 1.99071 1.97 × 10−3
Effect of modified Capillary’s number

Table 1 shows that as 𝑁𝑐𝑎2 increases, the stronger viscous forces
within the fluid make it resist thinning and spreading easily. This
translates to a delayed separation pushing the separation point (𝑥𝑠𝑝)
loser to the nip (𝑥 = 0). A closer separation point can be beneficial
or achieving thinner coatings, as the fluid has less time to spread
efore depositing on the substrate. With increasing 𝑁𝑐𝑎2 , the fluid’s

resistance to deformation hinders its spreading on the substrate. This
results in a thinner final coating thickness (𝜉). These findings highlight
the significant influence of the modified Capillary number (𝑁𝑐𝑎2 ) on the
separation point and coating thickness in forward roll-coating with an
Oldroyd 8-constant fluid. By carefully controlling 𝑁𝑐𝑎2 through adjust-
ing fluid properties, roller speeds, and other process parameters, you
can tune the separation point and achieve desired coating thickness,
optimizing the overall coating process.

Validation

The solution to the non-linear differential equation modeled in
Eq. (36), along with the boundary conditions made in Eq. (37) has
been presented in the previous section in detail. The comparison of the
analytical and numerical methods for both cases, i.e., with and without
the effect of MHD is necessary to ensure reliability of the discussed
methodologies. Tables 2–11 provide a detailed comparison by assigning
values to dilatant parameter 𝛼1 = 0.1, 0.3, 0.5, 0.7, 0.9 for 𝑦 from 0 to
𝑦 = 0.8 with a difference of 0.2 at the nip 𝑥 = 0 and away from the nip
𝑥 = 0.75 contain a detailed comparison. The tables present the absolute
error of ADM against HAM and numerical methods, demonstrating the
convergence of methods. The absolute error was found very promising
and ranges from 10−2 to 10−4.

It is noteworthy that pseudoplastic parameter 𝛼2 has accelerated
impact on the velocity profiles. If we physically increase the pseudo-
plastic parameter 𝛼2, the friction forces would decrease, resulting in a
higher velocity of the fluid. Consequently, it is inferred that the dilatant
parameter 𝛼2 and the magnetic parameter (MHD) 𝑚 both contribute to
reducing the velocity of the fluid at any point of the flow domain.
9

Concluding remarks

This research article examines the steady state flow of an incom-
pressible fluid between two rolls undergoing magnetic field interaction.
A nonlinear constitutive model with Oldroyd 8-constant fluid has been
employed. The governing equations of the proposed problem were
simplified using LAT, non-dimensionalized, and developed into one-
dimensional non-linear ordinary differential equation. To analyze the
impact of material properties and magnetic field on flows, the nonlin-
ear equation was solved analytically by ADM, HAM and numerically
by FDM, followed by the so-called system under the successive over
relaxation method. The analytical solutions were compared with the
numerical results for the Oldroyd 8-constant fluid to ensure the relia-
bility of the discussed methods. Absolute error are also evaluated in the
context of ADM with HAM & numerical method and found good agree-
ment between the comparisons made. We concluded from the study
that the profound influence of a magnetic field on fluid movement in
roll-coating process is present. As the magnetic field strength increases,
a Lorentz force is generated, acting against the fluid flow. This resis-
tance translates to a gradual decrease in velocity. The MHD parameter
𝑚 effectively captures the interplay between magnetic and fluid forces.
Higher 𝑚 values imply a stronger Lorentz force and, consequently, a
more pronounced reduction in velocity. Beyond the magnetic field,
the material properties of the fluid also play a crucial role in shaping
the velocity profile. Increased 𝛼1 signifies shear thickening, where the
fluid’s viscosity rises with flow rate. This translates to enhanced internal
resistance, leading to a decrease in velocity. In contrast, increasing 𝛼2
triggers shear thinning, where the fluid’s viscosity decreases with flow
rate. A noticeable disparity exists in flow velocity between Oldroyd 8-
constant and Newtonian fluids. If 𝛼1 < 𝛼2 (where 𝛼1 is less than 𝛼2), the
Newtonian fluid has a lower flow velocity than an Oldroyd 8-constant
fluid. In comparison to a Newtonian fluid, if 𝛼1 > 𝛼2 (where 𝛼1 is greater
than 𝛼2), an Oldroyd 8-constant fluid has a decreased flow velocity. The
presented solutions include the Newtonian fluid (𝜆𝑖 = 0, 𝑖 = 1,… , 7),
second-grade fluids (𝜆𝑖 = 0, 𝑖 = 1, 3,… , 7;𝜇𝜆2 = 𝛼1 (a material constant
of second-grade fluids)), Oldroyd 3-constant fluids (𝜆𝑖 = 0, 𝑖 = 3,… , 7),
Oldroyd 6-constant fluids (𝜆6 = 𝜆7 = 0), and Maxwell fluids (𝜆𝑖 =
0, 𝑖 = 2,… , 7) as specific scenarios. The mathematical findings for



Results in Physics 58 (2024) 107492M. Usman et al.
Table 3
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.2 with fixed pseudoplastic parameter 𝛼2 and absence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.62198 1.62693 4.95 × 10−3 1.62918 7.20 × 10−3 2.11298 2.08585 2.71 × 10−2 2.08682 2.11 × 10−3

0.3 1.61118 1.61358 2.40 × 10−3 1.61617 4.99 × 10−3 2.08167 2.09681 1.51 × 10−2 2.06634 8.68 × 10−3

0.5 1.60056 1.59861 1.96 × 10−3 1.60152 9.59 × 10−4 2.05118 2.05816 6.97 × 10−3 2.02937 2.15 × 10−3

0.7 1.59011 1.59264 2.53 × 10−3 1.58735 2.76 × 10−3 2.02152 2.02277 1.25 × 10−3 2.00341 5.90 × 10−3

0.9 1.57984 1.58012 2.81 × 10−4 1.57916 6.77 × 10−4 1.99266 1.98972 2.95 × 10−3 1.96581 2.86 × 10−3
Table 4
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.4 with fixed pseudoplastic parameter 𝛼2 and absence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.54892 1.54812 7.98 × 10−4 1.55305 4.13 × 10−3 2.01585 2.01574 1.01 × 10−4 2.01386 2.05 × 10−3

0.3 1.53836 1.53931 9.57 × 10−4 1.54133 2.97 × 10−3 1.98479 2.01483 3.00 × 10−2 1.99247 7.61 × 10−3

0.5 1.52797 1.52562 2.35 × 10−3 1.52796 7.72 × 10−6 1.95455 1.94774 6.81 × 10−3 1.95651 1.94 × 10−3

0.7 1.51775 1.51988 2.12 × 10−3 1.51508 2.68 × 10−3 1.92513 1.93396 8.82 × 10−3 1.92693 1.76 × 10−3

0.9 1.50772 1.50431 3.41 × 10−3 1.50757 1.41 × 10−4 1.89653 1.91473 1.82 × 10−2 1.89572 8.34 × 10−4
Table 5
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.6 with fixed pseudoplastic parameter 𝛼2 and absence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.42427 1.42443 1.64 × 10−4 1.42467 4.05 × 10−4 1.89119 1.92127 3.01 × 10−2 1.89064 5.98 × 10−4

0.3 1.41475 1.41711 2.35 × 10−3 1.41531 5.62 × 10−4 1.86119 1.90637 4.52 × 10−2 1.86341 2.21 × 10−3

0.5 1.40541 1.40178 3.63 × 10−3 1.40438 1.03 × 10−3 1.83199 1.80382 2.82 × 10−2 1.83201 3.32 × 10−6

0.7 1.39623 1.39471 1.52 × 10−3 1.39391 2.32 × 10−3 1.80361 1.82432 2.07 × 10−2 1.79956 4.11 × 10−3

0.9 1.38722 1.39252 5.30 × 10−3 1.38775 5.35 × 10−4 1.77603 1.82325 4.72 × 10−2 1.77827 2.16 × 10−3
Table 6
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.8 with fixed pseudoplastic parameter 𝛼2 and absence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.24352 1.24028 3.24 × 10−3 1.24162 1.90 × 10−3 1.71044 1.77292 6.25 × 10−2 1.71095 4.53 × 10−4

0.3 1.23695 1.24316 6.21 × 10−3 1.23602 9.30 × 10−4 1.68338 1.74197 5.86 × 10−2 1.67806 5.39 × 10−3

0.5 1.23051 1.22554 4.97 × 10−3 1.22920 1.32 × 10−3 1.65710 1.59585 6.13 × 10−2 1.65393 3.21 × 10−3

0.7 1.22421 1.22627 2.06 × 10−3 1.22273 1.48 × 10−3 1.63159 1.67011 3.85 × 10−2 1.62178 9.90 × 10−3

0.9 1.21804 1.21777 2.69 × 10−4 1.21893 8.90 × 10−4 1.60685 1.69267 8.58 × 10−2 1.61094 4.04 × 10−3
Table 7
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0 with fixed pseudoplastic parameter 𝛼2 and presence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.15388 1.15263 1.24 × 10−3 1.16333 9.45 × 10−3 1.24598 1.24771 1.72 × 10−3 1.24792 1.95 × 10−3

0.3 1.15288 1.15134 1.54 × 10−3 1.16221 9.32 × 10−3 1.24317 1.24448 1.31 × 10−3 1.24399 8.15 × 10−4

0.5 1.15188 1.15004 1.85 × 10−3 1.16108 9.19 × 10−3 1.24036 1.24127 9.11 × 10−4 1.23944 9.23 × 10−4

0.7 1.15089 1.14874 2.15 × 10−3 1.15995 9.07 × 10−3 1.23755 1.23806 5.08 × 10−4 1.23627 1.28 × 10−3

0.9 1.14989 1.14744 2.45 × 10−3 1.15883 8.94 × 10−3 1.23475 1.23485 1.05 × 10−4 1.23607 1.32 × 10−3
Table 8
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.2 with fixed pseudoplastic parameter 𝛼2 and presence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.14791 1.14669 1.22 × 10−3 1.15689 8.98 × 10−3 1.24031 1.24193 1.62 × 10−3 1.24154 1.23 × 10−3

0.3 1.14691 1.14539 1.52 × 10−3 1.15579 8.88 × 10−3 1.23751 1.23872 1.21 × 10−3 1.23812 6.07 × 10−4

0.5 1.14592 1.14409 1.83 × 10−3 1.15469 8.78 × 10−3 1.23471 1.23551 7.99 × 10−4 1.23331 1.40 × 10−3

0.7 1.14492 1.14279 2.13 × 10−3 1.15359 8.67 × 10−3 1.23189 1.23229 3.90 × 10−4 1.23061 1.28 × 10−3

0.9 1.14393 1.14149 2.44 × 10−3 1.15251 8.57 × 10−3 1.22909 1.22907 1.82 × 10−5 1.23043 1.34 × 10−3
unidirectional steady flows produced by Maxwell fluids, Oldroyd 3-
constant (Oldroyd-B) fluids, second-grade fluids, Oldroyd 6-constant
and Oldroyd 8-constant fluids with 𝛼1 = 𝛼2 are equivalent to those of
Newtonian fluids. It has been noted that as the modified Capillary’s
constant 𝑁𝑐𝑎2 increases, the stronger viscous forces within the fluid
make it resist thinning and spreading easily and delayed the separation
point 𝑥 closer to the nip (𝑥 = 0). Also the resistance of the fluid
10

𝑠𝑝
prohibits to deform its spreading on the substrate results in a thinner
final coating thickness 𝜉. In stark contrast to the dilatant parameter 𝛼1,
the pseudoplastic parameter 𝛼2 has the opposite effect. Besides carefully
selecting the relevant parameters, the results of the current research can
also be directly compared to those of Zahid et al. [12] analysis, which
is valid for a Newtonian fluid. In the upcoming research, people could

leverage ADM and HAM to comprehend better and tackle problems in
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Table 9
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.4 with fixed pseudoplastic parameter 𝛼2 and presence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.12991 1.12877 1.14 × 10−3 1.13789 7.98 × 10−3 1.19443 1.19533 9.07 × 10−4 1.19606 1.63 × 10−3

0.3 1.12893 1.12749 1.44 × 10−3 1.13681 7.87 × 10−3 1.19175 1.19223 4.80 × 10−4 1.19053 1.22 × 10−3

0.5 1.12796 1.12622 1.74 × 10−3 1.13572 7.76 × 10−3 1.18907 1.18912 5.39 × 10−5 1.18635 2.72 × 10−3

0.7 1.12699 1.12495 2.04 × 10−3 1.13463 7.64 × 10−3 1.18639 1.18602 3.73 × 10−4 1.18447 1.92 × 10−3

0.9 1.12602 1.12367 2.35 × 10−3 1.13355 7.53 × 10−3 1.18371 1.18291 7.99 × 10−4 1.18427 5.59 × 10−4
Table 10
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.6 with fixed pseudoplastic parameter 𝛼2 and presence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.09958 1.09863 9.53 × 10−4 1.10578 6.19 × 10−3 1.15341 1.15385 4.40 × 10−4 1.15721 3.80 × 10−3

0.3 1.098717 1.09748 1.23 × 10−3 1.10481 6.09 × 10−3 1.15101 1.15105 3.66 × 10−5 1.15341 2.40 × 10−3

0.5 1.09784 1.09633 1.51 × 10−3 1.10383 5.99 × 10−3 1.14862 1.14825 3.67 × 10−4 1.14809 5.22 × 10−4

0.7 1.09697 1.09519 1.79 × 10−3 1.10286 5.89 × 10−3 1.14622 1.14545 7.71 × 10−4 1.14712 8.99 × 10−4

0.9 1.09611 1.09404 2.07 × 10−3 1.10189 5.79 × 10−3 1.14383 1.14265 1.17 × 10−3 1.14691 3.08 × 10−3
Table 11
Validation of numerical model against analytical solution for non-Newtonian flow at 𝑦 = 0.8 with fixed pseudoplastic parameter 𝛼2 and presence of MHD interaction.
𝛼1 𝑥 = 0 𝑥 = 0.75

ADM HAM AE Numerical AE ADM HAM AE Numerical AE

0.1 1.05641 1.05581 6.05 × 10−4 1.06002 3.62 × 10−3 1.09948 1.09953 5.70 × 10−5 1.09677 2.71 × 10−3

0.3 1.05581 1.05501 7.99 × 10−4 1.05937 3.56 × 10−3 1.09769 1.09743 2.61 × 10−4 1.09295 4.73 × 10−3

0.5 1.05522 1.05423 9.93 × 10−4 1.05872 3.50 × 10−3 1.09590 1.09532 5.80 × 10−4 1.09806 2.16 × 10−3

0.7 1.05463 1.05344 1.19 × 10−3 1.05806 3.44 × 10−3 1.09411 1.09321 8.98 × 10−4 1.09785 3.74 × 10−3

0.9 1.05404 1.05265 1.38 × 10−3 1.05741 3.38 × 10−3 1.09232 1.09111 1.22 × 10−3 1.09763 5.31 × 10−3
fluid mechanics problems [43], especially in RRC [44] and FRC [10,45]
incorporating the heat transfer, entropy, slip and porosity effects.

Abbreviations

FRC Forward roll coating
𝐷
𝐷𝑡

Material derivative
ADM Adomian’s Decomposition Method
𝑈 Rolls’ peripheral velocity
𝑢 Velocity ratio
𝜌 Density
𝜔 Rolls angular velocities
𝜇 Viscosity of the fluid
𝑅 Radius of the roll
𝑆 Extra stress tensor
𝐻0 Half the nip separation
𝐴𝐸 Absolute error
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Appendix A. Analysis of Adomian’s decomposition method

The decomposition method can be briefly explained using the fol-
lowing differential equation:

𝐿𝑢 +𝑁𝑢 = 𝑔, (67)

where 𝐿 signifies a linear operator, 𝑁 denotes a non-linear operator, 𝑔
serves as the source term, and 𝑢 = 𝑢(𝑦) only. The result of applying 𝐿−1

to Eq. (67) can be represented as follows:

𝑢 = 𝑓 + 𝐿−1𝑔 − 𝐿−1𝑁𝑢, (68)

where the term generated through the solution of the homogeneous
equation is denoted by the function 𝑓 .

𝐿𝑢 = 0, (69)

encompassing the constants of integration. During the decomposition
procedure, the solution 𝑢(𝑦) is represented in the form of a series of
decomposition terms:

𝑢(𝑦) =
∞
∑

𝑛=0
𝑢𝑛(𝑦). (70)

In Eq. (68), the polynomial series of Adomian’s decomposition
contains a nonlinear term denoted by 𝑁𝑢(𝑦). These terms can be defined
as follows:

𝑁1𝑢(𝑦) =
∞
∑

𝑛=0
𝐴𝑛, (71)

𝑁2𝑢(𝑦) =
∞
∑

𝐵𝑛, (72)

𝑛=0
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where 𝐴𝑛 and 𝐵𝑛 represent the Adomian’s polynomials utilized in this
particular context. The provided formula can be used to calculate each
non-linear term.

𝐴𝑛 = 𝐵𝑛 =
1
𝑛!

𝑑𝑚

𝑑𝜆𝑚

[

𝑁

( ∞
∑

𝑖=0
𝑢𝑖

)]

𝜆=0

, 𝑛 = 0, 1, 2, 3,… . (73)

The third order polynomials of Adomian’s decomposition, 𝐴𝑛 and
𝐵𝑛 are expressed as follows:

𝐴0 =
(

𝑑𝑢0
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𝑑𝑢1
𝑑𝑦

)

+ 2
(

𝑑𝑢0
𝑑𝑦

)(

𝑑2𝑢1
𝑑2𝑦

)(

𝑑𝑢2
𝑑𝑦

)

+ 2
(

𝑑𝑢0
𝑑𝑦

)(

𝑑2𝑢0
𝑑2𝑦

)(

𝑑𝑢3
𝑑𝑦

)

+
(

𝑑𝑢0
𝑑𝑦

)2 (𝑑2𝑢3
𝑑2𝑦

)

,

𝐵3 = 2
(

𝑑𝑢0
𝑑𝑦

)(

𝑑𝑢3
𝑑𝑦

)

+ 2
(

𝑑𝑢1
𝑑𝑦

)(

𝑑𝑢2
𝑑𝑦

)

,

⋮

(74)

s far as we establish

0 = 𝑓 + 𝐿−1𝑔, (75)

nd make use of Eqs. (73)–(74) in (68), the Eq. (75) becomes:
∞
∑

𝑛=0
𝑢𝑛(𝑦) = 𝑢0 − 𝐿−1

( ∞
∑

𝑛=0
(𝐴𝑛 + 𝐵𝑛)

)

, (76)

hich gives

𝑢1(𝑦) = −𝐿−1 (𝐴0 + 𝐵0
)

,

𝑢2(𝑦) = −𝐿−1 (𝐴1 + 𝐵1
)

,

𝑢3(𝑦) = −𝐿−1 (𝐴2 + 𝐵2
)

,

⋮

𝑢𝑛+1(𝑦) = −𝐿−1 (𝐴𝑛 + 𝐵𝑛
)

.

(77)

By combining all the terms, the series solution can be represented
in the form:

𝑢(𝑦) =
∞
∑

𝑛=0
𝑢𝑛. (78)

where 𝑢1, 𝑢2, 𝑢3,… are determined using Eq. (78).

Appendix B. Analysis of homotopy analysis method

To obtain a complete analytical and uniformly valid solution, we
use the homotopy analysis method for the given problem.

[𝑢̄(𝑦; 𝑝)] = 𝜕2𝑢̄(𝑦; 𝑝)
− 𝑚2𝑢̄(𝑦; 𝑝), (79)
12

𝜕𝑦2
as an additional linear operator, where the embedding parameter 𝑝 ∈
[0, 1] is present. Let us formulate the equation for zeroth-order defor-
mation as
(1 − 𝑝)[𝑢̄(𝑦; 𝑝) − 𝑢0(𝑦)]

= 𝑝ℏ

[

𝜕2𝑢̄(𝑦; 𝑝)
𝜕𝑦2

+

{

(3𝛼1 − 𝛼2) + 𝛼1𝛼2

(

𝜕𝑢̄(𝑦; 𝑝)
𝜕𝑦

)2
}

×
(

𝜕𝑢̄(𝑦; 𝑝)
𝜕𝑦

)2 𝜕2𝑢̄(𝑦; 𝑝)
𝜕𝑦2

−
(

𝑚2𝑢̄(𝑦; 𝑝) +
𝑑𝑝̂
𝑑𝑥

)

{

1 + 𝛼2

(

𝜕𝑢̄(𝑦; 𝑝)
𝜕𝑦

)2
}2

⎤

⎥

⎥

⎦

,

(80)

ith the appropriate boundary conditions

̄(ℎ; 𝑝) = 1,
𝑑𝑢̄(0; 𝑝)

𝑑𝑦
= 0. (81)

where ℏ ≠ 0 is a auxiliary parameter.
It is obvious that the Eqs. (80) and (81) have a solution when 𝑝 = 0

̄(𝑦; 0) = 𝑢0(𝑦). (82)

Eqs. (80) and (81) are identical to Eqs. (36) and (37) if 𝑝 = 1

̄(𝑦; 1) = 𝑢(𝑦). (83)

Thereby further, the change in 𝑝 from 0 to 1 is equivalent to the
continuous variation of 𝑢̄(𝑦; 𝑝) from the initial approximation 𝑢0(𝑦) to
the unknown outcome 𝑢(𝑦) of Eqs. (36) and (37).

Suppose that the deformation 𝑢̄(𝑦; 𝑝) controlled by Eqs. (80) and (81)
is sufficiently uniform.

𝑢[𝑘]0 (𝑦) =
𝜕𝑘𝑢̄(𝑦; 𝑝)

𝜕𝑝𝑘
|

|

|

|

|𝑝=0
, (𝑘 ≥ 1) (84)

namely, the 𝑘th-order deformation derivative exists. Expanding 𝑢̄(𝑦; 𝑝)
in power series of the embedding parameter 𝑝 using Eq. (82) is straight-
forward:

̄(𝑦; 𝑝) = 𝑢0(𝑦) +
+∞
∑

𝑘=1
𝑢𝑘(𝑦)𝑝𝑘, (85)

where

𝑢𝑘(𝑦) =
1
𝑘!

𝜕𝑘𝑢̄(𝑦; 𝑝)
𝜕𝑝𝑘

|

|

|

|

|𝑝=0
, (𝑘 ≥ 1). (86)

It is important to note that the deformation equation of order zero,
as presented in Eq. (80), includes an auxiliary parameter ℏ that is non-
zero. The convergence rate and region of the series (85) are impacted
by the dependence of 𝑢̄(𝑦; 𝑝) and 𝑢𝑘(𝑦) on the auxiliary parameter ℏ.
Assuming ℏ is properly chosen, series (85) converges at 𝑝 = 1. As a
result of Eqs. (83) and (85), we can establish a connection.

𝑢(𝑦) = 𝑢0(𝑦) +
+∞
∑

𝑘=1
𝑢𝑘(𝑦). (87)

Differentiating the zeroth-order deformation Eqs. (80) and (81)𝑘
times with respect to 𝑝, dividing by 𝑘!, and setting 𝑝 = 0, gives the
𝑘th-order deformation problem due to definition (86).

[𝑢𝑘(𝑦) − 𝜒𝑘𝑢𝑘−1(𝑦)] =

ℏ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢′′𝑘−1 +
𝑘−1
∑

𝑛=0
𝑢′′𝑘−𝑛−1

𝑛
∑

𝑖=0
𝑢′𝑛−1

(

(3𝛼1 − 𝛼2)𝑢′𝑖 + 𝛼1𝛼2
𝑖

∑

𝑗=0
𝑢′𝑖−𝑗

𝑗
∑

𝑟=0
𝑢′𝑗−𝑟𝑢

′
𝑟

)

− 𝑚2

{

𝑢𝑘−1 + 𝛼2
𝑘−1
∑

𝑛=0
𝑢𝑘−𝑛−1

𝑛
∑

𝑖=0
𝑢′𝑛−𝑖

(

2𝑢′𝑖 + 𝛼2
𝑖

∑

𝑗=0
𝑢′𝑖−𝑗

𝑗
∑

𝑟=0
𝑢′𝑗−𝑟𝑢

′
𝑟

)}

− 𝛼2
𝑑𝑝̂
𝑑𝑥

𝑘−1
∑

𝑛=0
𝑢′𝑘−𝑛−1

(

2𝑢′𝑛 + 𝛼2
𝑛
∑

𝑖=0
𝑢′𝑛−𝑖

𝑖
∑

𝑗=0
𝑢′𝑖−𝑗𝑢

′
𝑗

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(88)
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𝑢𝑘(ℎ) = 1,
𝑑𝑢𝑘(0)
𝑑𝑦

= 0. (89)

Appendix C. Algorithm and procedure to execute Finite Difference
Algorithm with SOR

Algorithm 1 Finite Difference Algorithm with SOR

Require: Initial guess 𝐮(0), relaxation factor 𝜏, tolerance 𝜖
Ensure: Approximate solution 𝐮
1: 𝑛 ← 0
2: while ‖𝐮(𝑛+1) − 𝐮(𝑛)‖ > 𝜖 do
3: for 𝑖 = 1 to 𝑁𝑥 − 1 dof

4: 𝑢(𝑛+1)𝑖 ←
1
2
(𝑢(𝑛)𝑖+1+ 𝑢(𝑛+1)𝑖−1 )+2𝜏2

[

𝛽 + 𝛼1𝛼2
1
4𝜏2

(

𝑢(𝑛)𝑖+1 − 𝑢(𝑛+1)𝑖−1

)2
]

×
(

1
4𝜏2

(

𝑢(𝑛)𝑖+1 − 𝑢(𝑛+1)𝑖−1

)2
)(

1
4𝜏2

𝑢(𝑛)𝑖+1 − 2𝑢(𝑛)𝑖 + 𝑢(𝑛+1)𝑖−1

)

+

(

𝑚2𝑢(𝑛)𝑖 + 𝑑𝑃
𝑑𝑥

)

[

1 + 𝛼2

(

1
4𝜏2

(

𝑢(𝑛)𝑖+1 − 𝑢(𝑛+1)𝑖−1

)2
)]2

5: end for
6: 𝑛 ← 𝑛 + 1
7: end while
8: 𝐮 ← 𝐮(𝑛)

Procedure to execute Finite Difference Algorithm with SOR:

1. Discretization: The central difference formulas of first and sec-
ond order derivatives with respect to 𝑦 are approximated as:

𝑑𝑢
𝑑𝑦

≈
𝑢𝑖+1 − 𝑢𝑖−1

2𝜏
(90)

𝑑2𝑢
𝑑𝑦2

≈
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−𝑗

𝜏2
(91)

2. Initialization: Set initial guess 𝑢(0)(𝑦), relaxation factor 𝜏 ∈ (0, 1],
and convergence tolerance 𝜖 = 10−8.

3. Iteration: Repeat until the solution converges within the toler-
ance:

• Sweep through interior grid points (𝑖 = 1 to 𝑁𝑦 − 1)
• Update each grid point using the SOR formula by combine

current value, weighted average of neighboring values, and
source term and over-relax using the relaxation factor 𝜏
(controls the degree of overshooting; crucial for optimal
performance).

4. Solution: Assign the converged solution to 𝑢.

Appendix D. Auxiliary constants

Below, we present values for various constants that exist in sections
(Sections ‘‘Adomian’s Decomposition Method (ADM)’’ and ‘‘Homotopy
Analysis Method (HAM)’’):

𝑙1 = −
243

(

𝜉0 − ℎ
)5 𝛼22

5ℎ15
+

243𝛼1𝛼2
(

𝜉0 − ℎ
)5

5ℎ15
,

𝑙2 = −
27

(

𝜉0 − ℎ
)3 𝛼2

ℎ9
+

27𝛼1
(

𝜉0 − ℎ
)3

ℎ9
,

𝑙3 =
1
4
𝑙2,

𝑙4 =
1
6
𝑙1,
13

𝛽 = 3𝛼1 − 𝛼2.
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