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A B S T R A C T

This paper describes a hybrid proper orthogonal decomposition (POD) and artificial neural network (ANN)
strategy to construct digital twins of a pressurizer surge line under thermal stratification conditions. The one-
way coupled conjugate heat transfer and thermal stress analysis was conducted by use of parametric modeling
and the introduction of the inverse distance weighted interpolation for the grid mapping, which allows for
the mapped grids to have the same number of nodes regardless of variations of surge line geometries. A
snapshot-based POD was utilized to obtain truncated lower-order modes and the full-order system response
was projected onto these modes with reduced state coefficients. Then the ANN was employed to establish
a surrogate model between the five chosen design variables of interest and the reduced state coefficients,
resulting in a surrogate-assisted digital twin for a pressurizer surge line. Prediction of fluid–structure interface
temperature and thermal stress distribution was thus achieved in an in-line real-time manner for a wide range
of parameter variations. We publicly share all code implementations, and we believe that our efforts open a
door for the digital twining of thermo–fluid–structure interaction problems
1. Introduction

The phenomenon of thermal stratification of cold and hot water
may occur in horizontal pipelines at low flow velocities (Talja and
Hansjosten, 1990; Miksch et al., 1985; Kim et al., 1993; Liu and
Cranford, 1991). The cold water is heavier than the hot water and flows
through the pipe beneath the hot water, resulting in circumferentially
varying temperatures of the pipe cross-section, which is called thermal
stratification. Due to the different velocities of the two fluid layers, the
temperature in the interface is not constant, but fluctuating. When the
temperature in the mixing interface fluctuates rapidly, the so-called
thermal striping occurs. Thermal stratification and thermal striping
may occur in piping systems in nuclear power plants such as the pres-
surizer surge lines, emergency core cooling injection lines, residual heat
removal lines, feedwater lines, and others where hot and cold fluids
may come in contact with each other (Kim et al., 1993). As a result of
the thermal stratification in the piping system, the unintended thermal
restriction due to supports can potentially cause plastic deformation, a
high level of local stress, low-cycle fatigue, and functional impairment
of the pipeline (Liu and Cranford, 1991).

Among various pipes in nuclear power plants, the pressurizer surge
lines have been identified to be more susceptible to thermal stratifi-
cation and several incidents have been reported that raised significant

∗ Correspondence to: 28 Xianning West Road, Beilin District, Xi’an City, Shaanxi Province, People’s Republic of China.
E-mail address: limeie@mail.xjtu.edu.cn (M. Li).

safety concerns. The surge line is a curved pipe connecting the pres-
surizer containing relatively hot water and the hot leg of the reactor
coolant system (RCS) filled with relatively cold water. A pressurizer is
a pressure vessel used to maintain the pressure in the primary loop of
the pressurized water reactor (PWR) plant. The PWR plant undergoes
load changes that depend on the electrical demand on the power grid
and are stochastic. The electrical load changes cause the fluctuation
of coolant temperature and pressure. To maintain a constant pressure,
the coolant flows either from the pressurizer to the hot leg of the RCS
through the surge line or vice versa. If the letdown flow from the
pressurizer to the hot leg is greater than the charging flow from the
hot leg to the pressurizer, an outsurge occurs resulting in a pressurizer
level decrease. In contrast, an insurge happens if the charging flow is
greater than the letdown flow and the pressurizer level increases. Talja
and Hansjosten (1990) reported results of thermal stratification tests in
a horizontal pipeline at the HDR-facility. The transient local stress due
to the temperature fluctuations in the mixing layer has been evaluated.
They also estimated the fatigue of piping due to local stress fluctu-
ations. Liu and Cranford (1991) presented a method to evaluate the
thermal stress ranges under thermal stratification loadings. The thermal
cycling associated with operating transients in the surge line was
also discussed. Kim et al. (1993) performed an evaluation of thermal
https://doi.org/10.1016/j.nucengdes.2024.113487
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stratification test data from the HDR test series and obtained a thermal
loading spectrum as a function of flow velocity. They then applied the
spectrum for thermal fatigue evaluation of typical pressurizer surge
lines. Yu et al. (1997) investigated the deformation, and temperature
in the surge lines of the YGN (Young Gwang Nuclear Power Plant)
units 3 and 4 in Korea. A thermal–hydraulic model for stratified flow,
as well as a finite element method (FEM) for stress analysis, were
presented. Do Kweon et al. (2008) performed a parametric study on
peak temperature and peak stress intensity of pipe cross sections due
to thermal stratification, and a modified equation was proposed to
determine the peak stress intensity range, serving as a supplement
to the ASME B&PV Code, Section 3, subsection NB-3600. Kang et al.
(2011) carried out a conjugate heat transfer analysis for a pressurizer
surge line subjected to thermal stratification. Transient temperature
distributions in the wall of the surge line were calculated under either
outsurge or insurge conditions, and the thermal load from CFD sim-
ulations was transferred to the FEM code to calculate thermal stress.
Due to the importance of structure integrity the thermal stratification
in the surge line has been investigated by many researchers (Kim et al.,
2005; Qiao et al., 2014; Cai et al., 2017; Jo and Kang, 2010; Kang
et al., 2011; Wang et al., 2019; Kim et al., 2013; Yu et al., 2022). Kim
et al. (2005) performed a series of experiments to study the thermal
stratification in a 1/10 scaled experimental model using the Richard
number as the similarity criterion number. Qiao et al. (2014) and
Cai et al. (2017) built a 1/3 scaled experimental facility to conduct
an experimental study on thermal stratification. The Computational
Fluid Dynamics (CFD) method has also been widely used to study
the thermal stratification phenomenon in the surge line. Jo and Kang
(2010) performed 2D and simplified 3D conjugate heat transfer cal-
culations neglecting the pipe wall thickness to obtain the temperature
distribution and stress distribution. Kang et al. (2011) performed real-
istic three-dimensional transient CFD calculations involving conjugate
heat transfer and thermal stress analysis. Tian et al. (2017) conducted
experiments on flooding in the surge line of an AP1000 reactor using
air water as the working fluid and analyzed the thermal stratification
during the process. Wang et al. (2019) built a numerical model of the
AP1000 pressurizer surge line to study the thermal stratification char-
acteristics. Muhammad et al. (2022) evaluated the transient thermal
distribution and fatigue damage resulting from thermal stratification
in the surge line of AP1000 pressurizer systems through CFD analysis
employing the Large Eddy Simulation (LES) approach.

Besides the above-mentioned studies of pressurizer surge lines, at-
tention has also been paid to thermal stratification in mixing trees. Hu
and Kazimi (2006) carried out benchmark studies of high cycle temper-
ature fluctuations induced by thermal striping in a mixing tree using
the LES models. The simulated normalized average temperature and
normalized fluctuating temperatures were in good agreement with the
measurements. Lee et al. (2009) investigated the temperature fluctua-
tions and structural response of a mixing tree. The study revealed that
the temperature difference between the hot and cold fluids of a tree
junction and the enhanced heat transfer coefficient due to turbulent
mixing are the dominant factors of thermal fatigue of a tree junc-
tion. Kamaya and Nakamura (2011) performed a thermal–mechanical
coupling simulation to analyze thermal stress and fatigue damage at a
mixing tree using ANSYS CFX and Abaqus. The study suggested that,
for a precise assessment of the fatigue damage at a mixing tree, the
effect of multi-axial stress on the fatigue life together with the mean
stress effect should be taken into account. Kamaya (2014) studied the
thermal fatigue damage caused by thermal striping at a mixing tree and
by thermal stratification at an elbow pipe branched from the main pipe.
Emphasis was put on the characteristics of constraint, stress, and crack
growth under thermal stress.

The analysis of thermal stratification of piping systems has been
tackled either by analytical formulations in the early stage of study

or later by coupled fluid–structure simulations. Analytical approaches

2 
are efficient but limited by simple geometries and boundary con-
ditions; while high-fidelity simulations are expensive and extremely
time-consuming. A number of geometric, physical, and mechanical
have been identified as factors that influence thermal stratification
and thermal stress. It is desperately needed to perform a systematic
parametric study on the effects of various dominant parameters on
thermal stratification, giving a design map or parametric sensitivity
analysis under all possible combinations of geometric designs and op-
eration conditions. Attaining this goal by exclusive use of high-fidelity
simulation is prohibitive due to the exorbitant cost of fluid–structure
interaction simulation. Recourse is thus made to develop various sur-
rogate models, which establish a mapping between design variables
and responses with a simple explicit function or a black-box function,
resulting in the technology called surrogate-assisted digital twins.

A digital twin is a term that is being used for a wide range of
things across a wide range of applications, ranging from manufacturing,
smart cities, healthcare, and oil refinery management, to aerospace
and defense products development (Jones et al., 2020; Tao and Qi,
2019; Fuller et al., 2020; Kritzinger et al., 2018; Wright and Davidson,
2020; Grieves, 2005; Tao et al., 2018). In short, digital twins are
real-time, virtual replicas of physical entities. Digital twins can use
any sort of model that is a sufficiently accurate representation of the
physical object that is being twinned (Wright and Davidson, 2020). One
common approach used is to construct a surrogate model or metamodel
based on high-fidelity physics-based simulations. A surrogate model is
a simplified model, typically data-driven, that runs more quickly than a
physics-based model and so can be used to generate updated parameter
estimates more quickly.

This surrogate-assisted digital twin can be realized through various
approaches, and one approach of particular interest is the hybrid
reduced-order modeling (ROM) and deep learning (DL) approach. One
of the most popular ROM methods for low-order approximation of
high-dimensional problems is the proper orthogonal decomposition
(POD) technique (Zhao et al., 2021, 2023; Liu et al., 2024). First
proposed in 1901 by Pearson (1901), the POD technique has since
been developed and provides an efficient approach for ROM analysis
in various applications. Recently, the neural network surrogate model
has also attracted great attention from a large number of scholars. This
ROM-DL hybrid approach has been applied to a spectrum of computa-
tional fluid/structural mechanics problems. San et al. (2019) developed
a POD–ANN framework for transient flow simulation. Pawar et al.
(2019) proposed a POD-DNN (deep neural network) framework for
non-intrusive model reduction of complex fluid flows. Fresca and Man-
zoni (2022) proposed a POD-DL strategy for nonlinear parameterized
PDEs. Regarding the structural and thermal analysis, Im et al. (2021)
described a combined Long short-term memory (LSTM) and POD for
surrogate modeling of large-scale elasto-plasticity problems; Shah et al.
(2022) presented a POD–ANN strategy for one-way coupled steady-
state linear thermo–mechanical problems; Park et al. (2013) proposed
to perform aircraft structural optimization design using POD–ANN;
Eftekhar Azam et al. (2019) presented a hybrid POD–ANN for damage
detection in structural systems; He et al. (2022) proposed a reduced-
order model based on POD and Back Propagation Neural Network
(BPNN) to rapidly estimate the void fraction and temperature field of
steam generators. Extension of the hybrid approach to fluid–structure
interaction and thermal fluid–structural problems is, however, chal-
lenging due partially to the multiphysics complexity of the problems
where multiple solvers are involved, and also partially, due to the
need for remeshing or dynamic meshing and the mismatch of meshing
caused by large geometric variations. Baiges et al. (2020) proposed a
finite element reduced-order model based on adaptive mesh refinement
and ANN and applied it to a fluid–structure interaction problem. Nar-
rowing down the studies to one-way coupled conjugate heat transfer
problems, the development of reduced order modeling and the hybrid
approach is still in its infancy and the related works are extremely

limited. Blanc et al. (2016) described the application of POD in the



Y. Yang et al.

a
a
b
p
F
t
S
i

2

t
c
f

w

Nuclear Engineering and Design 428 (2024) 113487 
simulation of conjugate heat transfer processes, but limited to the use
of only POD techniques.

Here, we describe the hybrid approach by combining POD with ANN
for transient conjugate heat transfer in a PWR pressurizer surge line.
We use a data-driven snapshot-based method to extract lower-order
modes of the fluid field, and the full field response is projected onto
these modes to attain POD-reduced state coefficients. The CFD simula-
tions and the structural analysis were carried out through parametric
modeling, considering geometric parameters and physical parameter
variations in operation. A mapping between input parameters and
reduced state coefficients of POD is constructed via ANN, enabling
response interpolation and prediction. The hybrid approach brings
forward a digital twin for the thermal stratification of surge lines.
An issue worth mentioning for this snapshot-based ROM is that there
must exist a fixed meshing to generate snapshots even when surge line
geometries change. This issue was solved by introducing an inverse dis-
tance weighted interpolation scheme. The parametric modeling, fluid
and structural simulation, and the digital-twinning are all implemented
in commercial software Fluent and ANSYS. We publicly share all codes
via the link. We hope that the availability of this hybrid method
and its implementation in commercial software will facilitate a wide
application in the community and also facilitate interaction between
academia and industry.

The paper is organized as follows: The simulation methods for
thermal–hydraulic modeling and thermal stress analysis of the surge
line are described in Section 2. Section 3 outlines the computational
procedure of parametric modeling for conjugate heat transfer in a
pressurizer surge line. Section 4.1 introduces the use of background
grids and the inverse distance weighting (IDW) method to establish
snapshots of variable geometry surge lines. The theory of POD, ANN,
and the hybrid POD–ANN approach are expounded in Sections 4.2,
4.3, and 4.4, respectively. The prediction results are compared and
discussed in Section 5. Finally, some concluding remarks are given in
Section 6.

2. Thermal–hydraulic modeling and stress analysis of surge line

The geometry and locations of monitoring points at specific cross-
sections of the pressurizer surge line are illustrated in Fig. 1. This study
incorporates five factors: the inner diameter 𝐷, the wall thickness 𝛿,
nd the inclination angle 𝜃 of the horizontal part of the surge line,
s well as the inlet velocity 𝑢 and the temperature difference 𝛥𝑇
etween the cold water from the hot leg and the hot water from the
ressurizer. The arrangement of the tilted horizontal part is shown in
ig. 1(d). The fluid control equations a outlined in Section 2.1, while
he independence tests of time step and mesh grids are discussed in
ection 2.2. Additionally, the thermal–fluid–solid coupling simulation
s introduced in Section 2.3.

.1. Governing equations

The Reynolds-averaged Navier–Stokes equations for the conserva-
ion of mass, momentum, energy, and turbulent quantities for the
onjugate heat transfer problem of the surge lines can be expressed as
ollows:

Mass Conservation Equation:

𝜕
(
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Energy Conservation equation:
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Pr𝑡 =
𝜇𝑡𝑐𝑝
𝜆𝑡

(4)

where 𝑥𝑖 and 𝑥𝑗 represent the Cartesian coordinates corresponding to
the 𝑥, 𝑦, and 𝑧 directions, respectively; 𝑢𝑖 is the average velocity; 𝑝
is the pressure; 𝜇 is the dynamic viscosity, representing the fluid’s
resistance to shear deformation. 𝑔𝑖 is the acceleration of gravity along
𝑖 direction; 𝑇 is the temperature; 𝜆 represents the thermal conductivity
of the fluid; 𝑐𝑝 is the specific heat; 𝑃𝑟𝑡 is the turbulent Prandtl number,
which characterizes the turbulent transport of heat in the fluid. The
SST 𝑘−𝜔 turbulence model was adopted in the present study, and the
corresponding equations are as follows:
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]

+ 𝐺𝜔 − 𝑌𝜔 +𝐷𝜔 + 𝑆𝜔 (6)

here 𝑢𝑖 is the velocity along the 𝑥, 𝑦, 𝑧 directions; 𝜔 the specific
turbulent dissipation rate; 𝐺𝑘 is the turbulence kinetic energy; 𝛤𝜔 is the
diffusion rate of 𝜔. 𝑌𝑘 and 𝑌𝜔 are the turbulences produced by diffusion.

2.2. Sensitivity tests of the CFD calculation parameters

Time step independency test: In order to evaluate the effect of the
time step on the calculation results, a sensitivity analysis was performed
for five different physical time steps of 0.3 s, 0.2 s, 0.1 s, 0.15 s and
0.05 s with a fixed number of nodes of about 390,000. Fig. 2(a) shows
the results of the root mean square (RMS) temperature calculation for
point 1 and point 3 in the cross-section A of the pressurizer surge line
for five time steps, points 1 and 3 are illustrated in Fig. 1(b). As shown
in Fig. 2(a), the temperature does not change much from 0.15 s to 0.05
s, so the optimal time step for the calculation is chosen to be 0.1 s.

Mesh independency test: To examine the influence of grid refine-
ment on the calculation outcomes, a sensitivity analysis was carried out
using four different node numbers ranging from 230,000 to 600,000,
maintaining a constant time step of 0.1 s. The results of the RMS
temperature calculations for the positions of point 1 and point 3 on the
cross-section A of the pressurizer surge line are presented in Fig. 2(b).
As depicted in Fig. 2(b), the temperature exhibits minimal variation as
the number of nodes increases from 390,000 to 600,000. Consequently,
the optimal number of nodes was determined to be 390,000.

2.3. Thermal–fluid–solid coupling analysis

To explore the thermal–hydraulic characteristics of the pressurizer
surge line, a conjugate heat transfer analysis is crucial. This analysis
encompasses conduction heat transfer in the pipe wall, conductive
heat transfer in the water, and the interaction between the pipe and
the fluid. The commercial CFD software FLUENT is utilized to sim-
ulate transient heat transfer and fluid flow in the surge line. The
mathematical models include the mass conservation equation, momen-
tum conservation equation, energy conservation equation, and turbu-
lent equations. The shear stress transport(SST) k-𝜔 turbulent model
is adopted which is known to enable high accuracy boundary layer
simulation. We adopt the 3-D, double-precision, pressure-based implicit
solver, turn on the full buoyancy model, and use the second-order
upwind method to discretize the convection terms. The fluid region grid
comprises 315,216 elements, while the structural region grid consists
of 76,416 elements.

After conducting the thermal–hydraulic analysis, the obtained tran-
sient temperature distributions of the surge line are imported into
the ANSYS static structural module to calculate thermal stresses and
deflections. The thermoelastic analysis based on the finite element
method is also conducted with the structural region grid consisting of
76,416 elements. The inlet (connected to the pressurizer) and outlet
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Fig. 1. Problem description of the outsurge and thermal stratification in a PWR pressurizer surge line. (a) Geometric dimensions of a fraction of a pressurizer surge line. (b)
Cross sectional temperature distribution of a surge line during thermal stratification. Points for monitoring temperature differences are marked. (c) The pressurizer outsurge flow
direction (red arrow) in a surge line and the selected cross sections are used for detecting thermal stratification. (d) Illustration of the tilt angle of the horizontal pipe.
Fig. 2. Cross-section A Pipe internal surface temperature versus time step and number of nodes.
(linked with hot-leg) ends are fixed constraints for the thermoelastic
analysis

The model used in this work is validated by comparing it with the
research from Kang et al. (2011). In the validation case, the surge line
is initially filled with cold water at 324.5 K. At a specific moment, hot
water at 491.45 K from the pressurizer is introduced into the upper
nozzle of the surge line, which is vertically connected to the pressurizer,
with a velocity of 0.07 m/s. The reference pressure is set at 2.2408 MPa.
Since power plants typically include an insulation layer around the tube
to prevent heat loss, the adiabatic condition is applied to the outer wall
surface of the surge line. The physical and mechanical properties of
the pipe material used in the analysis are detailed in Table 1. For the
4 
thermophysical properties of the coolant, water, refer to Jo and Kang
(2010).

Fig. 3(a) presents the transient evolution of the temperature dif-
ference between points 1 and 2 on the top and bottom inner wall
surfaces at cross-section A. In Fig. 3(b), the temperature difference
between points 3 and 4 on the top and bottom outer wall surfaces is
displayed. Additionally, Fig. 3(c) and (d) illustrate the transient evo-
lution of the maximum equivalent stress and the maximum deflection,
respectively. The obtained results correspond well with Kang’s previous
research (Kang et al., 2011), supporting the validity of the current
model. In Fig. 4(a), the temperature distribution of the surge line and
four monitoring sections at the 300 s mark is depicted, while Fig. 4(b)
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Fig. 3. Validation of the transient conjugate heat transfer simulation as compared to the results reported by Kang et al. (2011) for a pressurizer outsurge. (a) Evolution of
temperature difference between the top and bottom inner wall surfaces (Points 1 and 2 in Fig. 1(b)) of section A. (b) Temperature difference between the top and bottom outer
wall surfaces (Points 3 and 4 in Fig. 1(b)) of section A. (c) Transient maximum equivalent stress and (d) the maximum deflection.
Table 1
Properties of pipe material and water (Kang et al., 2011).

Parameters Values

Material of pipe ASME SA-312 type 316
Density of pipe material 𝜌𝑠 8000 kg/m3

Specific heat capacity of pipe material 𝐶𝑝𝑠 500 J∕kg K
Conductivity of pipe 𝜅𝑠 16.3 W∕m K
Thermal expansion coefficient of water at 135 ◦C 𝛽𝑤 9.63 × 10−4∕K
Young’s modulus of pipe 𝐸 193 × 109 Pa
Poisson’s ratio of pipe 𝑣𝑠 0.3
Thermal expansion coefficient of pipe 𝛽𝑠 17 × 10−6∕K
Velocity of surging flow 𝑢 0.07 m∕s
Pressurizer water temperature 𝑇𝐻 491.45 K
Heat pipe temperature 𝑇𝐿 324.85 K
Operating pressure 𝑃 2.2408 MPa

presents the deflection distribution. Notably, these simulation results
align with the findings in the reference paper.

3. Parametric modeling

Thermal stratification is influenced by various factors, including the
geometry and arrangement of the surge line, as well as the temper-
ature and velocity of the coolant. To rapidly predict the temperature
and stress fields under various operating conditions, we conducted
numerous numerical simulations, varying the conditions to establish a
comprehensive database. This study incorporates five factors: the inner
5 
Table 2
Working condition parameter table.

Parameter Range

Inner diameter of pressurizer surge line 𝐷 200 mm∼450 mm
Pressurizer surge line wall thickness 𝛿 16 mm∼45 mm
Horizontal pipe section tilt angle 𝜃 0◦∼15◦

Velocity of flow 𝑢 0.05 m/s∼0.3 m/s
Temperature difference 𝛥𝑇 10 K∼170 K

diameter 𝐷, wall thickness 𝛿, the inclination angle 𝜃 to the horizontal
plane of the surge line, inlet velocity 𝑢, and temperature difference
𝛥𝑇 between the cold water from the hot leg and hot water from the
pressurizer. The angle of inclination of the horizontal section of the
pressurizer surge line plays a crucial role in determining the extent
of thermal stratification within the surge line. To accurately model
and predict thermal stratification, our methodology incorporates the
tilt angle as a variable. By adjusting this angle, we aim to observe
and analyze its specific impact on thermal stratification.The tilted
arrangement is depicted in Fig. 1(d). Parametric modeling is designed
for issues demanding numerous calculation samples. In each sample,
only a few key parameters change, while the remaining parameters and
calculation settings remain constant. Parametric modeling and calcula-
tion eliminate the need for repetitive operations on the GUI interface,
enabling automated modeling, calculation, and data collection.

The ranges for the five varying parameters are presented in Table 2.
The temperature of the cold fluid is maintained at a constant value of
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Fig. 4. Thermal stratification of a pressurizer surge line and the induced deflection of the surge line. (a) Temperature distribution at 𝑡 = 300 s. Temperature contours corresponding
to sections marked in Fig. 1(c) are shown. (b) Induced thermal deflection at 𝑡 = 300 s.
322 K. The Latin hypercube sampling method (Loh, 1996) is employed
to extract values for the five parameters in each calculation sample.
All calculation settings are specified in batches through Python script,
and the varying parameters are cyclically assigned through the journal
file of Workbench to perform batch calculations. Ultimately, the entire
simulation process is encapsulated in a program that integrates Matlab,
journal files, and Python scripts. This program executes steps such as
importing the model, meshing, setting boundary conditions, assigning
material properties, submitting calculations, post-processing, and sav-
ing the results. The integrated procedure is illustrated in Fig. 5. Input
variables 𝐷, 𝛿, 𝜃 refer to the inner diameter, the wall thickness, and the
inclination angle of the horizontal part of the surge line, respectively.
Variables 𝑢 and 𝛥𝑇 correspond to the inlet velocity and the tempera-
ture difference of the fluid. Totally 100 cases are calculated through
parametric modeling and simulation. The acquired temperature fields
and thermal stress fields are accumulated as a database.

4. POD-ANN hybrid strategy

Engineering dynamical systems are high-dimensional and deform
able nonlinear systems. Processing these high-dimensional systems is
prohibitive, particularly due to the time-consuming training and test-
ing processes required for neural networks. Therefore, it is crucial
to reduce the degrees of freedom (DOFs) of the system to make it
solvable. In this paper, we combine POD and ANN to efficiently pre-
dict high-dimensional field information. However, when the geometric
parameters of the calculation model change, the number and position
of grids also change, making direct mapping impossible. To address
this, we introduce a novel POD–ANN hybrid strategy that incorporates
the inverse distance weighting (IDW) method and background grids
technology, specifically designed to tackle the challenge of predicting
in high-dimensional variable geometry systems.

4.1. Background grid and inverse distance weighted (IDW)

The field variables of different cases were collected using the para-
metric modeling method described earlier. However, the grids of the
surge line, with varying geometric parameters, exhibit differences,
leading to variations in DOFs. This discrepancy poses an inconvenience
for establishing snapshots used in the POD method. To address this,
the background grid method (Klok, 1986) and IDW interpolation are
employed. These techniques aim to obtain temperature data for an
equivalent number of nodes topologically mapped at the fluid–solid
interface, as illustrated in Fig. 6. Fig. 6(a) presents the background
6 
grids of two surge lines with varying tube diameters and tilt angles.
The red grid features a narrower diameter and remains horizontal,
while the blue grid exhibits a larger diameter with an inclination.
Despite differences in simulation grids, their background grid nodes
display a uniform topological distribution. All background grids can be
represented in the same two-dimensional unfolded form, containing 𝑛
nodes. In the present study, we set 𝑛 = 7728, with 24 nodes uniformly
distributed along the 𝛽 axis and 322 nodes uniformly distributed along
the 𝑠 axis, as depicted in Fig. 6(b). Subsequently, Inverse Distance
Weighting (IDW) interpolation was utilized to fill in missing physical
information in the background grids. The application of IDW interpola-
tion is demonstrated in Fig. 6(c), facilitating the transfer of the physical
field from the simulation grids to the background grids. Specifically,
when applying the IDW interpolation method to grid cells at the
boundary, the selected sample units should also be the boundary grid
cells.

𝑇𝑖 =

∑𝑛
𝑗=1 𝑇𝑗∕𝑑𝑗

∑𝑛
𝑗=1 1∕𝑑𝑗

(7)

where 𝑇𝑖 represents the temperature value on the background grid node
𝑖, 𝑇𝑗 is the value on the simulation grid node 𝑗, 𝑑𝑗 is the distance
of the nodes. This approach results in equal DOFs at the fluid–solid
interfaces across all cases. By employing background grids and the
IDW interpolation method, structural parameters or grid quantities are
standardized to a common scale. This normalization facilitates more
consistent comparisons and analyses across different parameter values.

4.2. Proper orthogonal decomposition (POD)

The initial phase of POD involves constructing a snapshot matrix
by combining the database established through the parametric mod-
eling method with the background grid and IDW methods described
earlier. Subsequently, we utilize the snapshot-based POD method for
model reduction. For an 𝑛-DOF system, a snapshot matrix containing 𝑚
cases (each with 5 input variables) calculated through the parametric
modeling method can be constructed as:

𝐓𝑠𝑛𝑎𝑝 = [𝐓(𝐜1) 𝐓(𝐜2)⋯𝐓(𝐜𝑖)⋯𝐓(𝐜𝑚)] (8)

in which 𝑚 is the total number of simulation cases, 𝐓(𝐜𝑖) = [𝑇1,𝑖 𝑇2,𝑖
⋯ 𝑇𝑛,𝑖]𝐓 is the temperature field at the fluid–solid interface at a certain
moment of 𝑖th simulation case, 𝑛 is the number of background grids.
And 𝐜 = [𝐷 𝛿 𝜃 𝑢 𝛥𝑇 ]𝐓 is the input variables vector of 𝑖th simulation
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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Fig. 5. Flow chart of parametric modeling for conjugate heat transfer in a pressurizer surge line.
case. The singular value decomposition (SVD) is employed in the
snapshot matrix.

𝐓𝑠𝑛𝑎𝑝 = ΦΣ𝐕∗ (9)

where Φ is the POD mode, Σ is the singular values matrix and 𝐕 is the
eigenvector matrix. The POD modes Φ can be further approximated
by a truncated Φ̄, where Φ̄ only contains the first 𝑙 modes. Based
on the selection criterion, the first 𝑙 order POD basis can be selected
accordingly:

𝑒(𝑙) =

∑𝑙
𝑗=1 𝜆𝑗

∑𝑚
𝑗=1 𝜆𝑗

(10)

where 𝜆𝑗 is the 𝑗th entry of the diagonal matrix Σ, and 𝑝 = 𝑚𝑖𝑛(𝑛, 𝑚) and
𝑙 < 𝑝. Herein, the relative error 𝜀(𝑙) of truncated POD bases is defined
as 𝜀(𝑙) = 1 − 𝑒(𝑙). The criterion for selecting the minimum 𝑙 is based
on the determination coefficient (𝑅2) of the prediction results. We keep
increasing the order of the truncated POD modes 𝑙 until the 𝑅2 is larger
than 0.99. Consequently, the number of POD modes 𝑙 for temperature
prediction reaches 6, and the 𝑙 for equivalent stress reaches 10. The
relative errors of the truncated POD modes 𝜀(𝑙) are 0.18% and 1% for
temperature and equivalent stress prediction, respectively.

Once the truncated POD modes Φ̄ are obtained, the reduced state
vector 𝐪(𝐜𝑖) of 𝐓(𝐜𝑖) associated with the POD modes are encoding via
the following relationship

𝐪(𝐜𝑖) = Φ̄𝑇𝐓(𝐜𝑖) (11)

and, vice versa, for a prediction condition �̂� = [�̂� 𝛿 �̂� �̂� 𝛥𝑇 ]𝐓, if �̂�(�̂�) is
forecasted via artificial neural network (ANN), a full-order data can be
decoded as

�̂�(�̂�) = Φ̄�̂�(�̂�) (12)
7 
Following this, the post process software Tecplot was utilized to visu-
alize the temperature field on the fluid–solid interface based on the
high-dimensional prediction �̂�(�̂�).

4.3. Artificial neural network (ANN)

The architecture of the artificial neural network (ANN) surrogate
model is schematically illustrated in the middle of Fig. 7. In this study, a
dense, fully connected, feed-forward, 1-hidden-layer ANN was utilized,
and the activation produced by the ANN is given as follows:

𝐳 = 𝑔(𝐰1𝐜 + 𝐛1)
𝐪 = 𝑔(𝐰2𝐳 + 𝐛2)

(13)

where 𝐰1, 𝐰2 are the weight coefficient matrices, 𝐛1, 𝐛2 are the bias
vectors, respectively. The function 𝑔 is a nonlinear function applied
element-wise on its arguments, which is the output from the previous
step. 𝐳 is the hidden vector, with its scalar components referred to as
neurons, and the number of neurons in the hidden layer is 64. Note that
𝐜 denotes the input layer with 5 neurons corresponding to 𝐷, 𝛿, 𝜃, 𝑢, 𝛥𝑇 ,
and 𝐪 denotes the output layer with 𝑙 neurons corresponding to the
reduced state vector introduced in Eq. (11). Here, 𝑙 is the number
of the modes in truncated Φ̄ shown in Eq. (10). 𝑔 is a nonlinear
function applied element-wise on its arguments which is applied to the
output from the previous step. Popular choices for 𝑔 include the logistic
function, the hyperbolic tangent function, or the rectified linear unit (or
ReLU) function (Tripathy and Bilionis, 2018). In this paper, ReLU was
adopted as the activation function in all hidden layers and input layers,
and we trained the network using the Adam optimizer.

Once the construction of a surrogate model is completed, it is
crucial to evaluate the accuracy of the approximation. The so-called
𝑅2 correlation coefficient is calculated on the test dataset to assess the
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Fig. 6. Background grids generation and illustration of the interpolation method used. (a) Generation of background grids for surge lines with various geometries. (b) The fluid–
structure interaction surface grid (top) and its expanded view (bottom) along the central axis are marked in red. (c) Illustration of inverse distance weighted (IDW) interpolation
used herein.
Fig. 7. Schematic of the proposed POD–ANN method.
model’s performance. In order to ensure the impact of the number of
hidden layer neurons on the model performance in neural network ar-
chitectures, a sensitivity study is conducted in this paper. In this study,
five different configurations were designed for the key parameter of the
number of hidden layer neurons: 5 neurons, 10 neurons, 32 neurons,
64 neurons, and 128 neurons. This is shown in the Table 3 below:
8 
As the number of neurons in the hidden layer increases, we observe
a gradual improvement in the model’s performance on the training
set. However, this improvement is not unlimited. When the number of
neurons is increased to 128, the enhancement in model performance
starts to diminish, and overfitting may even occur, leading to perfor-
mance degradation on the test set. Therefore, to ensure the accuracy
and generalizability of the model, this paper chooses the number of
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Table 3
Table of goodness-of-fit for number of neurons.

Number of neurons 𝑅2

5 0.9952
10 0.9958
32 0.9965
64 0.9969
128 0.9734

neurons to be 64. The surrogate models exhibit excellent performance
in terms of temperature and stress fields on the fluid–solid interface, all
achieving 𝑅2 measures greater than 98%. The ANN Module in MATLAB
was employed for the aforementioned surrogate modeling. Once the
surrogate model is established, a predicted reduced state vector �̂� can
e obtained using Eq. (13), and the full-order system temperature is
ecoded by Eq. (12).

.4. Prediction process

The POD–ANN hybrid approach depicted in Fig. 7 is outlined as
ollows:

i. Collect input variables matrix of the 𝑚 simulation cases 𝐂 =
[𝐜1, 𝐜2,… , 𝐜𝑚] (each case having 5 variables) and the full-order
temperature field data of each cases at a certain moment on
fluid–solid interface. And utilize the background grid and IDW
methods to establish the snapshot matrix 𝐓𝑠𝑛𝑎𝑝 = [𝐓(𝐜1),𝐓(𝐜2),
… ,𝐓(𝐜𝑚)].

ii. Afterwards perform POD analysis on 𝐓𝑠𝑛𝑎𝑝 to obtain POD modes
Φ and the truncated POD modes Φ̄.

iii. Encode POD reduced state vectors 𝐪𝑠𝑛𝑎𝑝 = [𝐪(𝐜1),𝐪(𝐜2),… ,𝐪(𝐜𝑚)]
of 𝐓𝑠𝑛𝑎𝑝 through Eq. (11), and then feed 𝐪𝑠𝑛𝑎𝑝 and 𝐂 into ANN
model as training data.

iv. Obtained the well-trained surrogate model through training by
ANN, which establishes a nonlinear mapping between factors
and reduced state vector.

v. The ANN surrogate model was used to predict the unknown
case’s reduced state data �̂�(�̂�) under condition �̂� =
[�̂�, 𝛿, �̂�, �̂�, 𝛥�̂� ]𝐓 by Eq. (13).

vi. Decode a full-order data �̂�(�̂�) via Eq. (12).

Ultimately, the post process software Tecplot was employed to
isualize the temperature field on the fluid–solid interface based on the
igh-dimensional prediction �̂�(�̂�). The sizes of system variables for the
OD–ANN hybrid approach are listed in Table 4: mn

. Results and discussion

The simulation of surge line thermal stratification was conducted
n a PC equipped with an Intel(R) Core(TM) i7-9750H CPU 2.60 GHz
rocessor in the Windows environment. The simulations were carried
ut for all cases with various parameters, and all calculations were
erminated at 𝑡 = 1000 s. For a single case calculation, using the
raditional method can often take up to 17 h, significantly increasing
he time cost of the project. When 100 cases need to be processed in
atch, the cumulative effect becomes even more significant, totaling
ver 1700 h, or more than two months of continuous working time.
his greatly consumes both time and resources. To overcome this
hallenge, the innovative hybrid POD–ANN method proposed in this
aper significantly improves computational efficiency by combining the
dvantages of POD and ANN. It takes only 1 min to predict a working
ondition using the hybrid POD–ANN method. Consequently, process-
ng 100 cases in batch will take just 100 min, drastically reducing the
ime and cost of calculating working conditions. This efficiency not only
nables engineering projects to be completed more quickly but also
 𝑅

9 
educes resource consumption and cost investment in the calculation
rocess.

Each case involved numerous time steps in the transient processing,
ith thousands of degrees of freedom (DOFs) for temperature informa-

ion at each time step. Storing and processing such large volumes of
ime results is impractical. Due to the differences in initial fluid veloci-
ies, thermal stratification occurs and fully develops at 600 s in all 100
ases. This time point was chosen as a critical node to explore thermal
tratification because, for most cases, it represents a crucial moment.
t this time, thermal stratification in the horizontal section of the surge

ine is prevalent and in a relatively stable state. Prior to this time, the
ot water has not yet completely flowed into the surge line, making
he thermal stratification phenomenon not yet obvious and accurate
rediction and analysis difficult. Conversely, if the selected time point is
oo late, the water temperature in the surge line has equalized, causing
he thermal stratification phenomenon to disappear and rendering the
rediction practically insignificant. Therefore, this paper selects 600 s
s the key time point for prediction. The temperature data of the fluid–
olid coupling surface of the surge line at this moment (𝑡 = 600 s) in
ll cases are summarized to form a snapshot matrix. Although only the
00 s moment is predicted in this paper, it does not imply that the
hermal stratification and thermal stress conditions at other moments
re unimportant. On the contrary, future studies can further extend
he time range to reveal more comprehensively the thermal behavior
haracteristics of the surge line at different time points.

After completing 100 sets of numerical simulations and batch post-
rocessing, the snapshot matrix of all simulated cases was finally
onstructed. Singular value decomposition (SVD) was then performed
n the snapshot matrix, yielding the corresponding POD modes. Fig. 8
llustrates the six leading POD modes of surge line temperature distri-
ution. These POD modes, denoted as Φ, were projected onto a certain

surge line fluid–solid interface geometry. The red frames in Fig. 8
represent the bottom view of each POD mode. Fig. 8(a) captures the
characteristic where the thermal amplitude of the upstream is larger
than the thermal amplitude of the downstream, consistent with the
physical phenomenon of hot water flowing from the inlet to the outlet.
Fig. 8(c) illustrates that mode 3 captures the thermal stratification of
the surge line. Once the POD modes were obtained, the ANN method
was employed to build the surrogate model between the initial five
parameters and the POD state coefficients.

Fig. 9 exhibits the temperature distribution on fluid–structure in-
teraction surface for two predicted cases. For case A the five variables
get the values as follows: �̂� = 169.9 mm, 𝛿 = 38.6 mm, �̂� = 8.4◦, �̂� =
0.0798 m/s, 𝛥�̂� = 52.2 K and for case B �̂� = 208.5 mm, 𝛿 = 17.9 mm, �̂�

1.2◦, �̂� = 0.0994 m/s, 𝛥�̂� = 62.7 K. The POD–ANN predictions align
ell with the CFD results as shown in Fig. 9. The flow and thermal

ields in the surge line are highly complex, involving the mixing of two
luids with different temperatures. Additionally, simultaneous convec-
ion heat transfer between the surging water and the wet wall, along
ith heat conduction through the pipe wall, further contribute to the

omplexity. In Fig. 9(a) and (b), the transient temperature distribution
n the wet wall surface is depicted. It illustrates that hot water flows
nto the surge line from the nozzle at the bottom of the pressurizer. The
ertical section of the surge line warms up rapidly, indicating a clear
hermal stratification in the horizontal section. To quantify the quality
f temperature predictions, we used the coefficient of determination
𝑅2
𝑇 ) over all spatial locations which is defined in Eq. (14). 𝑅2

𝑇 is usually
etween zero to one,

2
𝑇 = 1 −

∑𝑛
𝑖=1(𝑇𝑖 − 𝑇𝑖)2

∑𝑛
𝑖=1(𝑇𝑖 − 𝑇𝑖)2

(14)

here 𝑇𝑖 is the CFD temperature data, 𝑇𝑖 represents the predicted
emperature data, and 𝑇𝑖 is the mean of the CFD temperature data. In
ddition, 𝑛 is the DOFs on the fluid–structure interaction surface.The
2 values for case A and case B are 0.9983 and 0.9876, respectively,
𝑇
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Table 4
System variables and matrix size of POD–ANN method.

System variables Size

Snapshot matrix 𝐓𝑠𝑛𝑎𝑝 𝑛 × 𝑚 (𝑛-number of DOFs, 𝑚-number of simulation cases)
POD modes 𝚽 𝑛 × 𝑚
Truncated POD modes �̄� 𝑛 × 𝑙 (𝑙-number of truncated POD modes)
Reduced snap matrix 𝐪𝑠𝑛𝑎𝑝 𝑙 × 𝑚
ANN input 𝐜 5 (number of simulation parameters [𝐷, 𝛿, 𝜃, 𝑢, 𝛥𝑇 ])
ANN output 𝐪 𝑙 (number of POD state coefficients)
Fig. 8. Calculated six leading POD modes of surge line temperature distribution.
Fig. 9. Digital twins for surge line temperature distribution are depicted in (a) and (b), showcasing comparisons between ground truth CFD simulations of interfacial temperature
and their digital twins obtained via POD–ANN, alongside relative error distribution for case A (�̂� = 169.9 mm, 𝛿 = 38.6 mm, �̂� = 8.4◦, �̂� = 0.0798 m/s, 𝛥�̂� = 52.2 K) and case
B (�̂� = 208.5 mm, 𝛿 = 17.9 mm, �̂� = 1.2◦, �̂� = 0.0994 m/s, 𝛥�̂� = 62.7 K). Additionally, (c) shows the number of POD modes used and the associated relative truncated error for
the temperature field.
reaffirming the accuracy of digital twins obtained via POD–ANN. Fur-
thermore, to explore the differential distribution on the surge line
internal face for cases A and B, the error cloud plots are mapped by
absolute error ∣ 𝐓 − �̂� ∣, as shown in the bottom of Fig. 9(a) and (b).
The absolute error of both cases is less than 0.7 K, demonstrating the
feasibility of the POD–ANN hybrid method. The absolute error of the
horizontal tube section is very close to 0 (white in the error contour),
indicating that the digital twins of the temperature field can effectively
capture the phenomenon of thermal stratification in the horizontal
10 
section. The optimal number of truncated POD modes is determined
by plotting the relative error 𝜀(𝑙) as a function of the number of POD
modes 𝑙, as shown in Fig. 9(c). It can be observed that the relative
error function goes down with increasing the number of POD modes,
and when the number reaches 6, the relative error of the truncated
POD modes is below 0.18%. Hence, 6 POD modes are chosen and then
used to predict temperature distribution on fluid–structure interaction
surface.



Y. Yang et al.

𝑢

Nuclear Engineering and Design 428 (2024) 113487 
Fig. 10. Accuracy assessment of digital twins for surge line temperature distribution under parameters outside the initial range are depicted in (a) and (b). These plots illustrate
a comparison between the ground truth CFD simulation of interfacial temperature and its digital twins obtained via POD–ANN, alongside relative error distribution for case C
(�̂� = 158.1 mm, 𝛿 = 42.4 mm, �̂� = 0.56◦, �̂� = 0.045 m∕s, 𝛥�̂� = 36.9 K) and case D (�̂� = 90 mm, 𝛿 = 65 mm, �̂� = 16◦, �̂� = 0.04 m∕s, 𝛥�̂� = 180 K), respectively.
To further explore the application of the POD–ANN method in the
numerical simulation of thermal stratification in surge lines, we pre-
dicted the temperature distribution on the fluid–structure interaction
surface in two cases where variables were selected outside the range of
the five initial simulation parameters. Fig. 10 illustrates the CFD results,
predicted results, and error distribution for both cases. In case C, the
values of the five variables are as follows: �̂� = 158.1 mm, 𝛿 = 42.4 mm,
�̂� = 0.56◦, �̂� = 0.045 m∕s, 𝛥�̂� = 36.9 K, with the flow velocity parameter
falling below the working condition range. The 𝑅2

𝑇 value of the tem-
perature distribution on the fluid–structure interaction surface is 0.958,
indicating strong alignment between the POD–ANN predictions and the
CFD results. The discrepancy between the CFD result and the POD–ANN
prediction is depicted at the bottom of Fig. 10(a), with an absolute error
of less than 3 K. This demonstrates that the POD–ANN hybrid method
remains viable even when the parameters extend beyond the initial
sample range. In the case of D, with �̂� = 90 mm, 𝛿 = 65 mm, �̂� = 16◦,
̂ = 0.04 m∕s, 𝛥�̂� = 180 K, all five working condition parameters are
outside the range of the initial set values. The POD–ANN prediction
results significantly differ from those of the CFD, with an 𝑅2

𝑇 value of
temperature distribution on the fluid–structure interaction surface of
−0.135. The absolute error between the CFD result and the POD–ANN
prediction, shown at the bottom of Fig. 10(b), indicates that most areas
on the fluid–structure interaction surface exhibit differences higher
than 12 K. Further research is required to determine the feasibility
and applicability of each parameter beyond the initial range in the
POD–ANN method.

The accuracy of digital twins for surge line equivalent stress distri-
bution is also evaluated, as depicted in Fig. 11. The equivalent stress
distribution on the fluid–structure interaction surface for two predicted
cases. In case A, the values for the five variables are �̂� = 169.9 mm, 𝛿 =
38.6 mm, �̂� = 8.4◦, �̂� = 0.0798 m/s, and 𝛥�̂� = 52.2 K. For case B, the
values are �̂� = 208.5 mm, 𝛿 = 17.9 mm, �̂� = 1.2◦, �̂� = 0.0994 m/s, and
𝛥�̂� = 62.7 K. To quantify the quality of stress distribution predictions,
we used the coefficient of determination (𝑅2

𝑆 ) over all spatial locations
which is defined in Eq. (15). 𝑅2

𝑆 is usually between zero to one,

𝑅2
𝑆 = 1 −

∑𝑛
𝑖=1(𝑆𝑖 − �̂�𝑖)2

∑𝑛 2
(15)
𝑖=1(𝑆𝑖 − �̄�𝑖)

11 
where 𝑆𝑖 is the FEM stress distribution, �̂�𝑖 represents the predicted
stress distribution, and �̄�𝑖 is the mean of the FEM stress distribution.
In addition, 𝑛 is the DOFs on the fluid–structure interaction surface.
The 𝑅2

𝑆 values for case A and case B are 0.9765 and 0.9903, respec-
tively, indicating that the predictions from POD–ANN are also in good
agreement with the finite element simulation results. The transient
distributions of equivalent forces in the pressurizer surge line for the
two operating conditions are depicted in Fig. 11(a) and (b), with the
maximum equivalent forces located at both ends of the pressurizer
surge line. The error cloud plots of equivalent stress distribution on
the surge line internal face for each case were shown at the bottom of
Fig. 11(a) and (b), In case A, the larger error distribution is observed
in the downstream segment, whereas for case B, the larger error dis-
tribution is at the ends of the pressurizer surge line. Given that the
maximum stress value is approximately 3.8 × 108 Pa and the absolute
error is 8 × 106 Pa, it can be inferred that numerical twinning can
effectively reconstruct not only the temperature variable but also the
stress variable. Meanwhile, with the number of POD modes reaching
10, the relative error of the truncated POD modes remains below 1%,
as illustrated in Fig. 11(c). 10 POD modes are selected and utilized
to predict the distribution of equivalent stress on the fluid–structure
interaction surface.

Despite the accurate predictions, the computational time required
for POD–ANN is negligible compared to conventional simulations. This
enables real-time predictions of thermal stratification under any work-
ing condition.

6. Conclusion

Piping systems are extensively adopted in power plants. A long
horizontal pipe is susceptible to thermal stratification if a hot fluid and
a cold fluid meet and mix in the pipe. A pressurizer surge line belongs
to this type of line, and several incidents of thermal stratification of
surge lines have been reported and have drawn great safety concerns.
Thermal stratification of a pressurizer surge line is affected by a number
of geometric and physical parameters. It is highly desirable to assess
the thermal and structural behaviors of the surge line under thermal
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Fig. 11. Digital twins for surge line equivalent stress distribution are illustrated in (a) and (b), displaying comparisons between ground truth CFD simulations of interfacial stress
and their digital twins obtained via POD–ANN, accompanied by relative error distribution for case A and B, respectively. Additionally, (c) presents the number of POD modes used
and the associated relative truncated error for stress.
stratification conditions, covering all possible parameter variations of
interest. The assessment should be carried out in an in-line, real-time
way and should be completed as quickly as possible, which calls for
the construction of digital twins of surge lines subjected to thermal
stratification loadings as virtual replicas of real physical systems. Com-
plicated one-way coupled conjugate heat transfer is involved in the
thermal stratification and thermal stress analysis of surge lines, which
entails high-quality meshing generation and high cost CFD and FEM
simulations. Constructing digital twins of such a multiphysics coupling
problem necessitates access to a host of a forbidden task if high-fidelity
simulations are used exclusively.

This paper describes a hybrid POD–ANN approach to construct a
surrogate-assisted digital twining of a surge line subjected to thermal
stratification. A parametric modeling of the conjugate heat transfer
problem was performed. In exploring the thermal stratification phe-
nomenon, this paper has identified 600 s as a critical time point. At
this certain moment, the thermal stratification phenomenon within
the horizontal section of the surge line is not only prevalent but also
exhibits a relatively stable state, providing ideal conditions to study
its properties and mechanisms. Therefore, at this specific moment,
special attention was given to field variables such as temperature and
stress on the fluid–structure interaction surface. These critical data
were comprehensively collected and meticulously stored for subse-
quent analysis. Possible parameter variations were also considered to
ensure the data’s comprehensiveness and accuracy. And an inverse
distance weighted (IDW) interpolation method was introduced to gen-
erate a background grid with fixed topology regardless of variations
of surge line geometries, which facilitates the collection of simulation
data on a fixed grid and the construction of the snapshot matrix for
reduced-order modeling. Subsequently, the popular proper orthogonal
decomposition (POD) technology was used here based on the snapshot
matrix, and the reduced state coefficients were obtained. A surro-
gate model was then established by using ANN, and a relationship
between the design parameters of the surge line and the reduced
state coefficients of POD modes was built in a black-box way. Here,
the inner diameter 𝐷, the wall thickness 𝛿, the inclination angle 𝜃,
the inlet velocity 𝑢 and the temperature difference 𝛥𝑇 of the surge
line were chosen as design variables for demonstration, and a three-
layers ANN for data regression, resulting in a feasible and flexible
12 
numerical strategy for digital twinning. Finally, we introduce a novel
POD–ANN hybrid strategy that incorporates the background grids and
IDW method, specifically designed to tackle the challenge of predicting
in high-dimensional variable geometry nuclear systems. In summary,
we proposed a novel POD–ANN hybrid strategy that incorporates the
background grids and the IDW method, specifically designed to tackle
the challenge of predicting high-dimensional variable geometry nu-
clear systems. The precision of digital twins established by POD–ANN
approach for surge line temperature and thermal stress distribution
was ensured by monitoring the determination coefficient (𝑅2) and the
relative error cloud plots. Some preliminary study on the performance
of the current method for parameter extrapolation was also carried
out, and the method demonstrates a limited extrapolation capability.
Nevertheless, the improvement of the approach for better extrapolation
performance under large parameter variation remains an open question
for future study. The proposed approach has been implemented in
commercial software through scripting, and the codes are accessible
via the provided link. The accessibility of the codes and the compati-
bility with commercial software would facilitate broad application in
the community, given the fact that the study on surrogate-assisted
digital twins is fairly limited in the literature for such a complex
thermo–fluid–structure interaction problem.
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