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In this paper, based on the principle of virtual work, we formulate the equivalent eigenstrain approach for
inhomogeneous inclusions. It allows calculating the elastic deformation of an arbitrarily connected and
shaped inhomogeneous inclusion, by replacing it with an equivalent homogeneous inclusion problem,
whose eigenstrain distribution is determined by an integral equation. The equivalent homogeneous
inclusion problem has an explicit solution in terms of a definite integral. The approach allows solving
the problems about inclusions of arbitrary shape, multiple inclusion problems, and lends itself to residual
stress analysis in non-uniform, heterogeneous media. The fundamental formulation introduced here will
find application in the mechanics of composites, inclusions, phase transformation analysis, plasticity,
fracture mechanics, etc.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Inhomogeneous inclusion refers to a given region (called inclu-
sion) in an infinite linear elastic space, and the region has elastic
properties that are different from the surroundings (called matrix).
Of interest are the elastic fields inside and outside region generated
by the prescribed eigenstrain in the region or by remotely applied
stresses. This problem is the so-called inhomogeneous inclusion
problem. If the elastic properties of the inclusion are identical to
the matrix ones, it degenerates to homogenous inclusion problem.
Due to its numerous valuable engineering applications in the prob-
lems such as thermal expansion, phase transformation, reinforcing
phases, material inhomogeneities, precipitates, defects, plastic
strain or misfit strain voids etc., the inhomogeneous problem has
become one of the most attractive topics of solid mechanics for
more than 50 years, and is the subject of constant studies (see,
e.g. Mindlin (1936), Goodier (1937), Mindlin and Cheng (1950),
Sen (1951), Eshelby (1957, 1959, 1961), Jaswon and Bhargava
(1961), Mori and Tanaka (1973), Willis (1981), Mura (1987), Ru
(1999, 2000, 2003), Andrianov et al. (2008), Zou et al. (2011),
Chen et al. (2011, 2014), etc. among them). Actually, hundreds of
references have been devoted to this study, which can be partly
found in the review papers by Mura and his co-workers (1988,
1996), Zhou et al. (2013) and the books by Christensen (1979),
Mura (1987) and Nemat-Nasser and Hori (1999).
The two classical papers by Eshelby (1957, 1959) generalized
the earlier episodic results pertaining to elliptical inhomogeneities
(e.g. Inglis, (1913)) by proving the uniform nature of the internal
strain field in all such inhomogeneities when the inclusion
eigenstrain is uniform. This powerful result laid the foundation
for systematic exploration of problems about inclusions in elastic
solids (see, e.g., Mori and Tanaka (1973), Hutchinson (1976) and
it is now commonly referred to as the Eshelby property. Inspirited
by Eshelby’s work and practically urgent need, great efforts have
been devoted to extend the problem to a more generalized one,
in which: (i) the inclusion can be of non-ellipsoidal shape and (ii)
the eigenstrain in the inclusion can be non-uniform. For the
homogenous inclusion problems, it can be said that this target
has been achieved with the Green’s function method or other tech-
niques (see e.g. Mura (1987), Ru (2000), Li and Anderson (2001),
Kuvshinov (2008), Ma (2010), Avazmohammadi et al. (2010), Zou
et al. (2011), Ma et al. (2013)). However, for the inhomogeneous
inclusion problems, the theoretical challenges are still there.

It should be mentioned that, to solve the inhomogeneous ellipsoi-
dal inclusion problems with prescribed uniform eigenstrain, the
equivalent inclusion method (EIM) was proposed by Eshelby
(1957) and reformulated by Mura (1987). This method establishes
that the inhomogeneous ellipsoidal inclusion problem can be
transformed into a homogeneous ellipsoidal inclusion problem.
Since the latter problem pertains to a homogeneous material, it
can be readily solved. The efficiency and elegance of the EIM has
meant that attempts have been made to study the more general
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inhomogeneous and non-ellipsoidal inclusion problems, although
the validity of extending the approach to such problems remains
the subject of theoretical research. Recently, Zheng and his
co-authors (Zheng et al., 2006; Zou et al., 2010) found that the
Eshelby’s tensor obtained via EIM for convex inclusions led to a
valid solution with small errors, while for non-convex inclusions
large errors were observed. Clearly, the appropriate theoretical
treatment for the inhomogeneous inclusion problems with non-
ellipsoidal shape and/or non-uniform eigenstrain is still needed
to be done.

This study aims to propose an all-rounded approach to treat the
inhomogeneity problems with non-ellipsoidal shape and/or non-
uniform eigenstrain. It should be explained that we deliberately
title this study with the equivalent eigenstrain principle in order to
distinguish it from Eshelby’s cutting-straining-re-welding tech-
nique and the associated EIM. The present derivation based on
the principle of virtual work may have wide applications to
arbitrarily shaped inclusions, multiple inclusions, arbitrary non-
uniform residual strain distributions, etc.

The structure of this study is as follows: in Section 2, the basic
equations are presented for next use. In Section 3, the principle of
equivalent eigenstrain is initially discussed and the procedure of
equivalence transformation of homogeneity-to-inhomogeneity is
performed. In Section 4 the principle of equivalent eigenstrain is
further studied and the equivalence transformation of inhomoge-
neity-to-homogeneity with consideration of residual strain in the
inhomogeneity is studied. Subsequently, in Section 5, with consid-
eration of both residual strain in inhomogeneity and far-field load,
the equivalence transformation of inhomogeneity-to-homogeneity
problem is studied. In Section 6, the implementation of the princi-
ple is explained and a simple example is given for demonstrating
the application. In Section 7, the conclusions are addressed.
2. Elementary knowledge of inclusion mechanics

In this section, the field equations for the elasticity theory with
particular reference to solving eigenstrain problems will be
reviewed. It includes Hooke’s law, equilibrium conditions, and
compatibility condition, as well as the solution for homogenous
inclusion problems.
Fig. 1. A homogeneous inclusion in an infinite elastic solid. The material properties
of matrix and inclusion are identical.
2.1. Hooke’s law and compatibility condition

For infinitesimal deformations, the total strain eij is regarded as
the sum of the elastic strain eij and eigenstrain e�ij

eij ¼ eij þ e�ij ð2:1Þ

The total strain eij must be compatible and in terms of displace-
ment ui,

eij ¼ ðui;j þ uj;iÞ=2 ð2:2Þ

The elastic strain is related to stress rij by Hooke’s law,

rij ¼ Cijklekl ¼ Cijklðekl � e�klÞ ¼ Cijklðuk;l � e�klÞ ð2:3Þ

where Cijkl are the elastic moduli and the summation convention for
the repeated indices is employed. Since Cijkl ¼ Cijlk, we have
Cijkluk;l ¼ Cijklul;k. In the region where e�kl ¼ 0, Eq. (2.3) becomes:

rij ¼ Cijklekl ¼ Cijkluk;l ð2:4Þ

The inverse expression of (2.3) is

ðeij � e�ijÞ ¼ C�1
ijklrkl ¼ Sijklrkl ð2:5Þ

where Sijkl ¼ C�1
ijkl is the elastic compliance.
2.2. Equilibrium conditions

The equations of equilibrium are

rij;j þ f i ¼ 0; i ¼ 1;2;3 ð2:6Þ

where f i is body force. The boundary conditions for external surface
forces Ti are

Ti ¼ rijnj; ð2:7Þ

where nj is the exterior unit normal vector on the boundary of the
body.

2.3. Solution for homogenous inclusion by Green’s function method

A homogeneous inclusion is embedded in an infinite solid (see
Fig. 1). If the profile of the inclusion is given, without going to
details, then its deformation field can be obtained through Green’s
function method as follows:

2.3.1. 3-D inclusion (Mura, 1987)
The displacement field in the inclusion will be

uiðxÞ ¼ �
Z 1

�1
Cjlmne�mnðx0ÞGij;lðx� x0Þdx0; x 2 X ð2:8Þ

where the function Gijðx� x0Þ is Green’s function and sometimes it
is called the influence function. It has Gij;lðx� x0Þ ¼ @

@xl
Gijðx� x0Þ ¼

� @
@x0

l
Gijðx� x0Þ. The corresponding expressions for the strain and

stress are as follows (Mura, 1987)

eijðxÞ ¼ �
1
2

Z 1

�1
Cklmne�mnðx0Þ Gik;ljðx� x0Þ þ Gjk;liðx� x0Þ

� �
dx0 ð2:9Þ

and

rijðxÞ¼Cijkl

Z 1

�1
Cpqmn Gkp;qnðx�x0Þe�mlðx0Þ�Gkp;qlðx�x0Þe�mnðx0Þ

� �
dx0

ð2:10Þ

For the isotropic materials, the expression of the Green’s function is

Gijðx� x0Þ ¼ 1
4pl

dij

jx� x0j �
1

16plð1� mÞ
@2

@xi@xj
jx� x0j ð2:11Þ

where dij is the Kronecker delta, jx� x0j2 ¼ ðxi � x0iÞðxi � x0iÞ;l is the
material’s shear modulus, m is material’s Poisson ratio. Solution
(2.11) was found by Lord Kelvin.

2.3.2. 2-D inclusion
Similarly, we can get the deformation field for the two-dimen-

sional problem with Green’s function method (see, Mura (1987),
Ru (1999), Ma (2010), Ma et al. (2013)). Since its expression is a
bit complex and lengthy, for simplicity, we will not list it here
but it can be found in the above listed references.
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In all, the homogeneous inclusion problems, in theory, are solv-
able with Green’s function method.

3. The principle of equivalent eigenstrain: equivalence
transformation from homogeneity to inhomogeneity

Theorem 1. The material, of an arbitrary region X within a
homogenous body under far-field load, can be replaced by an
inhomogeneous material accompanying an eigenstrain distribution
in it. The stress and total strain distributions in the body do not change.

The principle of virtual work will be used to prove this theorem,
which can be expressed asZ

v
f iduidv þ

Z
s

Tiduids ¼
Z

v
rijdeijdv ð3:1Þ

where f i is body force. dui and deij are the virtual displacement and
strain.

In the following, we will prove the Theorem 1. Assume that
there are two systems as shown in Fig. 2 (a) and (b). Fig. 2 (a) is
the original homogenous inclusion problem and Fig. 2(b) is the
counterpart virtual inhomogeneous inclusion problem. The shape
of the inclusion can be arbitrary. Two systems are identical except
the inclusion regions. We imaginarily cut out the inclusion regions
from the corresponding systems as shown in Fig. 2. For the inclu-
sion regions (a) and (b), the principle of virtual work for them
can be written, respectively, asZ

v
f iduidv þ

Z
s

Tiduids¼
Z

v
rijdeijdv for the region X in ðaÞ ð3:2Þ

Z
v

f �i duidv þ
Z

s
T�i duids ¼

Z
v
r�ijdeijdv for the region X in ð3:3Þ
Fig. 2. The principle of equivalent eigenstrain: transformation from homogeneity to in
virtual inhomogeneous inclusion system.
where f i; Ti; rij are the body force, boundary traction, and stress of
the inclusion (a), and f �i ; T�i ; r�ij are the body force, boundary trac-
tion, and stress of the inclusion (b); dui; deij are virtual displace-
ments and strains respectively. Eq. (3.2) minus (3.3) givesZ

v
ðf i � f �i Þduidv þ

Z
s
ðTi � T�i Þduids ¼

Z
v
ðrij � r�ijÞdeijdv ð3:4Þ

Enforcing f i ¼ f �i ; Ti ¼ T�i , and because deij can be of any value,
Eq. (3.4) implies that the stresses in the two inclusions are identical
as

rij ¼ r�ij ð3:5Þ

From the above manipulation, it can be also found that the
identical inclusion boundary traction will lead identical stress dis-
tribution in entire two systems (a) and (b) indeed. We know that

rij ¼ Cijklekl for region X in system ðaÞ ð3:6Þ

r�ij ¼ C�ijklðekl � e0
klÞ for region X in system ðbÞ ð3:7Þ

where Cijkl is the elastic constant of homogeneous inclusion and
matrix, eij in (3.6) and (3.7) is the total strain; e0

kl is the imaginary
eigenstrain in X of (b) to be specified, C�ijkl is the pre-given elastic
constant of inhomogeneous inclusion.

It should be explained here again that: (i) the identical tractions
at the inclusion boundary for both systems (f i ¼ f �i ; Ti ¼ T�i ) guar-
antees the stress states in the two systems identical; (ii) Identity
of total strain eij in (3.6) and (3.7), indeed, is a nature requirement
for displacement identity in regions X of (a) and (b). So that, under
the identical boundary traction and body force in (b) and (a), the
elastic deformation difference due to different elastic constants
of the inclusions can be compensated by distributing appropriate
eigenstrain e0

kl in X of (b). Inserting (3.6) and (3.7) into (3.5) leads
homogeneity. (a) The original homogeneous inclusion system, (b) the counterpart
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Cijklekl ¼ C�ijklðekl � e0
klÞ ð3:8Þ

Then the eigenstrain e0
kl in X of (b) is obtained as

e0
ij ¼ S�ijklðC

�
klpq � CklpqÞepq ð3:9Þ

In other words, if the eigenstrain is prescribed by Eq. (3.9), the
deformation in system (b) will be completely identical to system
(a). This is the equivalence transformation from homogeneity to
inhomogeneity. Strain e0

ij is named as equivalent eigenstrain in this
paper. Up to now, the Theorem 1 has been proved.

If epq in Eq. (3.9) is a uniform strain due to remote load, we
denote it as e1pq. Thus under uniform load in Fig. 2 (a), the equiva-
lent eigenstrain distribution required in (b) will be uniform, as

e0
ij ¼ S�ijklðC

�
klpq � CklpqÞe1pq ð3:10Þ

We should keep in mind that Eq. (3.10) holds for any shape
inclusion. This result will be used later.

4. The principle of equivalent eigenstrain: equivalence
transformation from inhomogeneity to homogeneity

Theorem 2. An arbitrary inhomogeneous inclusion X, with residual
strain embedded within a homogenous body, can be equaled by a
homogeneous material identical to matrix material accompanying an
equivalent eigenstrain distribution in it. The stress and total strain
distributions in the body do not change.
As before, the Theorem 2 can be proved in the following. Sup-
pose that two systems as shown in Fig. 3 (a) and (b) are identical
except the inclusion regions. Fig. 3 (a) is the original inhomoge-
neous inclusion system, and Fig. 3 (b) is the counterpart virtual
homogeneous inclusion system. We imaginarily cut out the inclu-
sion regions from the corresponding systems. For the inclusion
regions (a) and (b), the principle of virtual work for them can be
written respectively asZ

v
f �i duidv þ

Z
s

T�i duids¼
Z

v
r�ijdeijdvfor the region X in ðaÞ ð4:1Þ

Z
v

f iduidvþ
Z

s
Tiduids¼

Z
v
rijdeijdv for the region X in ðbÞ ð4:2Þ

where dui; deij are virtual displacements and strains respectively.
Again, subtraction of (4.1) from (4.2) givesZ

v
ðf i � f �i Þduidv þ

Z
s
ðTi � T�i Þduids ¼

Z
v
ðrij � r�ijÞdeijdv ð4:3Þ

Enforcing f i ¼ f �i ; Ti ¼ T�i , and since deij can be of any value,
Eq. (4.3) spontaneously implies

r�ij ¼ rij ð4:4Þ

We know that

r�ij ¼ C�ijklðekl � e�klÞ for region X in system ðaÞ ð4:5Þ

rij ¼ Cijklðekl � e0
klÞ for region X in systemðbÞ ð4:6Þ

where e�kl is the real residual strain in X of (a), e0
kl is the equivalent

eigenstrain in X of (b), and ekl is the total strain in (4.5) and (4.6),
C�ijkl is the elastic constant of the inhomogeneous inclusion, Cijkl is
the elastic constant of the homogeneous inclusion and matrix. Sim-
ilarly, condition f i ¼ f �i ; Ti ¼ T�i guarantees the stress states identi-
cal in two systems (a) and (b). The total strains eij in (4.5) and
(4.6) are identical, which is a nature requirement for displacement
identity in X of both systems. Thus, under identical boundary trac-
tion and body force, the total deformation of the inhomogeneous
inclusion in system (a) is equaled to the one in system (b) by dis-
tributing an appropriate equivalent eigenstrain e0

kl. In other words,
the inhomogeneous inclusion in system (a) can be transformed into
the corresponding homogeneous inclusion in system (b) with
appropriate equivalent eigenstrain e0

kl. Inserting (4.5) and (4.6) into
(4.4) leads

C�ijklðekl � e�klÞ ¼ Cijklðekl � e0
klÞ ð4:7Þ

Then the equivalent eigenstrain e0
kl in X of (b) is

e0
ij ¼ SijklðCklpq � C�klpqÞepq þ SijklC

�
klpqe

�
pq in X ð4:8Þ

When the equivalent eigenstrain e0
ij is prescribed according to

(4.8), one can get the deformation state in system (a) by alterna-
tively analyzing the stress state in the homogeneous inclusion sys-
tem (b). Since the system (b) is a homogenous inclusion problem,
as mentioned in Section 1, it is theoretically solvable. Up to now,
the Theorem 2 has been proved.

Additionally, it should be noted that the total strain epq in
Eq. (4.8) can be expressed in terms of an integral function of
eigenstrain e0

ij according to Eq. (2.9) as,

epqðxÞ ¼ �
1
2

Z 1

�1
Cklije0

ijðx0Þ Gpk;lqðx� x0Þ þ Gqk;lpðx� x0Þ
� �

dx0 ð4:9Þ

For simplicity, we denote (4.9) as

epq ¼ Fpqðe0
ijÞ ð4:10Þ

It can be formulated by Green’s function method. So, we may
rewrite Eq. (4.8) as

e0
ij ¼ SijklðCklpq � C�klpqÞ � Fpqðe0

ijÞ þ SijklC
�
klpqe

�
pq ð4:11Þ

Eq. (4.11) is an equation for solving e0
ij. Once we obtain e0

ij, and
the total strain eij is known through (4.9), the stress field in the
inhomogeneous inclusion can be evaluated as

rij ¼ Cijklðekl � e0
klÞ in X ð4:12Þ

and

rij ¼ Cijklekl in D-X ð4:13Þ

This procedure is the equivalence transformation from inhomo-
geneity to homogeneity.

5. The principle of equivalent eigenstrain: inclusion with
residual strain and far-field load

5.1. Inhomogeneous inclusion under far-field load

In this sub-section we study the inhomogeneous inclusion
problem under far-field load. As before, we consider two systems
as shown in Fig. 4(a) and (b), and they are identical except the
inclusion regions. Fig. 4(a) is the original inhomogeneous inclusion
problem, and Fig. 4(b) is the counterpart virtual homogeneous
inclusion problem. First, let’s suppose the stress distribution and
total deformation in two systems are complete identical, and we
try to find the equivalent eigenstrain e0

ij in system (b) in order to
get the solution of Fig. 4(a).

The homogeneous inclusion problem in Fig. 4(b) can be decom-
posed into two subproblems: a homogenous inclusion problem
with uniform remote load as shown in Fig. 5(a) and a homogenous
inclusion problem with residual strain in it as shown in Fig. 5(b).
Correspondingly, the problem Fig. 4(a) can be also decomposed
into two subproblems: an inhomogeneous inclusion problem with
uniform remote load and a residual strain eb

ij as shown Fig. 5(A) and
an inhomogeneous inclusion problem only with a residual strain
�eb

ij as shown Fig. 5(B).



Fig. 3. The principle of equivalent eigenstrain: Transformation from inhomogeneity to homogeneity. (a) Original inhomogeneous inclusion system, (b) counterpart virtual
homogeneous inclusion system.
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The solution of subproblem in Fig. 5(a) is uniform and can be
denoted as r1ij and e1ij . To solve the subproblem in Fig. 5(b) is a
bit complex. The equivalent eigenstrain e0

ij in Fig. 5(b) can be solved
in the following steps, where the solutions of subproblems in
Fig. 5(A) and Fig. 5(B) will be employed:

(i) Employing Theorem 1 in Section 3, we perform equivalence
transformation from homogeneity to inhomogeneity shown
from Fig. 5(a) to Fig. 5(A) by Eq. (3.10), and a transition
equivalent eigenstrain eb

ij in Fig. 5 (A) is
Fig. 4.
inclusio
eb
ij ¼ S�ijklðC

�
klpq � CklpqÞe1pq ð5:1Þ
(ii) Based on the superposition principle, we deliberately set
inhomogeneous inclusion shown in Fig. 5(B) with residual
strain �eb

ij to counteract the residual strain eb
ij in Fig. 5(A)

to satisfy the original problem of Fig. 4(a). Then, employing
An inhomogeneous inclusion under far-field load. (a) Original inhomogeneous in
n system with equivalent eigenstrain.
Theorem 2 in Section 4, we perform equivalent
transformation from inhomogeneity to homogeneity shown
from Fig. 5(B) to Fig. 5(b) by virtue of Eq. (4.8). Namely,
replacing e�ij in Eq. (4.8) with �eb

ij, we get e0
ij in Fig. 5(b) as

e0
ij ¼ SijklðCklpq � C�klpqÞepq � SijklC

�
klpqe

b
pq ð5:2Þ

For the homogenous inclusion problem in Fig. 5(b), the total
strain epq in (5.2) is an integral function of only equivalent eigen-
strain e0

ij as Eq.(4.9), denoted as

epq ¼ Fpqðe0
ijÞ ð5:3Þ

Now, inserting (5.1) into (5.2) we get

e0
ij ¼ Sijkl Cklpq � C�klpq

� �
epq þ Sijkl Cklpq � C�klpq

� �
e1pq ð5:4Þ
clusion system (with no residual strain), (b) the counterpart virtual homogeneous



Fig. 5. Superposition principles to the problems in Fig. 4. Problem in Fig. 4(b) can be decomposed into sub-problems: Fig 5 (a) + Fig. 5 (b); Problem in Fig. 4(a) can be
decomposed into sub-problems: Fig 5 (A) + Fig. 5 (B).
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This is the equivalence eigenstrain for the counterpart virtual
homogeneous inclusion problem in Fig. 4(b). In other words, by
the above manipulation, we have transformed the original inho-
mogeneous inclusion problem shown in Fig. 4(a) into the homoge-
neous inclusion problem shown Fig. 4(b).

Eq. (5.4) is an equation for unknown variable e0
ij. Once it is

solved from (5.4), we can get the stress field in the inhomogeneous
inclusion in Fig. 4(a) by superposing the solutions of the two
subproblems shown in Fig. 5(a) and (b) as

rij ¼ Cijklðekl � e0
klÞ þ Cijkle1kl in X ð5:5Þ

and

rij ¼ Cijklekl þ Cijkle1kl in D�X ð5:6Þ

It should be pointed out that in this sub-section we studied the
situation where there is no real residual strain in Fig. 4(a). Indeed,
the expression (5.4) can be directly obtained from Eq. (4.8), in
which we just extract the far-field load contribution e1ij from the
total strain epq and let new epq represent the contributions from
the real residual strain (here we suppose e�pq ¼ 0 in (4.8)). Further-
more, compared with the second term at the right hand in Eq. (4.8),
it can be found that the far-field uniform load in Eq. (5.4) plays a
similar uniform eigenstrain role for any shape inhomogeneous
inclusion problems.

5.2. An inhomogeneous inclusion with residual strain and also under
far-field load

In this sub-section we study the inhomogeneous inclusion
problem, as shown in Fig. 6(a), under far-field load and with the
residual strain in the inclusion.
In the same way, the equivalent eigenstrain e0
ij in Fig. 6(b) due to

the presence of both residual strain e�ij and far-field load in Fig. 6(a)
can be directly obtained by superposition of previous solutions in
the framework of linear mechanics as

e0
ij ¼ SijklðCklpq � C�klpqÞepq þ SijklðCklpq � C�klpqÞe1pq þ SijklC

�
klpqe

�
pq ð5:7Þ

where epq is merely an integral function of the equivalent eigen-
strain e0

ij as Eq. (4.9).
Equation (5.7) indeed transforms the inhomogeneous inclusion

problems in Fig. 6(a) into the homogenous inclusion problems in
Fig. 6(b). Once e0

ij is solved from (5.7) with (4.9), the stress state
in the inhomogeneous inclusion will be

rij ¼ Cijklðekl � e0
klÞ þ Cijkle1kl in X ð5:8Þ

and the stress state outside of the inhomogeneous inclusion will be

rij ¼ Cijklekl þ Cijkle1kl in D�X: ð5:9Þ
6. Implementation

In this section, the numerical implementation is discussed and a
simple example is provided in order to demonstrate its procedure.

6.1. The general form for implementation

Here, let’s consider an inhomogeneous inclusion embedded in
an infinite solid as shown in Fig. 7. The known residual strain
e�mnðxÞ in the inclusion is non-uniform, and the whole system is
under far-field load r1ij ðe1ij ). Then equivalent eigenstrain can be
calculated as follows.

First we rewrite Eq. (2.9) as



Fig. 6. An inhomogeneous inclusion with residual strain in it and under far-field load. (a) The original inhomogeneous inclusion system (with residual strain), (b) The
counterpart virtual homogeneous inclusion system with equivalent eigenstrain.

Fig. 7. An inhomogeneous inclusion embedded in an infinite solid with non-
uniform residual strain in it and also under far-field load.
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eijðxÞ ¼
Z

X
Cklmne0

mnðx0ÞKijklðx� x0Þdx0 ð6:1Þ

where e0
mnðxÞ is the equivalent eigenstrain to be solved and

Kijklðx� x0Þ ¼ �1
2

Gik;ljðx� x0Þ þ Gjk;liðx� x0Þ
� �

ð6:2Þ

Inserting (6.1) into (5.7), we get

e0
ijðxÞ ¼ SijklðCklpq � C�klpqÞ

Z
X

Crsmne0
mnðx0ÞKpqrsðx� x0Þdx0

þ SijklðCklpq � C�klpqÞe1pq þ SijklC
�
klpqe

�
pqðxÞ; x 2 X ð6:3Þ

Eq. (6.3) is an equation for solving the unknown equivalent
strain e0

ijðxÞ. After it is solved, and by inserting it into Eqs. (5.8)
and (5.9), the stress state of the inhomogeneous inclusion system
is obtained.

It should be pointed out that since Eq. (6.3) is a singular linear
integral equation indeed and it is theoretically solvable. For exam-
ple, some closed solution for the equivalent eigenstrain e0

ijðxÞ can
be obtained by Fourier transform approach (Mura, 1987; Ma
et al., 2012). However, during practical application, it is still diffi-
cult to get their explicit solutions since the inhomogeneous inclu-
sions may have irregular shape, and numerical calculation possibly
has to be performed. The numerical quadratures for solving (6.3)
for the 1-D, 2-D and 3-D cases, respectively, are the next step
research topics. In this paper, our study is limited to theoretical
basis for treating inhomogeneous inclusion problems. The aspects
on numerically solving (6.3) will be presented later elsewhere.
Additionally, it should be noted that even though e�pqðxÞ is a uni-
form distribution in (6.3), e0

ijðxÞ is unlikely to be uniform due to
the arbitrary inclusion’s profile. The Eshelby’s tensor, it is even
harder to be constant for inhomogeneous inclusion problems.
The solution of Eshelby’s inhomogeneous ellipsoidal inclusion is
a very special one which has exceptional properties.

6.2. A simple example: stresses induced by an inhomogeneous sphere
embedded in an infinite 3-D solid

We intend to provide a simple example to further demonstrate
how to implement the formulae obtained in this paper, and also to
validate the theoretical results. For simplicity and clearness, an
inhomogeneous sphere embedded in an infinite solid with nominal
interference fit strain e� ¼ D=a as shown in Fig. 8 is studied, assum-
ing that both material#1 and material#2 are dissimilar and
isotropic.

The nominal residual strain in Fig. 8 is
e�ij ¼ dije� ¼ dijD=a in X ð6:4Þ

From Eq. (4.8), we know that

Cijmle0
ml ¼ ðCijml � C�ijmlÞeml þ C�ijmle

�
ml in X ð6:5Þ

For isotropic materials, the anisotropic elastic constant can be
expressed in terms of the Lamé constants kðk�) and l (l�) as

Cijml ¼ kdijdml þ lðdimdjl þ dildjmÞ for material#1
C�ijml ¼ k�dijdml þ l�ðdimdjl þ dildjmÞ for material#2

(
ð6:6Þ

Inserting (6.6) into (6.5) leads

kdije0
mm þ 2le0

ij ¼ ½ðk� k�Þdijemm þ 2ðl� l�Þeij� þ ðk�dije�mm

þ 2l�e�ijÞ in X ð6:7Þ

Since this is a sphere polar symmetric problem and the nominal
residual strain is expressed in terms of (6.4), we may write the
equivalent eigenstrain e0

ij and total strain eij, respectively, as

e0
ij ¼ dije0; eij ¼ dije ð6:8Þ

Thus Eq. (6.7) can be rewritten as

ð3kþ 2lÞe0 ¼ ½3ðk� k�Þ þ 2ðl� l�Þ�eþ ð3k� þ 2l�Þe� in X ð6:9Þ



Fig. 8. An inhomogeneous sphere embedded in an infinite solid with nominal
interference fit strain e� ¼ D=a.
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in which e is a function of e0 as the form of Eq. (4.9), and it can be
found with Eq. (6.1) as (Mura, 1987)

e ¼ ð1þ mÞ
3ð1� mÞ e0 ¼ ce0in X ð6:10Þ

Then, e0 can be explicitly resolved from (6.9) as

e0 ¼
ð3k� þ 2l�Þ

fð3kþ 2lÞð1� cÞ þ ð3k� þ 2l�Þcg e
� ð6:11Þ

So the stress in the inclusion can be evaluated with (4.12), (6.8)
and (6.11) as

rij ¼ Cijmlðeml � e0
mlÞ ¼ ½kdijdml þ lðdimdjl þ dildjmÞ�ðeml � e0

mlÞ
¼ ð3kþ 2lÞdijðe� e0Þ ¼ ð3kþ 2lÞdijðc � 1Þe0

¼ �dij
ð3k� þ 2l�Þ4l
½4lþ ð3k� þ 2l�Þ� e

� ð6:12Þ

This solution can be found in elastic mechanics text books,
which is derived by other method.

This example not only may provide a simple demonstration of
the application of the results obtained in this paper, but also may
partially validate the manipulations in the previous sections.
7. Remarking conclusion

The principle of equivalent eigenstrain for inhomogeneous
inclusion problems has been proposed based on the principle of
virtual work. It enables the inhomogeneous inclusion problems
to be transformed into homogenous inclusion problems whose
solutions are maturely studied. A simple example for interference
fit has been provided. It demonstrates that the fundamental formu-
lation proposed in this paper may pave the way to a systematic
study of inhomogeneous inclusion problems. The formulation
allows solving the problems about inclusions of arbitrary shape,
multiple inclusion problems, and lends itself to residual stress
analysis in non-uniform, heterogeneous media. It is expected to
apply in the mechanics of composites, inclusions, phase transfor-
mation analysis, plasticity, fracture mechanics, etc.
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