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a b s t r a c t

New statistical ensembles of classical extreme black holes are introduced. Each ensemble
is proven to represent a non extreme, finite temperature black hole. This mean or average
black hole is surrounded by a mean electromagnetic field and a so-called apparent
matter, which is the large scale trace of the averaged upon small scale fluctuations of the
gravitational and electromagnetic fields. However, the total mass and the total charge of
space–time is not modified by the averaging.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Black holes were first discovered as exact solutions of Einstein equations [11,6]; loosely speaking, they represent
situations in which the purely classical, non quantum gravitational field becomes so intense that a no-escape region is
created in space–time, the boundary between this region and the ‘outside’ being called the event horizon of the black hole. It
was later realized that stationary black holes display remarkable thermodynamical properties [27,28,12]; the event horizon
of a stationary black hole has an entropy proportional to its area and the temperature of the black hole coincides, up to
proportionality constant, with another, apparently purely geometrical quantity called the surface gravity of the horizon;
the temperature of an event horizon is always non-negative and black holes for which this temperature vanishes are called
extreme.
These thermodynamical properties have been understood by various authors by considering classical black holes as

statistical ensembles of degrees of freedom associated with quantum gravity and/or string theory [13,14,16]. The present
article develops an alternative point of view;we start from classical extreme black holes, which have vanishing temperature,
introduce new statistical ensembles of these extreme black holes, and show that each ensemble actually represents a
classical black hole of finite, non-vanishing temperature. The mean or averaged space–time is further characterized by its
mass and charge distributions. It is found that the averaging endows the space–time surrounding the black hole with an
apparent charged matter with anisotropic pressure tensor. This matter traces the net non linear effect of the averaged out
‘small scale’ degrees of freedom on the ‘large scale’ gravitational field. All results are put into perspective in a final summary
and discussion section.

2. Statistical ensembles of extreme Reissner–Nordström black holes

2.1. The extreme Reissner–Nordström metric

The Extreme Reissner–Nordström (ERN) metric is a solution of the Einstein–Maxwell equations [11,27] describing a
charged spherically symmetric static black hole of total charge equal to its total massM .1We use the so-called Kerr–Schild
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1 All computations are presented in Planck units, where c = G = h̄ = (4πε0)−1 = 1.
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coordinates (t, r) ∈ R4, in which the line element takes the simple form [6]:

ds2 = dt2 − dr2 − (1− f (r))
(
dt −

r · dr
r

)2
, (1)

where

f (r) =
(
1−

M
r

)2
. (2)

In (1) and (2), r · dr designates the Euclidean scalar product and r is the Euclidean norm of r . The electromagnetic field of
the ERN space–time is characterized by the electromagnetic 4-potential A. The covariant components of A can be expressed
in the Kerr–Schild coordinate system:

At(r) = −
M
r

A(r) =
M
r2
h(r) r (3)

where

h(r) = 1− (f (r))−1. (4)

2.2. Definition of the statistical ensemble

Letω represent 3 real scalar random variables. The ensembleΩ in which the values ofω are taken is the Euclidean 3-ball
of radius a:

Ω = {ω ∈ R3;ω2 6 a2}, (5)

endowed with the uniform probability measure dpω; the density p of this measure with respect to the Lebesgue measure
d3ω is p(ω) = V−1a where Va = 4πa3/3.
We now fix the base manifold R4 and consider, for each ω ∈ Ω and r > a, the metric g(ω) defined by the line-element:

ds2ω = dt
2
− dr2 − (1− f (R))

(
dt −

R · dr
R

)2
, (6)

with

R(r,ω) = r − iω, (7)

and

R(r,ω) =
(
r2 − ω2 − 2 i r.ω

)1/2
, (8)

where the principal value of (·)1/2 is retained in (8).
The components of the associated four potential A(ω) read:

At(r,ω) = −
M
R

A(r,ω) =
M
R2
h(R)R. (9)

The ensemble of metrics {g(ω),ω ∈ Ω} and the probability measure dpω define together [8,7] a mean metric ḡ =∫
Ω
dpωg(ω) onB =

{
(t, r) ∈ R4, r > a

}
; a mean four potential A is defined similarly by Āµ =

∫
Ω
dpωAµ(ω). From now on,

averages overΩ with probability measure dpω will be denoted by angular brackets; one thus has, for example, ḡ = 〈g(ω)〉.

2.3. Motivation

Let us comment rapidly on this choice of ensembles. The basic idea underlying the present work is that at least some
thermodynamical properties of classical finite temperature real black holes can be understood by viewing these black holes
as statistical ensembles of other space–times with vanishing temperature. Extreme black holes are natural candidates for
these other, vanishing temperature space–times.
The retained choice of complex extreme black holes allows for the following interpretation. Space–time degrees of

freedom are observed as real quantities but are in fact complex (see the Section 7.2 for a discussion of and references on
complex space–times).Modeling a real black hole space–time thus involves a trace over the imaginary part of the space–time
degrees of freedom and this trace (or statistical averaging) can confer a non-vanishing temperature to the real space–time.
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3. Determination of the mean metric and the mean electromagnetic 4-potential

3.1. Mean metric

It is convenient to consider the dimensionless quantities s = r/M and x = a/M . The exact expression of ḡ in Kerr–Schild
coordinates reads, for every a < r (x < s):

〈
ds2
〉
= b1dt2 + b2dr2 + b3

(
r · dr
r

)2
+ b4

r · dr
r
dt, (10)

with

b1(s, x) = 1−
2
s
+
3
2x2

(
−1+

( s
x
+
x
s

)
arctan

(x
s

))
(11)

b2(s, x) = −1−
3
16s2
+
2x2

5s3
−

9
16x2
−
3s
16x3

(
x2

s2
+ 1

)(
x2

s2
− 3

)
arctan

(x
s

)
(12)

b3(s, x) = −
2
s
+

9
16s2
−
6x2

5s3
+

3
16x2
−
3s
16x3

(
1−

2x2

s2
−
3x4

s4

)
arctan

(x
s

)
(13)

and

b4(s, x) =
3
2s
−
2
s2
−
3s
2x2
−
9s2

2x3

(
1+

2x2

3s2
−
4x3

3

(
1+

1
s2

)
−
x4

3s4

)
arctan

(x
s

)
. (14)

Note that all above functions of s and x are real.
Let us now define Schwarzschild coordinates for the mean metric. We first use angular variables θ and φ and put dr2

under the form:

dr2 = dr2 + r2dΓ 2 (15)

with

dΓ 2 = dθ2 + sin2 θdφ2. (16)

We then use the fact that b2 (see Eq. (12)) is negative when r > a (s > x) and define the new spatial coordinate ρ by:

ρ(s, x) = M
√
−b2(s, x) s. (17)

For x = 0, ρ = Ms is a strictly increasing function of s and is invertible. Things are more complicated for x > 0. Indeed,
a minimum of ρ(s, x) appear for s = s0(x) as soon as x 6= 0; the function ρ decreases in s on (0, s0(x)) and increases
in s on (s0(x),+∞); note that, at fixed x, ρ tends to infinity with s. We thus first restrict the domain of s to the interval
(s0(x),+∞), over which the function ρ(·, x) is invertible. We then take into account the fact that all preceding results have
only been derived under the explicit assumption a < r , i.e., x < s. Expression (17) shows that s0(x) behaves as (3/10)1/4x1/2
as x approaches zero. A numerical analysis shows that s0(x) is superior to x as long as x is inferior to a certain critical value
xc = 0.279, and that the function ρ does not admit any minimum greater than x when x is superior to xc . We therefore
introduce a newquantity s1(x) equal to s0(x) for x < xc and equal to x otherwise, andwe restrict s to the interval ]s1(x),+∞).
On this interval, all results derived above apply (because s > s1(x) implies r > a) and the function ρ is invertible in s (at fixed
x); the standard notation ρ−1 will be used to designate the inverse of ρ on ]s1(x),+∞). The mean metric can be rewritten
under the form:〈

ds2
〉
= c1dt2 + c2dρ2 + c3dt dρ − ρ2dΓ 2, (18)

with

c1(s, x) = b1(s, x), c2(s, x) = M2 (b2(s, x)+ b3(s, x))
(
∂ρ

∂s

)−2
,

c3(s, x) = Mb4(s, x)
(
∂ρ

∂s

)−1
. (19)

We introduce a new time coordinate τ , related to t and ρ by a relation of the form:

dt = dτ − α(ρ)dρ, (20)

where α is an as yet unspecified function. Expressing the mean metric in terms of the coordinates (τ , ρ, θ, φ) yields:〈
ds2
〉
= c1dτ 2 +

(
c1α2 − c3α + c2

)
dρ2 + (c3 − 2αc1) dτ dρ − ρ2dΓ 2. (21)
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The function α is chosen to enforce gτρ = 0; one thus chooses α(ρ(s, x)) =
c3(s,x)
2 c1(s,x)

, for all x ≥ 0 and s > s1(x). The mean
metric then reads:〈

ds2
〉
= F(s, x)dτ 2 − G(s, x)dρ2 − ρ2dΓ 2, (22)

with

F(s, x) = c1(s, x) = 1−
2
s
+
3
2x2

(( s
x
+
x
s

)
arctan

(x
s

)
− 1

)
(23)

and

G(s, x) =
c23 (s, x)− 4 c1(s, x) c2(s, x)

4 c1(s, x)
. (24)

The coordinates (τ , ρ, θ, φ)make evident the static and spherically symmetric character of themean space–time (Eq. (22)).
They are therefore called Schwarzschild coordinates for the mean space–time, by analogy with the unaveraged ERN case.
We conclude this section by giving approximate expressions for ḡ , ρ, F and G, valid when a/r = x/s � 1. A direct

expansion of (10), along with (11), (12), (13) and (14), in powers of x/s delivers〈
ds2
〉
=

(
1−

2
s
+
1
s2

(
1−

x2

5s2

))
dt2 +

(
−1+

2 x2

5s3
−
x2

5s4

)
dr2

+

(
−
2
s
+
1
s2

(
1+

2 x2

5s2

)
−
6 x2

5s3

)(
r · dr
r

)2
+ 2

(
2
s
−
1
s2
+
2 x2

5s3

)
r · dr
r
dt, (25)

which, of course, reduces to the original ERN metric (1) when x = a/M vanishes. Expression (17) can also expanded (at
fixed s) at second order in x/s and one obtains:

ρ(s, x) ≈ M
(
1−

x2

5s3
+
x2

10 s4

)
s. (26)

One finally finds:

F(s, x) ≈ Fapprox(s, x) ≡ 1−
2
s
+
1
s2

(
1−

x2

5s2

)
(27)

and

G(s, x) ≈
1

Fapprox(s, x)

(
1+

x2

5s4

)
. (28)

4. The mean space–time is a black hole of finite temperature

4.1. Horizon of the mean space–time

Expressions (11), (12), (13) and (14) for the Kerr–Schild components of ḡ are singular at points r = 0. However, these
expressions were derived under the assumption r > a, and one thus cannot conclude that the line r = 0 corresponds to
singularities, apparent or not. The behavior of the mean geometry near r = 0 will not be further discussed here.
The mean metric describes a black hole if two conditions are fulfilled. The first one is that F admits real positive zeros

which are are also singularities of G [28,26]. The second one is that the greatest real positive zero of F which is also a
singularity of G, say sH(x), be superior to the limit value s1(x) (see the discussion following Eq. (17)). The unaveraged
case corresponds to x = 0; the radius sH(0) exists, and equals unity, which is of course larger than x = 0. A numerical
investigation reveals that sH(x) still exists as x increases, but gets closer to s1(x), the limit condition sH(x) = s1(x) being
realized for x = 1.379 = xmax. Thus, the mean metric ḡ describes a black hole of horizon radius ρH(x) = ρ(sH(x), x) for all
x < xmax. We note for further use that sH(x) is a simple zero of both F and G for all x < xmax (data not shown).
Explicit expressions of sH(x) and ρH(x) can be obtained for x� 1. These are, at second order in x:

sH(x) = 1+
x
√
5
−
x2

5
, (29)

and

ρH(x) = M
(
1+

x
√
5
−
3 x2

10

)
. (30)

The x-dependance of the horizon radius ρH(x) is displayed in Fig. 1.
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Fig. 1. Evolution of the dimensionless horizon radius ρH (x,M)/M versus x.

Fig. 2. Evolution of the dimensionless temperature T (x,M)×M versus x.

4.2. Temperature of the black hole

The temperature of the mean black hole is best obtained by expanding in ρ the Schwarzschild coordinates of the metric
ḡ near the horizon. Expression (22) leads to:

〈
ds2
〉
≈

(
∂ρ

∂s

∣∣∣∣
sH (x),x

)−1
(ρ − ρH(x)) F ′(sH(x), x)dτ 2 −

∂ρ

∂s

∣∣∣∣
sH (x),x

1
(ρ − ρH(x)) P ′(sH(x), x)

dρ2 − ρ2dΓ 2, (31)

where a prime denotes a partial derivative with respect to s and P(s, x) = 1/G(s, x). Changing radial variable to

R(ρ, x) =
∂ρ

∂s

∣∣∣∣
sH (x),x

1
(ρ − ρH(x)) P ′(sH(x), x)

ln |ρ − ρH(x)| (32)

shows that the space–time is naturally periodic in imaginary time, with period

β(x,M) =
4π

√
F ′(sH , x)P ′(sH , x)

∂ρ

∂s

∣∣∣∣
sH (x),x

. (33)

This periodicity is characteristic of a thermal density matrix of temperature T [27,28,12] given by:

T (x,M) =
1

β(x,M)
=
1
4π

√
F ′(sH , x)P ′(sH , x)

(
∂ρ

∂s

∣∣∣∣
sH (x),x

)−1
. (34)

The x-dependance of the temperature T (x,M) is displayed in Fig. 2. The second order expression of T (x,M) for x� 1 reads:

T (x,M) ≈
x

2
√
5π M

−
x2

5π M
. (35)
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4.3. Generic case

Let us now prove that the preceding result is generic and that averaging in complex Kerr–Schild 3D space a generic
extreme spherical black hole leads to a black hole of finite temperature.
The normal form of the near-horizon metric of a generic extreme spherical black hole [25,26] reads, in Schwarzschild

coordinates (χ, ξ, θ, φ):

ds2 = f (r)dχ2 −
1
f (r)
dξ 2 − r2HdΓ

2, (36)

with

f (r) =
(
1−

r
rH

)2
, (37)

where rH is the horizon radius of the black hole. In Kerr–Schild coordinates, the same line element takes the form:

ds2 = dt2 − dr2 − (1− f (r))
(
dt −

r · dr
r

)2
. (38)

Let us proceed as above and introduce the ensemble of metrics:

ds2ω = dt
2
− dr2 − (1− f (R))

(
dt −

R · dr
R

)2
, (39)

where R(r,ω) = r− iω and ω ∈ Ba. Taking a uniform probability law for ω, the average metric reads, for a� rH2:〈
ds2
〉
= b1dt2 + b2dr2 + b3

(
r · dr
r

)2
+ b4

r · dr
r
dt, (40)

with

b1 = ε2 −
1
5
x2
(
1+ 2ε − 2ε2 + 2ε3

)
+ O

(
x4, ε4

)
, (41)

b2 = −1+
1
5
x2
(
1− 2ε + 2ε2 − 2ε3

)
+ O

(
x4, ε4

)
, (42)

b3 = −1+ ε2 +
4
5
x2
(
−1+ ε − ε2 + ε3

)
+ O

(
x4, ε4

)
, (43)

b4 = 2− 2ε2 +
4
5
x2 + O

(
x4, ε4

)
, (44)

where ε = s− 1, s = r/rH and x = a/rH . The radial Schwarzschild coordinate ρ of the mean metric near the horizon reads,
in terms of ε and x:

ρ(ε, x) = rH(1+ ε)+
rH
10
x2 (−1+ ε)+ O

(
x4, ε4

)
. (45)

The Schwarzschild components of the mean metric near the horizon are determined by

F(ε, x) = ε2 +
1
5
x2
(
−1− 2ε + 2ε2

)
+ O

(
x4, ε3

)
(46)

G(ε, x) =
1

F(ε, x)

(
4+

4
5
x2
(
1− 4ε + 4ε2

)
+ O

(
x4, ε3

))
. (47)

The horizon radius of the averaged metric is given by

sH(x) = 1+
1
√
5
x+

1
5
x2 + O

(
x3
)
, (48)

or, equivalently,

ρH(x) = rH

(
1+

1
√
5
x+

1
10
x2 + O

(
x3
))
. (49)

2 Expression is only valid near the horizon of the extreme black hole and the condition a � rH ensures that (t,R) remains close to this horizon for all
ω ∈ Ba .
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One then finds that the averaged black hole has a finite temperature given by:

T (x) =
x

2
√
5π rH

+ O
(
x2
)
. (50)

The scale for T is provided by rH and the dimensionless temperature rHT measures (in unit rH ) the imaginary extension of
the R degrees of freedom. Relation (35) now appears, at least at first order, as a particular case of (50), corresponding to
rH = M .

5. Energy and charge repartitions around the mean black hole

5.1. Mean stress-energy tensor

The mean metric ḡ defines a mean stress-energy tensor T̄ through Einstein equations. The Schwarzschild components
of this tensor can be evaluated exactly for every x < xmax and every s > s1(x); the obtained expressions are extremely
complicated and do not warrant reproduction in this article; approximate expressions valid at second order in x/s (at fixed
s) read:

8π T̄ τ
τ (s, x) =

1
M2s4

(
1−

2 x2

5s4

)
; (51)

8π T̄ ρ
ρ (s, x) =

1
M2s4

(
1+

4 x2

5s2
−
8 x2

5s3
+
2 x2

5s4

)
; (52)

8π T̄ θ
θ (s, x) = −

1
M2s4

(
1+

8 x2

5s2
−
28 x2

5s3
+
12 x2

5s4

)
; (53)

8π T̄
φ
φ (s, x) = 8π T̄ θ

θ (s, x). (54)

The component T̄ τ
τ is thematter energy density ε̄ outside the horizon [18]; it ismeasuredwith respect to the volumeelement√

− det ḡµνdρdθdφ, where
(
det ḡµν

)
stands for the determinant of the Schwarzschild components of ḡ . The opposites of T̄ ρ

ρ ,
T̄ θ
θ and T̄

φ
φ are interpreted as three different pressures pρ , pθ , pφ , oriented respectively in the ρ-direction, θ-direction and

φ-direction.

5.2. Stress-energy tensor of the mean electromagnetic field

It has been shown in Ref. [8] that the covariant components of the mean 4-potential Ā are: Āµ =
〈
Aµ(ω)

〉
. We do not give

here the exact expressions of all components, since someof these are extremely heavy;we remark instead that, by symmetry
of the original extreme Kerr–Schild space–time and of (Ω, dpω), the only non vanishing spherical Kerr–Schild components
of the averaged potential are Āt and Ār , and that these only depend on x and s, and not on the angular variables θ and φ. A
direct coordinate transformation then shows that (i) the only non vanishing Schwarzschild components of Ā are Āτ and Āρ
(ii) these components depend only on ρ. It follows from this that the only non-vanishing Schwarzschild components of the
electromagnetic tensor F̄ associated with Ā in ḡ are:

F̄τρ = −F̄ρτ = −∂ρ Āτ (55)

and that the only non-vanishing Schwarzschild components of the stress-energy tensor T (Ā, ḡ) associated with Ā in ḡ read:

T τ
τ (Ā, ḡ) = T ρ

ρ (Ā, ḡ) = −T θ
θ (Ā, ḡ) = −T

φ
φ (Ā, ḡ) =

1
8π

F̄ 2
τρ

F G
. (56)

A direct coordinate transformation shows that Āτ (ρ, x) = Āt(ρ−1(x, ρ), x) and a straightforward computation leads to
the exact result

Āt(s, x) =
1
s
. (57)

This, combined with the above relations and Eqs. (27) and (28), leads to the following approximate expressions for the
Schwarzschild components of both F̄ and T (Ā, ḡ), valid when x� s:

F̄τρ(s, x) ≈ −
1
M s2

(
1+

(
−
2
5 s
+

3
10 s2

)
x2

s2

)
(58)

and

T τ
τ (s, x) = T ρ

ρ (s, x) = −T θ
θ (s, x) = −T

φ
φ (s, x) =

1
8π M2s4

(
1−

4 x2

5s3
+
2 x2

5s4

)
. (59)
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Fig. 3. Evolution of the dimensionless energy density εapp ×M2 versus x and s− sH .

Fig. 4. Evolution of the dimensionless radial pressure pappρ ×M
2 versus x and s− sH .

5.3. Stress-energy tensor of the apparent matter

This stress-energy tensor is defined as the difference1T = T̄ − T (Ā, ḡ). Its non-vanishing Schwarzschild components
read, for x� s:

8π 1T τ
τ (s, x) =

4
5M2

(
1−

1
s

)
x2

s7
; (60)

8π 1T ρ
ρ(s, x) =

4
5M2

(
1−

1
s

)
x2

s6
; (61)

8π 1T θ
θ (s, x) = −

8
5M2

(
1−

3
s
+
5
4s2

)
x2

s6
; (62)

8π T̄
φ
φ (s, x) = 8π T̄ θ

θ (s, x). (63)

The exact dependance of εapp and pappρ on x and s is presented graphically in Fig. 3 and in Fig. 4. Note that εapp is always
positive and pappρ is always negative; a direct numerical computation reveals that pappθ = p

app
φ is positive at spatial infinity

(s→+∞).

5.4. Mean current density

The mean current density j̄ can be deduced from ḡ and Ā via Maxwell equation [27]

ḡµν j̄ν = −
1
4π
ḡνα∇̄αF̄µν, (64)
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Fig. 5. Evolution of the dimensionless mean current density j̄0 ×M2 versus x and s− sH ..

where ∇̄ stands for the covariant derivative operator associated to ḡ . The only non-vanishing Schwarzschild component is
j̄0, given by:

j̄0(s, x) =
1

4π F(s, x)G(s, x)

(
∂ρ

∂s

)−1 (
∂ρF̄τρ + F̄τρ

(
2
ρ
−
F ′(s, x)
2 F(s, x)

−
G′(s, x)
2G(s, x)

))
. (65)

This gives, for x� s:

j̄0(s, x) ≈ −
3

5πM2

(
1−

2
3s

)
x2

s6
. (66)

The component j̄0 represents the spatial charge density outside the horizon; a direct numerical calculation shows that j̄0 has
the opposite sign as the total charge M of the unaveraged black hole. The exact dependance of j̄0 in s and x is represented
in Fig. 5.

6. Global properties of the mean space–time

6.1. Total mass

One can easily see from (22), (27) and (28) that the mean space–time is asymptotically flat and, therefore, has a finite
total mass E . The energy E can be computed on a 2-sphere ∂S, boundary of a space-like hypersurface S, in the limit where
S is located at spatial infinity, that is when ρ →∞ [27]:

E(x) = −
1
8π

lim
ρ→∞

∫
∂S
εµναβ∇

αξβdSµν, (67)

which can be rewritten as:

E(x) =
1
4π

lim
ρ→∞

∫ 2π

0
dφ
∫ π

0
sin θ dθ ρ2nασβ∇αξβ . (68)

The vector field n is the unit time-like vector field normal to S. Its contravariant Schwarzschild components thus read:
nµ = (F(s, x)−1/2, 0, 0, 0). The vector field σ is the unit vector normal to ∂S, of contravariant Schwarzschild components:
σµ = (0,G(s, x)−1/2, 0, 0). Since ρ (Eq. (17)) is an increasing function of s for s > sH(x) > s1(x), the limit ρ → ∞ is
equivalent to s→∞. Eq. (68) thus becomes:

E(x) = lim
s→∞

ρ2(s, x)F ′(s, x)
2
√
F(s, x)G(s, x)

. (69)

Using the asymptotic expressions (26), (27) and (28) leads to E(x) = M . Thus, the averaging procedure developed in this
paper does change the repartition of energy but does not modify the total energy of the space–time.
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6.2. Total charge

The total charge is computed in a similar way. One has:

Q(x) =
1
8π

lim
ρ→∞

∫
∂S
εµναβFαβdSµν, (70)

which yields:

Q(x) =
1
4π

lim
ρ→∞

∫ 2π

0
dφ
∫ π

0
sin θ dθρ2

F̄τρ
√
F(s, x)G(s, x)

. (71)

We thus get, by proceeding in the same way as in the previous section:

Q(x) = lim
s→∞

ρ2 F̄τρ
√
F(s, x)G(s, x)

. (72)

Using the asymptotic expressions (26), (27) and (28) leads to Q(x) = M . The repartition of charge is modified by the
averaging procedure, but not the total charge.

7. Summary and discussion

7.1. Summary

A classical extreme black hole has a vanishing temperature. Extreme Reisner–Nordström black holes are exact solutions
of the Einstein–Maxwell equations; the black hole described by one of these solutions has a charge equal to the total mass of
the space–time and the only matter surrounding it is the electromagnetic field created by this charge. We have introduced
new statistical ensembles of classical extreme Reisner–Nordström black holes of identical mass and proved that each of
these ensembles describes a black hole of non-vanishing, finite temperature. This result is a particular case of a generic
property of extreme spherical black holes. The mean or averaged Reisner–Nordström black hole is surrounded by a mean
electromagnetic field and a so-called apparentmatter of anisotropic pressure tensor. Thismatter, which describes averaged-
out small scale fluctuations of the gravitational and electromagnetic fields, has also a non-vanishing charge. Thus, the energy
and charge repartitions in space–time are changed by statistical averaging. However, themean black hole has the same total
energy and charge as the unaveraged extreme black hole.

7.2. Discussion

The statistical ensembles used in this manuscript can be interpreted in two ways. The first interpretation views the
base manifold underlying the space–times in these ensembles as real and the metric as complex. The other interpretation
views each space–time of the ensemble as based on a complex manifold. The first interpretation is technically the simplest,
but the second one is conceptually more natural, especially in the context of black holes and, perhaps even more so, in
the context of black hole thermodynamics. Indeed, the simplest argument delivering Hawking’s temperature [12] is based
on the topology of the Euclidean analytic continuation of real black hole space–times; independently, general relativistic
complex space–times (including black holes) have been considered by various authors [4,15,5] and complex space–times
arise naturally in string theory [14,23] and in twistor theory as well [22].
As indicated in the introduction, black hole thermodynamics is currently understood [16] as a reflection that black holes

are macroscopic objects built out more fundamental ones describing quantum gravitational degrees of freedom. String
theory in particular considers a black hole as an assembly of strings and branes [14] and allows for an explicit computation
of the Hawking temperature and the Bekenstein entropy. This article presents an alternative point of view by proving that at
least some finite temperature black holes can be viewed as assemblies of classical (as opposed to quantum) objects, namely
classical extreme black holes of vanishing temperature. That all finite temperature classical black holes can be viewed as
assemblies of classical extreme black holes remains an open questionwhich should naturally be investigated. Onemight also
expect the calculations presented in this article to be susceptible of an interpretation in string theory; such an interpretation
will probably open new vistas on both classical mean gravitational field theory and string theory itself.
One of the general properties of the mean field theory [8,9,7] used in this article is that the mean space–times it

produces are endowed with an apparent matter that traces the averaged out small scale fluctuations of the gravitational
and electromagnetic fields. This property is confirmed by the computations presented above. The apparent matter is
characterized by a negative radial pressure. A negative pressure is perhaps themost striking feature of the cosmological dark
energy [21]. The results presented in this article thus add credibility to the hypothesis that at least part of the cosmological
dark energy might be understood as the large scale trace of the small scale fluctuations in the cosmological gravitational
field [1,10,3,2,17,19,20,24].
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