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It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the 
greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and 
heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in 
addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady 
model and the semi-analytical model are believed to be three advanced models predominant in 
the literature. The unsteady and the quasi-static models share the merits of having explicit fluid 
force expressions and ease of being implemented but require more experimental inputs, whereas 
the semi-analytical model requires fewer parameters due to its analytical nature but is hard, if 
not prohibitive, to derive explicit fluid force expressions. Since the fluid force formulations set in 
the core of development of FEI models, the understanding and in particular the implementation 
of the semi-analytical model has been impaired by the nonexistence of explicit fluid force 
expression. This issue becomes more profound in time-domain analysis whereby the simple 
harmonic assumption is discarded. Here we report a new semi-analytical time-domain (SATD) 
FEI model with explicit fluid force expressions. The new model allows a consistent frequency-

domain stability analysis and more importantly a truly time-domain response analysis. The 
theory was validated by calculating linear stability thresholds of two typical tube array patterns 
and comparing against reported experimental data. We then present a nonlinear time-domain 
analysis of a single loosely-supported tube with piece-wise linear stiffness. The nonlinear and 
nonsmooth dynamics was probed in details by utilizing various techniques, playing an emphasis 
on characterizing and distinguishing the chaotic vibration. We found that the system follows 
a quasi-periodic route to chaos. Such an in-depth study of the nonlinear dynamics of tubes in 
crossflow has never been reported in the context of SATD model. Our results enrich the theory 
and provide a different approach for linear and nonlinear dynamics of tube bundles, which are 
essential for the subsequent fretting wear analysis.
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1. Introduction

The elegant model of cylindrical tubes or rods subjected to axial or crossflow represents the flow-induced vibrations (FIV) of 
a wide range of components and structures, like steam generators, heat exchangers, fluid-conveying pipes and transmission lines. 
In particular, FIV has long been considered as an integral part of design of nuclear plant in the same sense as reactor physics and 
thermohydraulics [1]. Excessive FIV would cause fatigue cracks and fretting wear damage of components, constituting a particular 
concern for stream generators and nuclear fuels. Considerable progress has been achieved in the past decades. The review papers by 
Blevins [2], Paidoussis [1,3], Pettigrew et al. [4,5], Weaver and Fitzpatrick [6], and Price [7], as well as monographs by Chen [8], 
Paidoussis [9,10], Au-Yang [11–13] provide excellent reviews on this field. Great efforts have been dedicated to FIV problems, and 
the main mechanisms of FIV have been elucidated to include turbulent buffetting, vortex shedding, fluidelastic instability (FEI) and 
acoustic resonance. FEI, among these mechanisms, is of the greatest concern for destructive damage of steam generators and heat 
exchangers.

Because of its destructive nature of FEI, extensive researches, both experimental and theoretical, have been carried out, aiming at 
understanding mechanism of FEI and deriving guidelines for engineering design. Despite some progress, the underlying mechanism 
of FEI remains puzzling due to the complicated nature of the problem, and it remains a sought-after task to develop FEI models 
to interpret experiment phenomena, and more importantly, to perform predictive designs and diagnosing analyses. A range of FEI 
models have been developed over the last 50 years to predict FEI thresholds and the associated post-instability responses, focusing 
largely on crossflow, single and two-phase flow. Having an appropriate FEI model, one can perform FEI analysis of a tube bundle 
given flow conditions, tube array pattern, mass and structural parameters of the tubes, etc. The FEI analysis can be either frequency-

domain stability analysis or time-domain dynamic response analysis, or both. The difference between these two types of analysis 
can be understood as follows. A frequency-domain analysis is essentially a linear perturbation analysis, thus it adopts the harmonic 
solution assumption and it determines the stability threshold. Frequency-domain analysis is performed in the frequency domain, and 
the stability conditions are attained by performing an eigenvalue analysis of the FIV system and then evaluating the sign of the real 
part of the complex frequency. Time-domain analysis aims to obtain the time history of the vibration system, which is crucial for 
fatigue life prediction and fretting wear evaluation. Of course, by observing the convergent or divergent property of the time-history, 
the critical conditions for the onset of FEI can also be attained readily through a time-domain analysis. In this sense, time-domain 
analysis is more generic than frequency-domain analysis. Moreover, the frequency-domain analysis is a linear stability analysis and 
valid only for linear systems, whereas time-domain analysis works for either linear or nonlinear systems.

In the early stage of study on the FEI of tube bundles, attention was paid to prevention design and several semi-empirical 
models were developed exclusively for frequency-domain analysis, and these models are sometimes called frequency-domain FEI 
models. These frequency-domain models include the Jet-switch model by Roberts [14], the quasi-static model by Connors and by 

Blevins [15–17]. These semi-empirical models, such as the well-known Connors’ equation, 𝑈𝑐

𝑓𝑛𝐷
= 𝐾

(
𝑚𝛿

𝜌𝐷2

)0.5
, gives an analytical 

expression on critical reduced velocity, 𝑈𝑐

𝑓𝑛𝐷
, against mass-damping-parameter (MDP), 𝑚𝛿

𝜌𝐷2 , where 𝑓𝑛 is the tube natural frequency, 
𝐷 is the tube diameter, 𝑚 is the tube mass per unit length, 𝛿 is the logarithmic decrement of damping, 𝜌 is the fluid density, 𝐾 is a 
constant determined from experiment. The Connors’ equation was widely used in engineering practice due to its simplicity and has 
achieved some success. Nevertheless, the Connors’ formula was originally derived for a single row of cylinders, and its extension to 
tube arrays as well as the choice of reasonable value of Connors constant 𝐾 causes controversy. Very recently, Shinde et al. [18]

proposed a new theoretical model and applied it for FEI analysis of normal-square and other tube arrays, and good agreement was 
achieved. The model looks similar to the Connors’ equation, but it incorporates the contribution of mechanical impedance with 
the constant of proportionality being expressed as a function of Euler number. To overcome the deficiency of quasi-static models, 
several quasi-steady or unsteady models have been proposed. These include the unsteady FEI model by Tanka and Takahara [19,20], 
and the unsteady model by Chen [8,21–23], the quasi-steady model by Price and Paidoussis [24,25] and the semi-analytical model 
by Lever and Weaver [26–28] and Yetisir and Weaver [29–32]. Although the unsteady model seems to be the most complete in 
theory, it is, in practice, difficult to use because there are extensive unsteady fluid force coefficients required to be determined 
through experiment. The semi-analytical model was derived analytically from the first principles of unsteady flow mechanics, and 
thus uses fewer experimental inputs as compared to the unsteady model and the quasi-steady model. The quasi-steady model can be 
regarded as a compromise between the unsteady model and the semi-analytical model. The unsteady and the quasi-steady model are 
coefficient-based models with explicit expression of fluid force, whereas it is not available in the semi-analytical model to date. In 
addition, the theory of the quasi-steady model and the semi-analytical model also accounts for the importance of time delay or phase 
lag in FEI. As mentioned, in the early stage of FEI study, all these models were used for frequency-domain analysis.

The frequency-domain analysis discussed above can only be used to predict the threshold of FEI. Investigators have been interested 
in post-instability dynamics of tube arrays, which is crucial for fatigue analysis and fretting-wear simulation. In steam generators or 
heat exchangers, the tubes are loosely supported by tube support plates (TSP) or sometimes constrained by anti-vibration bars (AVB). 
The clearance between the tube and the support as well as the one-sided vibration constraint gives rise to structural nonlinearity 
coupled to fluid-structure interaction. This makes the problem more challenging, and necessitates the need for performing nonlinear 
time-domain analysis. Fricker [33] derived a destabilizing fluid force expression based on the Connors’ quasi-static model and 
employed the fluid force to model the dynamics of a tube loosely supported by an AVB. Fricker also implemented the fluid force into 
the finite element method (FEM) to model nonlinear dynamics of U-tubes in steam generators [34]. Eisinger et al. [35] incorporated 
frequency-dependent fluid forces derived from the unsteady FEI model by Chen into ABAQUS, and simulated the dynamic response 
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of a U-tube with clearance at supports. Sawadogo and Mureithi [36,37] implemented the fluid force equation using the quasi-steady 
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model into a user subroutine UEL in ABAQUS for two-phase crossflow. Piteau et al. [38] investigated the vibro-impact responses of 
loosely-supported tubes subjected to turbulence force and fluid force using the unsteady model of Tanaka and Takahara [20]. All 
the above-Mentioned time-domain analyses stick to a fundamental assumption that the vibration is simply harmonic, thus giving 
a frequency-dependent fluid force. The single harmonic assumption also dramatically simplifies the incorporation of time-delay 
or phase lag. The two merits of harmonic approximation make the FEI analysis achievable. The harmonic solution assumption, 
however, is rigorously accurate only in the vicinity of the critical velocity, whereby the solution is nearly harmonic containing only 
one harmonic. For velocity away from the critical velocity, the single harmonic approximation is no longer valid, though the solution 
may still be periodic. Furthermore, the biggest deficiency of the use of frequency-dependent fluidelastic lies in the fact that the 
instantaneous vibration frequency can not be determined a priori, and this causes delicate problems in implementations.

It is highly desirable to perform truly time-domain FEI analysis for arbitrary tube motion. Paidoussis and Li [39] conducted the 
pioneer work towards this direction using the quasi-steady model and coefficient-based fluid force expressions. They presented a time-

domain analysis of the response of a loosely-supported tube within an in-line array. Limit cycles, bifurcation as well as chaotic motion 
were captured by using the quasi-steady FEI model. Mureithi et al. [40,41] also employed the quasi-steady model to investigate the 
post-Hopf bifurcation response of a loosely-supported cylinder in a tube array. Two mechanisms leading to chaos were identified: A 
switching mechanism and the intermittency route. Good agreement was achieved between theoretical prediction and experimental 
observation. Very recently, we propose to use the incremental harmonic balance (IHB) method to calculate the periodic solution of 
nonlinear vibration of steam generator tubes based on the quasi-steady model [42]. A numerical strategy for multi-harmonic IHB 
analysis of high-dimensional delay differential equations (DDEs) as well combination of IHB with FEM are demonstrated. In a series 
of papers, Hassan and his co-workers extended the original semi-analytical by Lever and Weaver and presented a truly time-domain 
model. In the model, no assumption was made regarding the tube response, and instead the response was computed using a step-by-

step time integration [43–47]. Anderson et al. [48] extended the time-domain model to analyze FEI of a square in-line tube array 
including the temporal variations in the flow separation. The SATD FEI model proposed by Hassan et al. provides an attractive 
numerical tool for truly time-domain nonlinear response analysis. The dynamic tube/support impact and sliding force as well as the 
wear rate captured by the model provide useful guidance for the predictive design and wear life evaluation of steam generators. Due 
to its analytical nature, and in particular the feature that requires the fewest experimental parameters, the development of SATD FEI 
model has spurred increasing interests in the field of FIV. Unfortunately, the fluid forces deduced from the semi-analytical models by 
Hassan et al. do not posses the merits of that derived from the unsteady model and the quasi-static model in which fluid forces are 
given as explicit functions of displacement, velocity and acceleration. The fluid force in the Hassan’s model is given in a black-box 
integral form. If the integral form of fluid force is expanded into separate terms, there are single, double and triple integrals with fixed 
or variable limits. The implementation of the SATD model has been impaired by the nonexistence of explicit fluid force expressions 
and by the multiple integrals. No efforts have been made to derive an explicit formulation of fluid force in the context of SATD for 
arbitrary time-dependent vibrations. Here we report our new formulation for SATD FEI analysis. Our theory analytically derives the 
explicit fluid force expressions for very the first time. The closed-form fluid force includes coefficient-like stiffness, damping and 
mass terms, as well as multiple integrals having field variables at previous instants. The latter was computed numerically by using 
the stored previous response history and by a conventional Gaussian quadrature.

The biggest beauty of the current model is that the explicit coefficient terms associated with current response can be combined 
into structural mass, damping and stiffness terms, while the integral terms associated with time delays are treated as a load vector 
and assembled into the general load vector the same as the impact force. We demonstrate how this eases the implementation of 
Galerkin discretization of a vibrating beam. This is actually the core of FEM or mode truncation. We present a benchmark problem 
by approximating the tube as a single-degree-of-freedom (SDOF) oscillator or a continuous beam. As a special case, we also describe 
a frequency-domain stability analysis by assuming a harmonic solution. The linear stability analysis coincides with the truly time-

domain analysis and agrees well with available experimental data.

The extension of the current model into nonlinear vibration problems is straightforward. Detailed nonlinear dynamic analyses 
are essential for the prevention design and diagnosis analysis of flow-induced vibration (FIV) of loosely supported tubes in steam 
generators and heat exchangers [40,41,49,50]. Nonlinear post-instability behavior of a tube array has been examined in the context 
of the unsteady model by Cai and Chen [51], and in the context of the quasi-steady model by Paidoussis and Li [52], Lai et al. [53]. 
and by Mureithi et al. [40,41], respectively. Fruitful nonlinear phenomena were successively captured by these two FEI models, and 
in-depth nonlinear analyses were reported, including bifurcations and chaos. In the context of the semi-analytical model, however, 
only simple response history of loosely supported tubes was reported by Hassan et al. [43–46]. Compared with the unsteady and 
the quasi-steady models, the semi-analytical model requires fewer experimental inputs and has gained increasing attention due to its 
analytical feature. There is a void to explore nonlinear dynamics of a tube array with loose support using the semi-analytical model. 
Here, we probe in details the nonlinear dynamics of loosely supported tubes in crossflow. Loose support can be approximated either 
by a cubic spring or by a discontinuous piece-wise linear model. The former is smooth while the latter is non-smooth and is more 
challenging. We report nonlinear dynamics of FIV of a cylinder with piece-wise linear spring. The results have not yet been reported 
elsewhere, which open a door for studying nonlinear dynamics of loosely supported tubes in a variety of power plant equipment and 
components. These detailed dynamic responses are crucial for fatigue analysis and in particular for fretting wear analysis.

The paper is organized as follows. The SATD model is reformulated in Section 2, adopting the identical assumptions used by 
Lever and Weaver, but discarding the harmonic solution assumption. Explicit forms of fluid forces are derived in Section 2.2. For a 
vibrating beam, the spatial discretization using Galerkin mode truncation is given in Section 2.3. Based on the proposed SATD FEI 
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model, a stability analysis is carried out readily in Section 2.4 by adopting again the harmonic solution. The frequency-domain and 
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Fig. 1. A schematic of the problem considered where an elastic tube (marked in red) is vibrating in an otherwise rigid parallel triangle tube array subjected to 
crossflow. (a) The ingredients of the SATD model for FEI of a tube array are illustrated here. (b) The schematic of the pressure distribution around the flexible tube.

the linear time-domain analysis results are presented in Section 3. Nonlinear dynamics of a loosely-supported tube in a tube rigid 
tube array is explored and presented in Section 4, and finally some concluding remarks follow in Section 5.

2. New formulations for SATD FEI model

2.1. Classical SATD model

Without loss of generality, the parallel triangle tube array is chosen as an example and shown schematically in Fig. 1. For the 
purpose of simplicity and making the story short, only the FEI in the lift direction is considered here, but the theory described herein 
can be extended readily to model FEI in both transverse and streamwise directions. We here only consider the case that a single 
flexible, marked in red here, is surrounded by an otherwise rigid tube array. We only consider the case where the tube array is 
subjected to single-phase external flow. Fig. 1 illustrates the ingredients of the SATD model. The channels above and below and the 
central tube line are the so-called stream tubes. A curvilinear coordinate 𝑠 in Fig. 1 (a) is used to describe the flow path along the 
stream tube. A coordinate −𝑠0 is used to designate the flow inlet far away from the flexible tube. The flexible tube in the middle is in 
contact with the stream tube at −𝑠𝑎 ≤ 𝑠 ≤ 𝑠𝑠, where −𝑠𝑎 and 𝑠𝑠 are the flow attachment and separation positions, respectively. The 
flow attachment and separation positions and angles are either measured by experiments or by CFD simulations [54]. The parameters 
used in this paper is summarized and given in Appendix A. The average area of the stream tube is a constant and is taken as its 
minimum gap area 𝐴0. In Fig. 1 (a), 𝐷 is the tube diameter, 𝑃 is the pitch of two adjacent tubes, and 𝑃𝑟 = 𝑃∕𝐷 is the pith ratio.

When the flexible tube vibrates, the vibration generates perturbation to the stream tubes. The instantaneous stream tube area, 
𝐴(𝑠, 𝑡), of the upper and lower stream tubes can be expressed in terms of the mean component, 𝐴0, and the fluctuating component, 
𝑎(𝑠, 𝑡), as follows,

𝐴(𝑠, 𝑡) =𝐴0 ± 𝑎(𝑠, 𝑡) (1)

The area perturbation due to the vibration of the flexible tube is gradually dissipated from the attachment position 𝑠𝑎 to the inlet 
𝑠0, and this is reflected by a decay function 𝛾(𝑠). At large distance from the flexible tube, the disturbance is negligible and thus 
𝛾(𝑠) = 0 as 𝑠 →∞. Also a time delay function 𝜏(𝑠) should be introduced to account for the after-effect phenomenon. Thus the area 
perturbation at any point, 𝑎(𝑠, 𝑡), is related to tube vibration displacement 𝑤 as

𝑎(𝑠, 𝑡) =𝑤[𝑡-𝜏(𝑠)]𝛾(𝑠) (2)

There are several forms of possible decay and time delay functions, and we adopt the following popular ones in this paper:

𝜏(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
-
𝜀𝑠0
𝑈0

𝑠+ 𝑠𝑎

𝑠0 − 𝑠𝑎
− 𝑠0 < 𝑠 < −𝑠𝑎

0 − 𝑠𝑎 ≤ 𝑠 ≤ 𝑠𝑠

-
𝜀𝑠0
𝑈0

𝑠𝑠 − 𝑠

𝑠0 − 𝑠𝑠
𝑠𝑠 < 𝑠 < 𝑠0

(3)
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𝛾(𝑠) =

⎧⎪⎪⎨⎪⎪⎩

𝑠+ 𝑠0
𝑠0 − 𝑠𝑎

− 𝑠0 < 𝑠 < −𝑠𝑎

1.0 − 𝑠𝑎 ≤ 𝑠 ≤ 𝑠𝑠
𝑠0 − 𝑠

𝑠0 − 𝑠𝑠
𝑠𝑠 < 𝑠 < 𝑠0

(4)

Though various forms of decay functions and time delay functions used in literatures vary in form, they almost all reflect an 
experimental fact that, along the tube contact region, −𝑠𝑎 ≤ 𝑠 ≤ 𝑠𝑠, there is no area perturbation decay and no time delay and 
thus 𝛾(𝑠) = 1.0 and 𝜏(𝑠) = 0. Following the same way as area perturbation, the fluctuations of flow velocity and pressure due to 
vibration of the tube can be expressed using the average value (𝑈0, 𝑃0) and the perturbation components (𝑢(𝑠, 𝑡), 𝑝(𝑠, 𝑡)) as follows,

𝑈 (𝑠, 𝑡) =𝑈0 + 𝑢(𝑠, 𝑡) (5)

and

𝑃 (𝑠, 𝑡) = 𝑃0 + 𝑝(𝑠, 𝑡) (6)

The mean flow velocity of stream tube 𝑈0 in Eq. (5) can be obtained from the following relation,

𝑈0 =
𝑈𝑟𝑓𝑛𝐷 (𝑃 −𝐷) cos𝛼

𝐴0
(7)

where 𝑓𝑛 = 𝜔𝑛∕(2𝜋) is the tube natural frequency, 𝛼 is the tube array geometry angle defined in Fig. 1(a), and 𝑈𝑟 is the reduced 
velocity.

Considering the control body consisting of a segment of the stream tube, the continuity equation along the coordinate 𝑠 can be 
written as

𝜕𝐴(𝑠, 𝑡)
𝜕𝑡

+ 𝜕𝐴(𝑠, 𝑡)𝑈 (𝑠, 𝑡)
𝜕𝑠

= 0 (8)

Substituting Eq. (1) and Eq. (5) into Eq. (8) and integrating over the coordinate 𝑠, the velocity fluctuations of lower stream tube, 
denoted by stream tube 1, and that of the upper stream tube, marked by stream tube 2, can be calculated as

𝑢1(𝑠, 𝑡) =
1

𝐴0 + 𝑎(𝑠, 𝑡)
[−𝑈0𝑎(𝑠, 𝑡) −

𝑠

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠] (9)

and

𝑢2(𝑠, 𝑡) =
1

𝐴0-𝑎(𝑠, 𝑡)
[𝑈0𝑎(𝑠, 𝑡)+

𝑠

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠] (10)

A subtraction between 𝑢2(𝑠, 𝑡) and 𝑢1(𝑠, 𝑡) and discard of high-order terms gives

𝑢2(𝑠, 𝑡) − 𝑢1(𝑠, 𝑡) =
2
𝐴0

[𝑈0𝑎(𝑠, 𝑡) +

𝑠

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠] (11)

The momentum equation of the system can be described by the one-dimensional unsteady Bernoulli equation as

1
𝜌

𝜕𝑃 (𝑠, 𝑡)
𝜕𝑠

+𝑈 (𝑠, 𝑡)𝜕𝑈 (𝑠, 𝑡)
𝜕𝑠

+ 𝜕𝑈 (𝑠, 𝑡)
𝜕𝑡

+ ℎ

2𝑠0
𝑈 (𝑠, 𝑡)2 = 0 (12)

where the last term in Eq. (12) accounting for the turbulent losses of the mean flow around the flexible tube and being expressed 
as a drag force proportional to the square of the local velocity with ℎ being the flow resistance coefficient. The experimental loss 
coefficient ℎ of Pierson [55] which determined by tube array configuration have been used here. Performing integration of Eq. (12)

from −𝑠0 to 𝑠 gives the following relation,

1
𝜌

[
𝑃 (𝑠, 𝑡) − 𝑃 (−𝑠0, 𝑡)

]
+ 1

2
[
𝑈2(𝑠, 𝑡) −𝑈2(−𝑠0, 𝑡)

]
+

𝑠

∫
−𝑠0

𝜕𝑈 (𝑠, 𝑡)
𝜕𝑡

𝑑𝑠+ ℎ

2𝑠0

𝑠

∫
−𝑠0

𝑈2(𝑠, 𝑡)𝑑𝑠 = 0 (13)

Plugging Eq. (6) into Eq. (13) and invoking 𝑃 (−𝑠0, 𝑡) = 𝑃0 and 𝑈 (−𝑠0, 𝑡) =𝑈0 gives the pressure fluctuation as

𝑝(𝑠, 𝑡) = 𝜌[ 1
2
𝑈0

2 − 1
2
𝑈2(𝑠, 𝑡) −

𝑠

∫
−𝑠0

𝜕𝑈 (𝑠, 𝑡)
𝜕𝑡

𝑑𝑠− ℎ

2𝑠0

𝑠

∫
−𝑠0

𝑈2(𝑠, 𝑡)𝑑𝑠] (14)
256

Substituting Eq. (14) and Eq. (5) into Eq. (6), the pressures in stream tube 1 and 2 thus being derived respectively as
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𝑃1 = 𝑃0+ 𝜌

⎡⎢⎢⎣-𝑈0𝑢1(𝑠, 𝑡) −

𝑠

∫
−𝑠0

𝜕𝑢1(𝑠, 𝑡)
𝜕𝑡

𝑑𝑠1 −
ℎ

2𝑠0

𝑠

∫
−𝑠0

(𝑈0
2 + 2𝑈0𝑢1(𝑠, 𝑡))𝑑𝑠1

⎤⎥⎥⎦ (15)

𝑃2 = 𝑃0+𝜌

⎡⎢⎢⎣-𝑈0𝑢2(𝑠, 𝑡) −

𝑠

∫
−𝑠0

𝜕𝑢2(𝑠, 𝑡)
𝜕𝑡

𝑑𝑠1 −
ℎ

2𝑠0

𝑠

∫
−𝑠0

(𝑈0
2 + 2𝑈0𝑢2(𝑠, 𝑡))𝑑𝑠1

⎤⎥⎥⎦ (16)

With Eq. (15) and Eq. (16) in hand, the lift force per unit length on a flexible tube can be given as

𝐹𝐿 =

𝑠𝑠

∫
−𝑠𝑎

[
𝑃1(𝑠, 𝑡) − 𝑃2(𝑠, 𝑡)

]
cos𝛽(𝑠)𝑑𝑠 (17)

where 𝛽 = 2𝑠∕𝑃 is the angle made between the surface normal and the transverse axis of the tube. Eq. (17) is the black-box fluid force 
expression used by Hassan et al. [43–47] for time-domain FEI analysis. The interplay between the lift force and the tube vibration 
is complex and obscure: The vibration of the flexible tube causes stream tube area perturbation, and stream tube area perturbation 
induces velocity and pressure fluctuations and eventually variation of lift force, which in turn induces vibration of the tube. This 
complex coupling reveals the physics and mechanism of this self-excited vibration.

2.2. New formulations for SATD model

The proceeding derivations from Eq. (1) to Eq. (17) are identical to classical SATD model. Our theory departs from the classical 
SATD model form the following derivations. Note that Eq. (17) can be rewritten as

𝐹𝐿 = 𝜌

𝑠𝑠

∫
−𝑠𝑎

⎧⎪⎨⎪⎩𝑈0
(
𝑢2 − 𝑢1

)
+

𝑠

∫
−𝑠0

𝜕

𝜕𝑡

(
𝑢2 − 𝑢1

)
𝑑𝑠1 +

ℎ𝑈0
𝑠0

𝑠

∫
−𝑠0

(
𝑢2 − 𝑢1

)
𝑑𝑠1

⎫⎪⎬⎪⎭ cos𝛽(𝑠)𝑑𝑠 (18)

and plugging Eq. (11) into Eq. (18) yields:

𝐹𝐿 = 2𝜌
𝐴0

⎡⎢⎢⎣𝑈2
0

𝑠𝑠

∫
−𝑠𝑎

𝑎 ⋅ cos𝛽𝑑𝑠+ 2𝑈0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑎̇𝑑𝑠1𝑑𝑠+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑎̈𝑑𝑠2𝑑𝑠1𝑑𝑠

+
ℎ𝑈2

0
𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑎𝑑𝑠1𝑑𝑠+
ℎ𝑈0
𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑎̇𝑑𝑠2𝑑𝑠1𝑑𝑠
⎤⎥⎥⎦

(19)

The explicit five-term fluid force expression in terms of 𝑎, 𝑎̇, and 𝑎̈ presented in Eq. (19) has not been given elsewhere. From Eq. (3)

and Eq. (4) we emphasize once again that there is no time delay and no area perturbation decay in the tube contact region, thus Eq. 
(2) is rewritten as follows by using the piecewise definitions in Eq. (3) and Eq. (4)

𝑎(𝑠, 𝑡) =
⎧⎪⎨⎪⎩
𝑤[𝑡− 𝜏(𝑠)]𝛾(𝑠) −𝑠0 < 𝑠 < −𝑠𝑎

𝑤 (𝑡) −𝑠𝑎 ≤ 𝑠 ≤ 𝑠𝑠
𝑤[𝑡− 𝜏(𝑠)]𝛾(𝑠) 𝑠𝑠 < 𝑠 < 𝑠0

(20)

The piecewise property presented in Eq. (20) can be utilized to perform integration by parts, separating terms associated with current 
vibration response from those with time delay. This is the crucial step in our new formulations. The details of the derivations can be 
found in Appendix B. Eq. (19) thus can be formulated as the following explicit coefficient-based form

𝐹𝐿 =𝑚𝐹𝐸𝑤̈ (𝑡) + 𝑐𝐹𝐸𝑤̇ (𝑡) + 𝑘𝐹𝐸𝑤 (𝑡)

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

{
𝛼1𝑤̇[𝑡-𝜏(𝑠1)] + 𝛼3𝑤[𝑡-𝜏(𝑠1)]

}
𝛾(𝑠1)𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

(21)

where 𝑠1 and 𝑠2 are two dummy integration variables. 𝑚𝐹𝐸 , 𝑐𝐹𝐸 and 𝑘𝐹𝐸 are the mass, damping and stiffness coefficients of the 
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fluid force without time delay, and their explicit expressions are given as
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Fig. 2. The elastic tube in Fig. 1 can be either approximated by a SDOF spring-damper system (a) or a continuous beam loosely supported at distance 𝑥𝑏 with clearance 
𝑑 (b).

𝑚𝐹𝐸 = 2𝜌
𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑑𝑠2𝑑𝑠1𝑑𝑠 = 𝛼2

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅
(
𝑠+ 𝑠𝑎

)2
2

𝑑𝑠 (22)

𝑐𝐹𝐸 =
4𝜌𝑈0
𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠+
2𝜌ℎ𝑈0
𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑑𝑠2𝑑𝑠1𝑑𝑠

=

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅

[
𝛼1

(
𝑠+ 𝑠𝑎

)
+

𝛼4
(
𝑠+ 𝑠𝑎

)2
2

]
𝑑𝑠

(23)

𝑘𝐹𝐸 =
2𝜌𝑈0

2

𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)𝑑𝑠+
2𝜌ℎ𝑈0

2

𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠

=

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅
[
𝛼5 + 𝛼3

(
𝑠+ 𝑠𝑎

)]
𝑑𝑠

(24)

Where 𝛼1, 𝛼2, 𝛼3, 𝛼4 and 𝛼5 are constants and defined as

𝛼1 =
4𝜌𝑈0
𝐴0

, 𝛼2 =
2𝜌
𝐴0

, 𝛼3 =
2𝜌ℎ𝑈0

2

𝐴0𝑠0
, 𝛼4 =

2𝜌ℎ𝑈0
𝐴0𝑠0

, 𝛼5 =
2𝜌𝑈0

2

𝐴0

We believe in that, for very the first time, an explicit fluid force expression is derived in Eq. (21) in the framework of SATD model. 
Note that we adopt the same basic assumptions as the classical Lever and Weaver model, but the tube displacement can be arbitrary. 
All the formulations are derived from first-principles and no approximations are introduced in derivation of fluid force. However, we 
should admit that our formulations rely on a basic approximation that the fluid force of a single flexible tube in an otherwise rigid 
tube array could give a reasonable well approximation to that of a fully flexible tube array. This basic approximation was adopted 
intensively in the literature and was validated by many experiments. In addition, the time-delay function, Eq. (3), and the decay 
function, Eq. (4), are approximation to real stream tube morphology.

2.3. Time-domain FEI analysis based on SATD model

2.3.1. SATD model for SDOF system

The above-mentioned SATD model was firstly applied to an SDOF system schematically shown in Fig. 2 (a). The vibration equation 
for the time-domain analysis of such an SDOF system is given as

𝑚𝑤̈+ 𝑐𝑤̇+ 𝑘𝑤 = 𝐹𝐿 (25)

where 𝑚 is the mass per unit length of the tube, 𝑐 = 𝛿𝑚𝜔𝑛∕𝜋 is the damping coefficient and 𝑘 = 𝑚𝜔𝑛
2 is the stiffness coefficient. 

Substituting Eq. (21) into Eq. (25) and moving the mass, damping and stiffness coefficient terms to the left-hand gives(
𝑚−𝑚𝐹𝐸

)
𝑤̈+

(
𝑐 − 𝑐𝐹𝐸

)
𝑤̇+

(
𝑘− 𝑘𝐹𝐸

)
𝑤 = 𝐹𝑡𝑑 (26)
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where
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𝐹𝑡𝑑 =

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

{
𝛼1𝑤̇[𝑡-𝜏(𝑠1)] + 𝛼3𝑤[𝑡-𝜏(𝑠1)]

}
𝛾(𝑠1)𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

is the fluid force with time delay and can be evaluated numerically by using Gaussian quadrature. Eq. (26) is an SDOF differential 
equation with neutral delay and be solved by using a built-in function ddensd in MATLAB.

2.3.2. SATD model for a continuous beam

We then applied the SATD model to a continuous beam and the governing equation is given as

𝑚
𝜕2𝑤

𝜕𝑡2
+ 𝑐

𝜕𝑤

𝜕𝑡
+𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 𝐹𝐿 (27)

where 𝑤 is the transverse displacement of the beam, 𝐸𝐼 is its flexural stiffness, and 𝐹𝐿 is the fluid force given in Eq. (21). The 
following dimensionless quantities are introduced, where 𝐿 denotes the tube length and 𝜆1 denotes the dimensionless eigenvalue of 
the first order mode of a simply supported beam.

𝜂 = 𝑤

𝐷
, 𝜉 = 𝑥

𝐿
, 𝑡 = 𝜆21

√
𝐸𝐼

𝑚𝐿4 𝑡 = 𝜔𝑛𝑡, 𝜁 = 𝑐

𝑚𝜔𝑛

, 𝑚̃ = 𝑚

𝜌𝐷2 ,

𝑈̃0 =
2𝜋𝑈0
𝐷𝜔𝑛

, 𝑠̃ = 𝑠

𝐷
, 𝐴̃0 =

𝐴0
𝐷

, 𝐹𝐿 =
𝐹𝐿

𝑚𝜔𝑛
2𝐷

(28)

A dimensionless form of Eq. (27) is written as(
1 − 𝑚̃𝐹𝐸

) 𝜕2𝜂

𝜕𝑡2
+
(
𝜁 − 𝑐𝐹𝐸

) 𝜕𝜂

𝜕𝑡
+ 1

𝜆1
4
𝜕4𝜂

𝜕𝜉4
− 𝑘̃𝐹𝐸𝜂 = 𝐹𝑡𝑑

(
𝜂(𝑡− 𝜏), 𝜂̇(𝑡− 𝜏), 𝜂̈(𝑡− 𝜏)

)
(29)

in which 𝐹𝑡𝑑 is the dimensionless form of the fluid force with time delay and other dimensionless coefficients are defined as

𝑚̃𝐹𝐸 =
𝑚𝐹𝐸

𝑚
, 𝑐𝐹𝐸 =

𝑐𝐹𝐸

𝑚𝜔𝑛

, 𝑘̃𝐹𝐸 =
𝑘𝐹𝐸

𝑚𝜔2
𝑛

𝛼̃1 = 𝛼1 ⋅
𝐷2

𝑚𝜔𝑛

, 𝛼̃2 = 𝛼2 ⋅
𝐷3

𝑚
, 𝛼̃3 = 𝛼3 ⋅

𝐷2

𝑚𝜔2
𝑛

, 𝛼̃4 = 𝛼4 ⋅
𝐷3

𝑚𝜔𝑛

, 𝛼̃5 = 𝛼5 ⋅
𝐷

𝑚𝜔2
𝑛

Converting the PDE in Eq. (29) into a set of ODEs can be realized by using the mode truncation technique via a standard Galerkin 
procedure. The solution can be approximated as a mode summation as

𝜂(𝜉, 𝑡)=
𝑀∑
𝑗=1

𝑁𝑗 (𝜉)𝑞𝑗 (𝑡) (30)

in which 𝑞𝑗 (𝑡) are the principle coordinates, 𝑀 is the number of modes used for approximation, and 𝑁𝑗 (𝜉) are vibration modes. 
Substituting Eq. (30) and performing the Galerkin procedure over Eq. (29) gives(

1 − 𝑚̃𝐹𝐸

)
𝑞𝑗 (𝑡) +

(
𝛿𝑣𝑗

𝜋
− 𝑐𝐹𝐸

)
𝑞̇𝑗 (𝑡) +

(
𝑣2
𝑗
− 𝑘̃𝐹𝐸

)
𝑞𝑗 (𝑡) = 𝐹𝑡𝑑

(
𝑞𝑗 (𝑡− 𝜏), 𝑞̇𝑗 (𝑡− 𝜏), 𝑞𝑗 (𝑡− 𝜏)

)
(31)

where 𝑣𝑗 =
(
𝜆𝑗∕𝜆1

)2
is the ratio of the 𝑗th order to the first order dimensionless natural frequency of the beam. The spatial 

discretization scheme mentioned above is based on the linear vibration mode truncation, and other spatial discretization schemes 
can also be adopted and the procedure is identical. A time domain FEI analysis of a continuous beam is realized by solving the set of 
DDEs in Eq. (31).

2.4. Frequency-domain FEI analysis based on SATD model

The SATD model formulated above facilitates not only time-domain response analysis but also frequency-domain stability analysis. 
In sharp contrast to classical frequency-domain stability analysis, which assumes the simple harmonic solution at the very beginning 
of analysis and attains closed-form solution of velocity and pressure fluctuations only valid for limited forms of piecewise linear 
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decay functions, the harmonic solution assumption is adopted to the final equation of motion, Eq. (25), and the formulation works 
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for whatever decay function. Now assume 𝑤 =𝑤0 ⋅ 𝑒
𝑖𝜔𝑡, 𝑤̇ =𝑤0 ⋅ 𝑖𝜔𝑒

𝑖𝜔𝑡 and 𝑤̈ = −𝑤0 ⋅ 𝜔
2𝑒𝑖𝜔𝑡 with 𝜔 being the vibration complex 

frequency, 𝜔 =𝜔𝑅 + 𝑖 ⋅𝜔𝐼 , and note that 𝜔𝑛 =
√
𝑘∕𝑚 and 𝑐 = 𝛿𝑚𝜔𝑛∕𝜋, Eq. (25) can be rewritten as

𝑚 ⋅𝜔2
𝑛

[
−
(

𝜔

𝜔𝑛

)2
+ 𝛿

𝜋

(
𝜔

𝜔𝑛

)
𝑖+ 1

]
𝑤0𝑒

𝑖𝜔𝑡 = (𝐹𝑅 + 𝑖 ⋅ 𝐹𝐼 ) ⋅𝑤0 ⋅ 𝑒
𝑖𝜔𝑡 (32)

in which 𝐹𝐿 is separated into real and imaginary parts and written as 𝐹𝐿 = (𝐹𝑅 + 𝑖 ⋅ 𝐹𝐼 ) ⋅ 𝑤0 ⋅ 𝑒
𝑖𝜔𝑡. Introducing the following 

dimensionless quantities

𝑤∗ =𝑤∕𝐷, 𝑎∗(𝑠, 𝑡) = 𝑎(𝑠, 𝑡)∕𝐷, 𝐴0
∗ =𝐴0∕𝐷, 𝑠∗ = 𝑠∕𝐷,

𝑙∗0 = 2𝑠∗0, 𝑈∗
0 =

𝑈0
𝜔𝑛𝑙0

=
𝑈0

2𝜔𝑛𝑠0
, 𝐹 ∗

𝐿
=

𝐹𝐿

𝜌𝐷2𝜔2
𝑛

= 𝐹 ∗
𝑅
+ 𝑖 ⋅ 𝐹 ∗

𝐼

(33)

Eq. (32) can be written as the following dimensionless form

𝑚

𝜌𝐷2

[
−
(

𝜔

𝜔𝑛

)2
+ 𝛿

𝜋

(
𝜔

𝜔𝑛

)
𝑖+ 1

]
= 𝐹 ∗

𝑅
+ 𝑖 ⋅ 𝐹 ∗

𝐼
(34)

where

𝐹 ∗
𝑅
= −

(
𝜔

𝜔𝑛

)2
𝑚∗
𝐹𝐸

+ 𝑘∗
𝐹𝐸

+

𝑠∗𝑠

∫
−𝑠∗𝑎

cos𝛽
(
𝑠∗
) −𝑠∗𝑎

∫
−𝑠∗0

{𝛼∗3𝑐𝑜𝑠[𝜑
(
𝑠∗1
)
] + 𝛼∗1

(
𝜔

𝜔𝑛

)
𝑠𝑖𝑛[𝜑

(
𝑠∗1
)
]}𝛾(𝑠∗1)𝑑𝑠

∗
1𝑑𝑠

∗

+

𝑠∗𝑠

∫
−𝑠∗𝑎

cos𝛽
(
𝑠∗
) −𝑠∗𝑎

∫
−𝑠∗0

𝑠∗1

∫
−𝑠∗0

{−𝛼∗2

(
𝜔

𝜔𝑛

)2
𝑐𝑜𝑠[𝜑

(
𝑠∗2
)
] + 𝛼∗4

(
𝜔

𝜔𝑛

)
𝑠𝑖𝑛[𝜑

(
𝑠∗2
)
]}𝛾(𝑠∗2)𝑑𝑠

∗
2𝑑𝑠

∗
1𝑑𝑠

∗

+

𝑠∗𝑠

∫
−𝑠∗𝑎

cos𝛽
(
𝑠∗
) 𝑠∗

∫
−𝑠∗𝑎
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and
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in which 𝜑 (𝑠∗) = 𝜔𝜏 (𝑠∗) is the dimensionless phase lag function and 𝛾(𝑠∗) is the dimensionless decay function, and are given as

𝜑(𝑠∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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(37)

The dimensionless coefficients in Eq. (34) and (35) are given as follows

𝑚∗
𝐹𝐸

=
𝑚𝐹𝐸

𝜌𝐷2 , 𝑐∗
𝐹𝐸
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𝑐𝐹𝐸
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, 𝑘∗
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𝜌𝜔2

𝑛
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1

𝜌𝜔2
𝑛
𝐷[ (

𝜔
)2

𝛿
(

𝜔
) ]
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Multiplying both sides of Eq. (34) by 1 −
𝜔𝑛

−
𝜋 𝜔𝑛

𝑖 gives



Applied Mathematical Modelling 132 (2024) 252–273P. Sun, X. Zhao, F. Cai et al.

Fig. 3. Comparison of Weaver and Parrondo’s experimental data for a parallel triangle array with pitch ratio 1.47 (blue line) and simulation of present SATD model 
(red dash line).
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(38)

The critical condition for the onset of FEI is dictated by 𝜔𝐼 = 0. Under this critical condition, the imaginary part of Eq. (38) vanishes, 
giving (

𝜔

𝜔𝑛

)2
+

𝛿𝐹 ∗
𝑅

𝜋𝐹 ∗
𝐼

(
𝜔

𝜔𝑛

)
− 1 = 0 (39)

Denoting

𝜔

𝜔𝑛

= − 𝑏

2
+
√

𝑏2

4
+ 1 , 𝑏 =

𝛿𝐹 ∗
𝑅

𝜋𝐹 ∗
𝐼

(40)

we finally come up with the following stability conditions

𝜋𝐹 ∗
𝐼(

𝜔

𝜔𝑛

) = 𝑚𝛿

𝜌𝐷2 (41)

In Eq. (41), 𝐹 ∗
𝐼

is an implicit function of 𝑈𝑟, and Eq. (41) relates the critical reduced velocity to MDP of the tube. Eq. (41) is solved 
iteratively and the stability diagram is plotted as 𝑈𝑟

𝑐 versus MDP.

3. Linear dynamics of a single flexible tube in crossflow

The vibration of the flexible tube in an otherwise rigid tube array in Fig. 1 can be approximated as vibration of an SDOF spring-

damper vibrating system or vibration of a continuous beam, all subjected to crossflow-induced lift force. These two systems are 
shown schematically in Fig. 2 (a) and Fig. 2 (b), respectively. This paper is mainly focusing on results obtained from the SDOF 
system, and the results of vibrating beam are similar to those of SDOF system and would be briefly discussed.

The current SATD model was applied to two typical tube array configurations widely used in engineering practice: a parallel 
triangle tube array with pitch ratio 1.47 and MDP=17.35, and an in-line square tube array with pitch ratio 1.5 and MDP=60. A 
time-domain FEI analysis was performed and the vibration response was readily obtained. With the simulated time histories in hand, 
one can readily plot a dimensionless root of mean square (RMS) displacement versus reduced velocity curve as shown in Fig. 3. The 
RMS response is normalized by 𝐷, the diameter of the tube, and is expressed in percentage. We calculate RMS response from 0 to 30 
seconds. This RMS response curve is attainable in experiment, and also plotted in Fig. 3 is the experimental results by Weaver and 
Parrondo in 1991 [56]. The measured critical reduced velocity in the experiment is 17.2, very close to our simulation result 18.57. 
The simulated RMS response by our SATD model agrees surprisingly well with the response reported by Weaver and Parrondo [56].

The FEI instability concerned herein is classified into the damping-controlled instability. Identifying and unveiling the role of 
the damping and frequency is crucial for understanding the underlying physics of the instability. It is very easy to calculate the free 
vibration response of the system by using the time-domain model, from which an equivalent damping can be obtained following 
a routine logarithmic decrement technique. The period and thus the frequency are also determined accordingly. Fig. 4 plots the 
vibration of the equivalent damping coefficient and the circular frequency ratio, 𝜔∕𝜔𝑛, with reduced velocity, 𝑈𝑟. Here, 𝜔 is the 
vibration frequency and 𝜔𝑛 is the natural frequency. The damping coefficient versus reducing velocity curve in Fig. 4(a) clearly 
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reveals the damping-controlled mechanism: When the velocity is below the critical velocity, 𝑈𝑐
𝑟
= 18.57, the equivalent damping of 
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Fig. 4. The result of the parallel triangular tube array with a pitch ratio of 1.47 (a) The equivalent damping coefficient versus different reduced velocities 𝑈𝑟 (b) The 
frequency ratio at different reduced velocities 𝑈𝑟.

Fig. 5. Comparison of Hassan’s simulation for a in-line square array with pitch ratio 1.5 (blue line) and simulation of present SATD model (red dash line).

the system is positive and thus the system is stable; when the velocity is greater than the critical velocity, the system exhibits negative 
damping and is unstable. The intersection of the equivalent damping with the horizontal zero damping line (dotted line) determines 
the critical velocity, 𝑈𝑐

𝑟
= 18.57. The frequency ratio versus reduced velocity in Fig. 4(b) shows a monotonically decreasing trend 

with increasing reduced velocity 𝜔∕𝜔𝑛 = 1 at 𝑈𝑟 = 0, which indicates that the vibration frequency deviates from natural frequency 
with increasing velocity. This is attributed to the fact that the fluid-structure interaction and the added mass effect become more 
profound with the increase of velocity.

The time-domain FEI analysis mentioned above can be applied for other tube array configurations with various pitch ratios. The 
table in the Appendix A collects four array configurations widely adopted in real engineering designs as well as the parameters used. 
For the purpose of demonstration, Fig. 5 presents the RMS response for an in-line square tube array with pitch ratio 1.5 and MDP 
60. Also included is the time-domain analysis results by Hassan et al. [43] for comparison. From Fig. 5, it is readily to estimate the 
critical reduced velocity as 𝑈𝑐

𝑟
= 77.45, which is very close to Hassan’s result. Fig. 6(a) and Fig. 6(b) plot the equivalent damping 

coefficient and frequency ratio versus reduced velocity curves for the in-line square array case, and they show similar behavior as 
those in Fig. 4.

Our new formulations derived the explicit fluid force expressions analytically. The explicit fluid force associated with cur-

rent displacement, velocity and acceleration can be incorporated easily into structural vibration equations and a routine Galerkin 
discretization procedure as discussed in Section 2.3.2 can be performed. This coefficient-based form facilitates the analysis of a con-

tinuous beam subjected to crossflow. We choose a single-span straight beam as a numerical example, and the parameters used for 
simulation are summarized as follows: 𝑝𝑟 = 1.47, MDP=17.35, 𝛿 = 0.04, 𝐷 = 0.0126 m, 𝑓𝑛 = 63.5 Hz. For the problem considered 
here, the RMS of the dynamic response is similar to that in Fig. 3 and Fig. 5 and the details are omitted here. The critical velocity 
for FEI of this single-span straight beam is 𝑈𝑟

𝑐 = 19. In the literature, the time-domain FEI analysis results are very limited and 
some parameters are missing, which hinders researchers from reproducing some fundamental results. We believe in that our results 
presented here in together with the detailed parameters provided constitute a benchmark problem for truly time-domain FEI analysis.

The SATD model also allows us to perform a frequency-domain FEI analysis in a consistent way, which is straightforward by 
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restoring the harmonic solution assumption and following the procedure described in Section 2.4. FEI threshold values or the stability 
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Fig. 6. The result of the in-line square tube array with a pitch ratio of 1.5 (a) The equivalent damping coefficient versus different reduced velocities 𝑈𝑟 (b) The 
frequency ratio at different reduced velocities 𝑈𝑟.

Fig. 7. Comparison of stability thresholds obtained by current SATD model and other model and available experimental data. (a) Stability plot comparing present 
theoretical threshold curves obtained by frequency-domain (blue line) and time-domain (red line) analysis to existing experimental data. (b) Critical reduced velocity 
versus frequency ratio curve.

diagram, which is of utmost importance in engineering, can thus be attained either from a frequency-domain analysis or from a time-

domain analysis. Fig. 7 (a) plots the critical reduced velocity versus MDP curve obtained from our model for an in-line square array 
with 𝑃𝑟 = 1.5. Comparison is made against other analysis results and experimental data reported in literature [57–61]. The red solid 
line in Fig. 7 (a) is the result by performing a time-domain analysis using SATD model for an SDOF system. The blue line in the 
figure is the result obtained by performing a frequency-domain analysis using our model. The black solid line is the time-domain 
FEM result by Hassan for a cantilever beam [43]. Various markers in Fig. 7 (a) are experimental data taken from literature. Fig. 7 (a) 
indicates that our time-domain and frequency-domain analysis results agree well with the time-domain FEM result by Hassan, and 
correlates well with experimental data. As described in Section 2.4, the vibration frequency is unknown a priori and can be obtained 
in an iterative way. Fig. 7 (b) plots the critical reduced velocity versus dimensionless frequency ratio. Note that for low velocity the 
vibration frequency is very close to the natural frequency of the system, and it gradually deviates from the natural frequency with 
increasing critical velocity.

4. Nonlinear dynamics of a loosely-supported tube in crossflow

Fig. 2 (b) shows the schematic of a loosely supported cylinder. The surrounding rigid tubes are omitted here, and the illustration 
of the whole tube array as well as the stream tubes are referred to Fig. 1. The location of the loose support occurs at 𝑥 = 𝑥𝑏 with gap 
denoted by 𝑑. For the purpose of simplicity and illustration of new model, the problem considered here is a single-span beam with 
only one loose support. But our theory is generic and applicable for single-span tube with multiple supports and multi-span tube 
263

even U-tubes without difficulties. The cylinder has a length 𝐿 and is subjected to a uniform fluid force denoted by 𝐹𝐿. The detailed 
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Fig. 8. Convergence of the logarithm of the 𝐿2-norm of solution errors with increasing number of truncated vibration modes for reduced velocity 𝑈𝑟 = 20.

formulation of the fluid force is provided in Section 2.2. The motion of the cylinder can be described by the beam vibration equation 
as

𝑚
𝜕2𝑤

𝜕𝑡2
+ 𝑐

𝜕𝑤

𝜕𝑡
+𝐸𝐼

𝜕4𝑤

𝜕𝑥4
+ 𝛿(𝑥− 𝑥𝑏)𝑓 (𝑤) = 𝐹𝐿 (42)

All the physical quantities as well as the equations are normalized and given in the dimensionless forms. Details of normalization are 
found in Section 2.3.2. A dimensionless form of Eq. (42) is written as(

1 − 𝑚̃𝐹𝐸

) 𝜕2𝜂

𝜕𝑡2
+
(
𝜁 − 𝑐𝐹𝐸

) 𝜕𝜂

𝜕𝑡
+ 1

𝜆1
4
𝜕4𝜂

𝜕𝜉4
− 𝑘̃𝐹𝐸𝜂 + 𝛿(𝜉 − 𝜉𝑏)𝑓 (𝜂) = 𝐹𝑡𝑑

(
𝜂(𝑡− 𝜏), 𝜂̇(𝑡− 𝜏), 𝜂̈(𝑡− 𝜏)

)
(43)

where the nonlinear property of the loose support is approximated by the following piece-wise stiffness

𝑓 (𝜂) = 𝜅

[
𝜂 − 1

2
(||𝜂 + 𝑑||− ||𝜂 − 𝑑||)] (44)

The piece-wise stiffness, Eq. (44), is non-smooth and thus more accurate than the cubic spring model. The partial differential equation 
(PDE) in Eq. (42) can be transformed into a set of ordinary differential equations (ODE) by using the mode truncation technique 
and the Galerkin discretization described in Section 2.3.2. The resultant ODEs with various time delay can be solved by a MATLAB 
function ddensd or by coding a home-made solver, such as a Newmark integration, for delay differential equations (DDEs) [42].

Regarding the mode truncation technique used for approximation and discretization, an issue worth mentioning is the number of 
truncated vibration modes. The number of modes requested is determined through a convergence study and the result is presented in 
Fig. 8. It plots the logarithm of 𝐿2 norm of errors versus number of natural modes. The 𝐿2 norm is obtained by evaluating the error 
of a solution for a selected number of modes with that for a pretty large number of modes, which gives a true solution as expected. 
Fig. 8 indicates that five orders of modes are sufficient to give results with reasonable accuracy, about 10−3 in terms of 𝐿2 error. The 
number of truncated modes is thus fixed to be five in all following simulations.

Fig. 9 plots time histories of response of the system at a range of reduced velocities, i.e., 𝑈𝑟 = 18.75, 19, 21.5, 30, and 45, 
respectively. All the displacements plotted here, denoted by 𝜂𝑏 in Fig. 9, are measured at the midpoint of the beam where the loose 
support with gap 𝑑 = 0.002, dimensionless stiffness coefficient of the piece-wise linear spring 𝜅 = 5000 is enforced. At 𝑈𝑟 = 18.75, 
the system exhibits convergent response with amplitude much smaller than the clearance, and therefore no contact occurs. Fig. 9

indicates that the critical velocity for the onset of FEI is 𝑈𝑟 = 19. Beyond the critical velocity, the system undergoes severe FEI 
vibration. However, the presence of gap levels off the vibration amplitudes and results in contact between the tube and the support. 
With increase of flow velocity, say 𝑈𝑟 = 45, the wave profile is distorted by contacts as can be seen from the localized region around 
the peak.

The simple time history presented in Fig. 9 can only determine the stable or unstable behavior of the system. It is difficult to 
probe critically the periodic, quasi-periodic or chaotic behavior of the system only based on these time histories. Recourse is thus 
made by plotting phase portraits, Poincaré maps and the power spectral densities (PSD), which are presented in Fig. 10 for various 
reduced velocities. In Fig. 10, the left panels are the phase portraits, the middle panels are the Poincaré maps, and the right panels 
are the corresponding PSD curves. The phase portraits imply that at velocity near the critical velocity the shape of the phase portrait 
is nearly an ellipse, but the nearly ellipse-shaped phase portraits are distorted with increasing velocity. The impact between the tube 
and the support is responsible for the distortion.

The Poincaré map is a powerful approach to distinguish chaotic response from periodic or quasi-periodic responses. For an 
autonomous system, one must choose a super-plane to obtain the Poincaré map. Following Cai and Chen [51], we chose the plane, 
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say when 𝜂 (0.2, 𝑡) = 0 and 𝜂̇ (0.2, 𝑡) > 0, at which the values of 𝜂 (0.5, 𝑡) and 𝜂̇ (0.5, 𝑡) were saved. The Poincaré maps indicate that 
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Fig. 9. Time history of the midpoint of the tube under various reduced velocities.

no exactly periodic solutions exist in the system, even for low velocity at 𝑈𝑟 = 19. The Poincaré maps in Fig. 10 (b) and Fig. 10 (e) 
corresponding to 𝑈𝑟 = 19 and 21.5 are narrow strips instead of a single fixed point in an exactly periodic system. This means that the 
response is nearly but not exactly periodic. If the velocity is further increased, say 𝑈𝑟 = 30 and 45 in Fig. 10 (h) and (k), the Poincaré 
maps turn into clouds of scattered points, indicating that the response is chaotic. As velocity is increased from 30 to 45, the basin of 
Poincaré points becomes more scattered and the boundary of the basin becomes more non-smooth and even fractal [62,63].

Besides phase plane portraits and Poincaré maps, the PSD curves can also distinguish periodic signals from chaotic ones from the 
perspective of frequency domain. The right panels in Fig. 10, i.e., Fig. 10 (c), (f), (i), and (l), plots the PSDs of displacement at various 
reduced velocities. Note that the largest peaks of all these curves remain the same, i.e., 𝑓1= 0.1578 Hz, so that the frequencies in 
these PSD curves are normalized by 𝑓1 and can be given by dimensionless number. At 𝑈𝑟 = 19, the PSD have four discrete peaks 
located at 𝑓∕𝑓1=1, 2, 3 and 4 as shown in Fig. 10 (c). The peaks corresponding to integer multiples of the fundamental frequency 
are identified as superharmonic components. Since all the peaks of PSD in Fig. 10 (c) occur at frequencies commensurable with the 
fundamental frequency, the vibration is nearly periodic. At 𝑈𝑟 = 21.5, the nearly periodic vibration changes to quasi-periodic. A range 
of discrete peaks could be found in Fig. 10 (f), whereby two periodic oscillations take place simultaneously at two incommensurable 
fundamental frequencies, i.e., 𝑓1 = 0.1578 Hz and 𝑓2 = 0.1989 Hz, and the frequencies of the pronounced peaks are a combination 
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of these incommensurable frequencies, i.e., 𝑓 = 𝑛𝑓1 +𝑚𝑓2. Fig. 10 (f) shows the corresponding combination of the two fundamental 
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Fig. 10. Phase portraits (left panel), Poincaré maps (middle panels), and PSD (right panels) of the system for various reduced velocites. (a)-(c) 𝑈𝑟 = 19 (d)-(f) 𝑈𝑟 = 21.5
(g)-(i) 𝑈𝑟 = 30 (j)-(l) 𝑈𝑟 = 45.

frequencies. When the velocity is increased to 30 and 45, the PSDs demonstrate characteristic limited-band chaos, although the 
266

fundamental frequencies are still discernible.
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Fig. 11. The bifurcation diagram (a) and the largest Lyapunov exponents (LLE) (b) extracted at the midpoint of tube versus the reduced velocity.

Fig. 12. Time history of the impact force measured at the loose support.

To further probe the nonlinear dynamics in a quantitative way, and in particular to investigate the routes to chaos for such a 
system, Fig. 11 plots the bifurcation diagram together with the largest Lyapunov exponent (LLE) as reduced velocity varies. We use 
the small data sets algorithm to calculate the LLE with the MATLAB function lyapunovExponent. The LLE quantitatively characterizes 
the nonlinear dynamics of the system: When the LLE is negative for 𝑈𝑟 < 19, the vibration is convergent; When the LLE is positive for 
𝑈𝑟 > 21.75, the vibration is chaotic; for 19 < 𝑈𝑟 < 21.75, the LLE oscillates around a small but positively biased average value, and 
the system is quasi-periodic. The bifurcation diagram in Fig. 11 (a) plots the velocity of the midpoint of the beam when 𝜂 (0.5, 𝑡) = 0
267

and 𝜂̇ (0.5, 𝑡) > 0 versus the reduced velocity. The transitions of stable to quasi-periodic and ultimately chaotic vibrations coincide 
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well with that in Fig. 11 (b). Fig. 12 plots two impact force histories for 𝑈𝑟 = 21 and 𝑈𝑟 = 45, respectively, the former is nearly 
periodic and the latter is chaotic as expected. For different flow velocities, the level of the impacting force almost remains the same.

5. Concluding remarks

Flow-induced vibration (FIV) is one of the major sources of failure of components in steam generators and heat exchangers, 
in particular the numerous loosely supported tubes subjected to crossflow. Among several FIV mechanisms of tube bundles, the 
fluidelastic instability (FEI) is widely acknowledged as the greatest concern, since it has the potential to cause large amplitude 
vibration when the flow velocity is beyond the critical velocity. This in turn causes severe damage of tubes. Developing theoretical 
models for FEI remains a sought-after task which has been impaired due to the complexity of FEI, in particular the multi-phase 
unsteady flow as well as fluid and structural nonlinearity. Despite some progress, there is still a long way to go to develop a general 
FEI model that is suitable and reasonably accurate for all tube array patterns and all possible flow conditions. Previous efforts on 
FEI model development have been devoted to linear FEI stability analysis, which was typically completed in frequency-domain. Few 
attempts were made to carry out truly time-domain nonlinear response analysis. This is vital for fretting-wear simulation, which 
heavily depends on detailed tube response and tube/support interaction history.

It is highly desirable to develop semi-analytical models, which utilize some basic principles and analytical derivations but also 
rely on some experimental parameters, to understand and interpret phenomena observed in experiments. The semi-analytical model 
originally proposed by Lever and Weaver in 1980s is such a semi-analytical model that requires fewer experimental inputs as 
compared to other FEI models, such as the unsteady model and the quasi-steady model. The original Lever and Weaver model 
was mainly used for frequency-domain stability analysis, aiming at obtaining critical velocity and the stability plot for engineering 
design. This model was recently extended by Hassan et al. for truly time-domain nonlinear analysis. They successfully demonstrated 
that the time-domain model and the numerical tool can model time history of loosely supported multi-span tubes and U-tubes. The 
derivation and in particular the implementation of the semi-analytical model is more complicated and hard to achieve compared 
with the unsteady and the quasi-steady model. The reason is obvious: In the unsteady model and the quasi-steady model, the fluid 
force expressions are explicit in terms of vibration responses and given in a coefficient form. The explicit fluid force expressions 
ease the implementation of the unsteady and the quasi-steady model; in the semi-analytical model, on the other hand, it is hard 
to derive an explicit fluid force expression though not prohibitive. The fluid force in the semi-analytical model is expressed as 
a black-box integral form. This hinders the understanding and application of the semi-analytical model. The issue becomes more 
profound especially in time-domain analysis, where the simple harmonic solution assumption adopted in frequency-domain analysis 
is discarded. The implementation of the semi-analytical model in time domain remains a mystery, even in the community of FIV 
researchers.

Here, we present a new formulation of the semi-analytical time-domain (SATD) FEI model for tube bundles subjected to crossflow. 
We follow exactly the same assumptions and unsteady fluid equations adopted in the original semi-analytical model. We integrate 
the integral of the fluid force analytically and differentiate the terms associated with current vibration response from the terms with 
time-delay. We attain explicit fluid force expressions, albeit in an integral form. After some analytical derivations, fluid force terms 
related to current response are expressed as mass, damping and stiffness terms with coefficients given by single definite integrals. 
All this was done in a closed-form. The outcome is an explicit expression for fluid force associated with current responses plus some 
integrals associated with the responses at previous instants. The former can be combined together with structural mass, damping and 
stiffness terms, while the latter could be computed numerically and stored as a load vector. The new formulations entail a coefficient-

based explicit fluid force expression for the semi-analytical model, which has long been thought impossible in time-domain analysis, 
where the simple harmonic assumption does not hold. Our findings resolve a long-standing issue about the possibility of expressing 
fluid force analytically in a coefficient-based form, the same as that in the unsteady model and the quasi-static model. With the new 
formulation in hand, we show that a consistent FEI analysis, either frequency-domain or time-domain, is possible and can be derived 
from the same set of equations, which is reasonable and ought to be the case. The frequency-domain analysis is only a special case 
by invoking the harmonic solution assumption. In literature, the frequency-domain stability analysis and the time-domain response 
analysis are parallel and are not treated in such a consistent way. Furthermore, our formulations for frequency-domain analysis 
work for arbitrary piece-wise decay and delay functions, and formulation does not change when the decay or delay functions are 
changed. The frequency-domain stability analysis and the threshold values obtained through time-domain analysis coincides with 
each other, and agrees well with available experimental data, for both parallel triangle tube array and in-line square array. Our new 
theory facilitates the implementation of SATD FEI analysis in either of the numerical frameworks, such as finite element method, 
finite difference method, mode truncation method, etc. These results are beyond the scope of the current paper and will be reported 
elsewhere. Furthermore, the incorporation of nonlinear boundary effect or other structural nonlinearity is straightforward and the 
load vectors from nonlinearity and that from time-delayed fluid force terms are summed up to form the global load vectors. This 
means that the formulation of the whole theory is not altered when modeling the nonlinear dynamics of loosely supported tubes in 
crossflow.

The studies on the nonlinear post-instability dynamics of loosely supported tubes are very limited and sparse in literature. The 
frequent occurrence of FIV induced fretting wear and fatigue damage of steam generator and heat exchanger tubes calls for detailed 
response analysis of elastic tubes in crossflow. This has, however, been impaired by the complexity of coupled structural nonlinearity 
and fluidelastic interaction, as well as by the lack of appropriate time-domain models for FEI. Yet, the limited studies on nonlinear 
time-domain FEI analysis of loosely supported tubes have been performed by employing the simple Connor’s quasi-static model, the 
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quasi-steady model, and the unsteady model. Fruitful nonlinear phenomena, such as bifurcation and chaos, have been successfully 
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captured. In the context of the semi-analytical model, nevertheless, no efforts have been conducted toward this direction and only 
simple time traces of response were reported. It is highly desirable to probe nonlinear dynamics of loosely supported tubes in the 
context of the semi-analytical time-domain (SATD) model.

Based on the new theory of SATD model, this paper provides the first reference on the nonlinear dynamics of a single loosely 
supported tube in an otherwise rigid tube array. The loose support is modeled as a piece-wise linear spring. Various measures 
have been utilized to characterize the nonlinear behavior of the system, including time history, phase portrait, Poincaré map, PSD, 
bifurcation diagram, and the largest Lyapunov exponent. In depth analysis was performed on the various aspects of characterizations, 
and excellent agreement was achieved. The various characterizations unveil that there exist two critical velocities, one for the onset 
of FEI instability and another for transition from quasi-periodic solution to chaos. Our analysis thus elucidates that the route to 
chaos is through a quasi-periodic to chaotic transition. Our efforts enrich the current FEI theory, and open an avenue for nonlinear 
time-domain response analysis of steam generator tubes.

Finally, we should admit that our formulations with explicit fluid force expressions are derived from an ideal scenario where a 
flexible tube is surrounded by a rigid tube array and subjected to single-phase crossflow. For tube array with fully flexible tubes, 
explicit fluid force expressions are not available due to the complexity of inter-tube interaction. Moreover, our current SATD model 
and the original semi-analytical model are semi-analytical in the sense that the determination of decay function and in particular the 
time-delay or phase lag function relies on experiments or high-fidelity CFD simulations. It is highly desirable to develop analytical 
expressions for phase lag functions, rendering the model purely analytical. The work by Benaouicha et al. [64] on deriving an 
algebraic phase lag model from the potential theory, and the work by Alyaldin and Mureithi [65] on analytical frequency response 
function and time delay function, are works in this direction.
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Appendix A

The geometric parameters of the SATD model for various tube arrays are shown in Table 1.

Table 1

System parameters for various arrays as used in the present model; 𝑠𝑎 = −𝛽1𝐷∕2, 𝑠𝑠 = −𝛽2𝐷∕2, 
𝑁𝑟𝑜𝑤 = 1.5.

Configuration 𝛼 𝐴0 𝑠0 𝛽1 𝛽2

In-line square 0◦
(
𝑃𝑟 − 1

)
𝐷 𝑃𝑟𝑁𝑟𝑜𝑤𝐷 10◦ 10◦

Parallel triangle 30◦
(
𝑃𝑟 − 1

)
𝐷 𝑃𝑟𝛼𝑁𝑟𝑜𝑤𝐷 40◦ 10◦

Rotated square (𝑃𝑟 ≤ 1.7) 45◦
(
𝑃𝑟 − 1

)
𝐷 𝑃𝑟𝛼𝑁𝑟𝑜𝑤𝐷 75◦ 15◦

Rotated square (𝑃𝑟 > 1.7) 45◦
(
𝑃𝑟 cos𝛼 − 0.5

)
𝐷

𝑃𝑟 [𝛼+sin𝛼]
2

𝑁𝑟𝑜𝑤𝐷 85◦ 15◦

Rotated triangle 60◦
(
𝑃𝑟 cos𝛼 − 0.5

)
𝐷

𝑃𝑟 [𝛼+sin𝛼]
2

𝑁𝑟𝑜𝑤𝐷 85◦ 15◦

Appendix B

The derivation of the five-term fluid force expression of Eq. (19) in Section 2.2 is given below:

The first term:

2𝜌𝑈0
2

𝑠𝑠

𝑎(𝑠, 𝑡) ⋅ cos𝛽(𝑠)𝑑𝑠 =
2𝜌𝑈0

2
𝑠𝑠

cos𝛽(𝑠)𝑑𝑠 ⋅𝑤(𝑡) (B.1)
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𝐴0 ∫
−𝑠𝑎

𝐴0 ∫
−𝑠𝑎
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The second term:

4𝜌𝑈0
𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠1𝑑𝑠 =
4𝜌𝑈0
𝐴0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠1𝑑𝑠+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑎̇(𝑠, 𝑡) 𝑑𝑠1𝑑𝑠
⎤⎥⎥⎦

=
4𝜌𝑈0
𝐴0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑤̇[𝑡-𝜏(𝑠1)]𝛾(𝑠1) 𝑑𝑠1𝑑𝑠+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠 ⋅ 𝑤̇(𝑡)
⎤⎥⎥⎦

(B.2)

The third term:

2𝜌
𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑎̈(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠 =
2𝜌
𝐴0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑎̈(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

𝑎̈(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑎̈(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠
⎤⎥⎥⎦

= 2𝜌
𝐴0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑤̈[𝑡-𝜏(𝑠2)]𝛾(𝑠2) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

𝑤̈[𝑡-𝜏(𝑠2)]𝛾(𝑠2) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑑𝑠2𝑑𝑠1𝑑𝑠 ⋅ 𝑤̈(𝑡)
⎤⎥⎥⎦

(B.3)

The fourth term:

2𝜌ℎ𝑈0
2

𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑎(𝑠, 𝑡)𝑑𝑠1𝑑𝑠 =
2𝜌ℎ𝑈0

2

𝐴0𝑠0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑎(𝑠, 𝑡)𝑑𝑠1𝑑𝑠+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑎(𝑠, 𝑡)𝑑𝑠1𝑑𝑠
⎤⎥⎥⎦

=
2𝜌ℎ𝑈0

2

𝐴0𝑠0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑤[𝑡-𝜏(𝑠1)]𝛾(𝑠1)𝑑𝑠1𝑑𝑠+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠 ⋅𝑤(𝑡)
⎤⎥⎥⎦

(B.4)

The fifth term:

2𝜌ℎ𝑈0
𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠 =
2𝜌ℎ𝑈0
𝐴0𝑠0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

𝑎̇(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑎̇(𝑠, 𝑡) 𝑑𝑠2𝑑𝑠1𝑑𝑠
⎤⎥⎥⎦

=
2𝜌ℎ𝑈0
𝐴0𝑠0

⎡⎢⎢⎣
𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

𝑤̇[𝑡-𝜏(𝑠2)]𝛾(𝑠2) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

𝑤̇[𝑡-𝜏(𝑠2)]𝛾(𝑠2) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

cos𝛽(𝑠)

𝑠 𝑠1

𝑑𝑠2𝑑𝑠1𝑑𝑠 ⋅ 𝑤̇ (𝑡)
⎤⎥

(B.5)
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∫
−𝑠𝑎

∫
−𝑠𝑎

∫
−𝑠𝑎

⎥⎦
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Summing up the above five items, and separating terms associated with current response from those with time delay, the fluid 
force in Eq. (19) can be written as:

𝐹𝐿 = 2𝜌
𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑑𝑠2𝑑𝑠1𝑑𝑠 ⋅ 𝑤̈ (𝑡)

+
4𝜌𝑈0
𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠 ⋅ 𝑤̇ (𝑡) +
2𝜌ℎ𝑈0
𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑑𝑠2𝑑𝑠1𝑑𝑠 ⋅ 𝑤̇ (𝑡)

+
2𝜌𝑈0

2

𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)𝑑𝑠 ⋅𝑤(𝑡) +
2𝜌ℎ𝑈0

2

𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠 ⋅𝑤(𝑡)

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

[
4𝜌𝑈0
𝐴0

𝑤̇
[
𝑡-𝜏(𝑠1)

]
+

2𝜌ℎ𝑈0
2

𝐴0𝑠0
𝑤[𝑡-𝜏(𝑠1)]

]
𝛾(𝑠1) 𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

[
2𝜌
𝐴0

𝑤̈[𝑡-𝜏(𝑠2)] +
2𝜌ℎ𝑈0
𝐴0𝑠0

𝑤̇[𝑡-𝜏(𝑠2)]
]
𝛾(𝑠2) 𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽(𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

[
2𝜌
𝐴0

𝑤̈[𝑡-𝜏(𝑠2)] +
2𝜌ℎ𝑈0
𝐴0𝑠0

𝑤̇[𝑡-𝜏(𝑠2)]
]
𝛾(𝑠2) 𝑑𝑠2𝑑𝑠1𝑑𝑠

=𝛼2

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅
(
𝑠+ 𝑠𝑎

)2
2

𝑑𝑠 ⋅ 𝑤̈ (𝑡)

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅

[
𝛼1

(
𝑠+ 𝑠𝑎

)
+

𝛼4
(
𝑠+ 𝑠𝑎

)2
2

]
𝑑𝑠 ⋅ 𝑤̇ (𝑡)

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅
[
𝛼5 + 𝛼3

(
𝑠+ 𝑠𝑎

)]
𝑑𝑠 ⋅𝑤(𝑡)

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

{
𝛼1𝑤̇[𝑡-𝜏(𝑠1)] + 𝛼3𝑤[𝑡-𝜏(𝑠1)]

}
𝛾(𝑠1)𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

(B.6)

Where 𝛼1, 𝛼2, 𝛼3, 𝛼4 and 𝛼5 are constants and defined as

𝛼1 =
4𝜌𝑈0
𝐴0

, 𝛼2 =
2𝜌
𝐴0

, 𝛼3 =
2𝜌ℎ𝑈0

2

𝐴0𝑠0
, 𝛼4 =

2𝜌ℎ𝑈0
𝐴0𝑠0

, 𝛼5 =
2𝜌𝑈0

2

𝐴0

The first three terms of the fluid force in Eq. (B.6) are fluid force without time delay, and are defined as mass, damping and stiffness 
terms respectively:

𝑚𝐹𝐸 = 2𝜌
𝑠𝑠

cos𝛽(𝑠)

𝑠 𝑠1

𝑑𝑠2𝑑𝑠1𝑑𝑠 = 𝛼2

𝑠𝑠

cos𝛽 (𝑠) ⋅
(
𝑠+ 𝑠𝑎

)2
𝑑𝑠 (B.7)
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𝐴0 ∫
−𝑠𝑎

∫
−𝑠𝑎

∫
−𝑠𝑎

∫
−𝑠𝑎

2
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𝑐𝐹𝐸 =
4𝜌𝑈0
𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠+
2𝜌ℎ𝑈0
𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

𝑠1

∫
−𝑠𝑎

𝑑𝑠2𝑑𝑠1𝑑𝑠

=

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅

[
𝛼1

(
𝑠+ 𝑠𝑎

)
+

𝛼4
(
𝑠+ 𝑠𝑎

)2
2

]
𝑑𝑠

(B.8)

𝑘𝐹𝐸 =
2𝜌𝑈0

2

𝐴0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)𝑑𝑠+
2𝜌ℎ𝑈0

2

𝐴0𝑠0

𝑠𝑠

∫
−𝑠𝑎

cos𝛽

𝑠

∫
−𝑠𝑎

𝑑𝑠1𝑑𝑠

=

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠) ⋅
[
𝛼5 + 𝛼3

(
𝑠+ 𝑠𝑎

)]
𝑑𝑠

(B.9)

Substituting Eq. (B.7)-(B.9) into Eq. (B.6), the final explicit coefficient-based form of the fluid force is derived:

𝐹𝐿 =𝑚𝐹𝐸𝑤̈ (𝑡) + 𝑐𝐹𝐸𝑤̇ (𝑡) + 𝑘𝐹𝐸𝑤 (𝑡)

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

{
𝛼1𝑤̇[𝑡-𝜏(𝑠1)] + 𝛼3𝑤[𝑡-𝜏(𝑠1)]

}
𝛾(𝑠1)𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

−𝑠𝑎

∫
−𝑠0

𝑠1

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

+

𝑠𝑠

∫
−𝑠𝑎

cos𝛽 (𝑠)

𝑠

∫
−𝑠𝑎

−𝑠𝑎

∫
−𝑠0

{
𝛼2𝑤̈[𝑡-𝜏(𝑠2)] + 𝛼4𝑤̇[𝑡-𝜏(𝑠2)]

}
𝛾(𝑠2)𝑑𝑠2𝑑𝑠1𝑑𝑠

(B.10)
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