Computer Architecture

Lecture 09 — VLIW
(Instruction level Parallelism)

Tian Xia
Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

http://gr.xjtu.edu.cn/web/pengjuren

Superscalar Control Logic Scaling
_ Issue Width W

Issue Group

Previously | NN\
Issued L NN Lifetime L
Instructions !

Each issued instruction must somehow check against W*L
instructions to wake them up, i.e., growth in hardware oc W*(W*L)
For in-order machines, L is related to pipeline latencies and check
is done during issue (scoreboard)
For out-of-order machines, L also includes time spent in 1Q or ROB,
and check is done by broadcasting tags to waiting instructions at
write back (completion)
As W increases, larger instruction window is needed to find enough
parallelism to keep machine busy => greater L

=> Qut-of-order control logic grows faster than W? (~W?3) 2

Out-of-Order Control Complexity:
MIPS R10000

Instittction
Cache

Data
L L:].ﬂ_]11""

Control
Logic

Address
- Queue

Register
Rename

[SGI/MIPS Technologies q
Inc., 1995]

Sequential ISA Bottleneck

Superscalar compiler Superscalar processor

Sequential
source code

Sequential
ISA

a=a+l;
b=16*a;
c=sqgrt (a) ;
d=d+2;
e=b*d;

VLIW compiler VLIW processor

VLIW ISA

VLIW: Very Long Instruction Word

Int Op 1

Int Op 2

Mem Op 1

Mem Op 2

FP Op 1

FP Op 2

!

!

Two Integer Units,
Single-Cycle Latency

= Multiple operations packed into one instruction (bundle)

!

!

Two Load/Store Units,
Three-Cycle Latency

!

Two Floating-Point Units,
Four-Cycle Latency

'

= Each operation slot is for a fixed function unit type

= Fill unused slots with paddling instructions (NOP)
= Constant operation latency is specified(e.g. 3 for Mem Op)

= Architecture requires compiler to guarantee:
- Parallelism within an instruction => no cross-operation RAW check

- No data use before data ready => no data interlocks

5

VLIW: Very Long Instruction Word

= Architecture requires guarantee of:
- Parallelism within an instruction => no cross-operation RAW check
- No data use before data ready => no data interlocks

Instruction Bundle Execution RegFile

o | {MUL X1, X2, X3 ADDI x4, (x1) 113} MUL ADDI < — X1

]
S| {SuB x5, (x1) 14) Which X172 1-Cy0'e$ sus &
v Which X1? 4-Cycle 1-Cy0'el
s
0 _—

\ —> X1’

= Hardware assumes compiler is aware of all the data
dependency and instruction latency of bundles

VLIW Performance Example (2-wide bundles)

lw $t0, 40(%$s0)

sub $t2, $s1, $s3

or

$t4, $s1, $s5

add $t1, $s1, $s2
and $t3, $s3, $s4
sw $s5, 80($s09)

1w

add

sub

and

or

SW

$t0,

s$tl,

$t2,

$t3,

st4,

Ss5,

40 (5s0)

sl, Ss2

Ssl, $s3

$s3, S$s4

Ssl, $sb5

80 ($s0)

Actual IPC = 2 (6 instructions issued in 3 cycles) ‘

2

3

4

Ideal IPC = 2

8

lw3

add|

$SsOR

40

$sil

$s2

sub 3

and

RE

S$sl

$s3

$s3]i

Ss4|.

IM

or [

Sw |

< .
e

$t0

1st1

RF

L]

RFE

$sl

$s5]

ss0|

80

DM

L

S$t2

$t3

|

L

RF

DM
$Ssb

st4

RF

L]

>

Time (cycles)

VLIW Compiler Responsibilities

= Statically schedule (reorder) operations to
maximize parallel execution

= Guarantees intra-instruction parallelism

= Schedule to avoid data hazards (no interlocks)
- Typically separates operations with explicit NOPs

» What if data cache miss occurs?

- (Scratchpad) Usually control cache manually by programmer
- Could stop the pipeline and wait

for (i=0;i<N;i++)

Bli]=A[i]+C;

Compile l

loop:£f1ld £1,0(x1)
add x1,8
fadd £2,£0, £l
fsd 2,0 (x2)
add x2,8
bne x1,x3,loop

Loop Execution

Intl1 Int2 M1l M2 FP+ FPx
loop: fadd x1 fid {
\ £1
x1 \\\ifadd
‘\ /
Schedule \ /

> \

kbdd x2 bne fsd

How many FP ops/cycle?
1 fadd / 8 cycles = 0.125

Loop Unrolling
for (i=0;i<N;i++)
B[i]=A[i]+C;

at once

v
for (i=0;i<N;i+=4)
{

B[i] =A[i]+C;
B[i+1]=A[i+1]+C; |5 thjs code correct ?
B[i+2]=A[i+2]+C;
B[i+3]=A[i+3]+C;

}

B Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

B More instructions (= larger I cache)

Unroll inner loop to perform 4 iterations

10

Scheduling Loop Unrolled Code

Unroll into 4 ways

loop: fld f1, O(x1)
fld 2, 8(x1)
fld 3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd 6, f0, f2
fadd f7, f0, f3

fadd f8, f0, f4
fsd 5, 0(x2)

fsd 6, 8(x2)

fsd 17, 16(x2)
fsd 8, 24(x2)
add x2, 32

bne x1, x3, loop

How many FLOPS/cycle?

Int1 Int2 M1 M2 FP+ FPx
loop: fid £
fld 12 N\
fd 13 N\ O\
ladd x1 fid f4 \ "\ Jfadd {5
N Ytadd 16
Schedule R fadd 7
///tadd fg
tsdfs ///
fsdt6’//
fsd 7. /
ladd x2 bne | fsd 8]
|
|

4 faads / 11 cycles = 0.36

11

Scheduling Loop Unrolled Code

Unroll into 4 ways

loop: fld f1, O(x1)
fld 2, 8(x1)
fld 3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd 6, f0, f2
fadd f7, f0, f3
fadd 8, f0, f4
fsd 5, 0(x2)
fsd 6, 8(x2)
fsd 17, 16(x2)
fsd 8, 24(x2)
add x2, 32
bne x1, x3, loop

How many FLLOPS/cycle?

Intl1 Int2 M1 M2 FP+ FPx
loop: fld f1. fld f2,
fld 13 M 44\
N\ \\\s_
ladd x1 fadd I.fadd B
,Tadd A7 fadd 8
Schedule
: 777
LL
fsd 15 Asd f61/
bdd x2 bne | fsd f7| fsd f8

4 fadds / 9 cycles = 0.44

12

Software Pipelining

Exploit independent loop iterations

B If loop iterations are independent, then get more parallelism
by scheduling instructions from different iterations

B Construct the data-flow graph for one iteration

load Ali] C
for (i=0; i<N; i++) \;/
B[i] = A[i] + C; I

store BJi]

13

Not pipelined

load A[O] C

store B[O]

load AJ1] C

store B[1]

load A[2] C

store B[2]

load A[3] C

store B[3]

Software Pipelining

Pipelined
(
Load A[O]
T <
+ load A[1]
>{_ store B[O] + load A[2]
o
g store B[1] + load A[3]
=<
S store B[2] + load A[4]
0]
m store B[3] ¥ + | [load A[5]
>
£ store B[4] +
5 <
e
— store B[5]]/

14

Software Pipelining vs. Loop Unrolling

Loop Unrolled

Wind-down overhead
performance

Startup overhead

) Loop Iteration: time
Software Pipelined
performance
D time'

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

15

Unroll 4 ways first

loop: fld f1, O(x1)
fld 2, 8(x1)
fld 3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd 6, f0, f2
fadd f7, f0, f3

Software Pipelining

fadd f8, f0, f4
fsd 5, 0(x2)

fsd 6, 8(x2)

fsd 17, 16(x2)
fsd 8, 24(x2)
add x2,32 =~
bne x1, x3, loop

-

»
»

loop:

g

/dd
/,:;(add x1

Conflict: put
BNE in the
next bundle

Intl Int 2 M1 M2 FP+
fld f1
fld f2
fld f3
add x1 fld 14
fld f1 fadd 5
fld f2 fadd f6
fld 3 fadd f7
add x1 fld f4 fadd 8
fld f1 | fsd f5 fadd 5
fld f2 | fsd 6 fadd 6
fld f3 | fsd f7 fadd f7
kdd x2>bne fld f4 | fsd f8 fadd {8
fsd f5 fadd 5
fsd f6 fadd f6
fsd f7 fadd f7
add x2 bne fsd 18 fadd 8
fsd 5

16

Unroll 4 ways first

loop: fld f1, O(x1)
fld 2, 8(x1)
fld 3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd 6, f0, f2
fadd f7, f0, f3

Software Pipelining

Intl

Int 2

M1

M2

FP+

fld f1

fld {2

fld f3

add x1

fld 14

fid f1

fadd {5

fid f2

fadd f6

fid f3

N

fadd fi

fadd f8, f0, f4

fsd 5, 0(x2)

fsd 6, 8(x2)

fsd 17, 16(x2)
| addx2,327
L_fsdf8, -8(x2)]

bne x1, x3, loop

v

loop:

add x1

fid f4

fadd f¢

fld f1

fsd 5

fadd f-

-

fld {2

fsd 6

fadd f¢

ey

add xAfld f3

fsd 7

~N J 7 A=A | N

fadd fi

add x-ia bne //

' fld f4

fsd 8

fadd f¢

fsd f5

fadd f*

fsd f6

fadd f¢

add x2

fsd f7

~N J7 A=A | N

fadd fi

bne

fsd f8

fadd f¢

NI

fsd f5

17

Software Pipelining

Unroll 4 ways first

loop: fld f1, O(x1)
fld 2, 8(x1)
fld 3, 16(x1)
fld f4, 24(x1)

add x1, 32
fadd f5, fO, f1
fadd f6, f0, f2
fadd f7, f0, f3
fadd f8, f0, f4
fsd 5, 0(x2)
fsd 6, 8(x2)
fsd 17, 16(x2)
add x2, 32
fsd f8, -8(x2)
bne x1, x3, loop

prolog {

v

. loop:
iterate P

=1 FLORS/cycle
-

—

epilog <

Intl

Int 2

M1

M2

FP+

FPx

fld f1

fld {2

fld f3

add x1

fld 14

fid f1

fadd {5

fid f2

fadd f6

fid f3

fadd f7

add x1

fid f4

fadd {8

fld f1

fsd 5

fadd {5

fld {2

fsd 6

fadd f6

add x2

fld f3

fsd 7

fadd f7

add x1

bne

fld f4

fsd 8

fadd {8

fsd 5

fsd 6

add x2

fsd f7

bne

fsd 8

18

Basic block

What if there are no loops?

N

~.

/\

N

= Branches limit basic block
size in control-flow
intensive irregular code

= Difficult to find ILP in
individual basic blocks
because of the limited
scope of instructions

19

Trace Scheduli NE [Fisher,Ellis]

= A trace is a possible sequence of basic
blocks (a.k.a., long string of straight-line
code)

= Trace Seiection: Use profiling or
compiler heuristics to find common
sequences/paths

» Trace Compaction: Schedule whole
trace into few VLIW instructions

= Add fixup code to cope with branches
jumping out of trace

20

Problems with “Classic” VLIW

= Object-code compatibility
- Have to recompile all code for every machine, even for two
machines in same generation

= Knowing branch probabilities
- Profiling requires an significant extra step in build process

= Scheduling for statically unpredictable branches
- optimal schedule varies with branch path

= Object code size
- Instruction padding (NOPs) wastes instruction memory/cache
- loop unrolling/software pipelining replicates code

= Scheduling variable latency memory operations
- Cache miss and/or memory bank conflicts impose statically
unpredictable variability

- Uncertainty about addresses limit code reordering
21

Intel Itanium, EPIC 1A-64

= EPIC is the style of architecture (cf. CISC, RISC)

- Initially proposed by HP (in 1989)
- Explicitly Parallel Instruction Computing (really just VLIW)

= [A-64 is Intel’s chosen ISA (cf. x86, MIPS) /‘7
- . . intel
|A-64 = Intel Architecture 64-bit
Intel version of VLIW (cooperated with HP) ltanium’
An object-code-compatible VLIW s

Designed to handle complex tasks (e.g. scientific computing and
simulations, high-volume stock trading, airline reservation systems and

secure internet transactions).

= Merced was first ltanium implementation (cf. 8086)
- First customer shipment expected 1997 (actually 2001)
- McKinley, second implementation shipped in 2002
- Recent version, Poulson, eight cores, 32nm, announced 2011
- Retired in 2019, after nearly 20 years of production. 22

Eight Core Itanium “Poulson” [intel 2011]

- e——

s PR

= 8 cores

=]-cycle 16KB L1 1&D caches
= 9-cycle 512KB L2 i-cache

= 8-cycle 256KB L2 D-cache

= 32 MB shared L3 cache

= 544mm?in 32nm CMOS

= Over 3 billion transistors

B JRIRET
1 4

l
, ’f
!N' 4 1’1![ilttl
:

j
"' i

oi»-»i
L. Y

=
. -—
=~
L3
b

-

) g -
!
rr
.

™
3
-
v lll-lnll
»
=

e ..L

;

Iy

= Cores are 2-way multithreaded

= 6 instruction/cycle fetch
- Two 128-bit bundles

= Up to 12 insts/cycle execute

23

VLIW Instruction Encoding

Intl Int2 M1 M2 FP+ FPx

fld | fadd fsd | addi bne | addi

\

AN N\ J

TN NOP NOP NOP
\ v Y

Group 1 Group 2 Group 3 ECE yvoP NOP NOP NOP NOP

= Schemes to reduce effect of unused fields (NOPs)
- Compressed format in memory, expand (uncompress) on
I-cache refill
[Used in Multi-flow Trace
[Introduces instruction addressing challenge

- Mark parallei groups
[d Used in TMS320C6x DSPs, Intel IA-64

- Provide a single-op VLIW instruction

O Cydra-5 UniOp instructions 24

IA-64 Instruction Format

|Instruction 2 | Instruction 1 | Instruction 0 | Template |

128-bit instruction bundle
= Template bits describe grouping of these instructions

with others in adjacent bundies

\
\ J N A\ J J
Y N Y e

group i-1 group i group i+1 group i+2

bundle j-1 bundle i bundle (’+1 bundle !'+2
I | | ! I | I | \

= Each group contains instructions that can execute in
parallel

25

Recap: Soft-Pipelining

Problems: Scheduled loops
require lots of registers 2>

duplicated codes

prolog <

. loop:
|teratﬂ/ P

C

epilog <

r

-

Intl

Int 2

M1

M2

FP+

FPX

add x1

fadd 5

fadd f6

fadd f1

add x1

fadd f¢

fadd 5

fadd {6

fadd fi

add x1

fadd f¢

add x2

bne

26

|A-64 Registers

= 128 General Purpose 64-bit Integer Registers

= 128 General Purpose 64/80-bit Floating Point
Registers

» 64 1-bit Predicate Registers

= GPRs can “rotate” to reduce the code size for

software pipeline loops
- Rotation is a simple form of register renaming
- Allowing one instruction to address different physical
registers on each iteration

27

Rotating Register Files

Problems: Scheduled loops require lots of registers -> duplicated codes

Solution: Automatically use new set of registers for each loop iteration

Logical Register R1 Physical Register

B Rotating Register Base (RRB) register points to base of current
register set. Value added on to logical register specifier to give
physical register number.

B Usually, split into rotating and non-rotating (static) registers.

28

Rotating Register Files
(Software/Hardware Co-design)

Register rotation is used for optimizing loops that are both counted

or data-terminated.

B Counted loops are loops whose iterations are known prior to
entering the loop

B Data-terminated loops are dependent upon values calculated
inside the loop.

Register Set Static| Rotating
General Registers (GR) 0-31 | 32-127
Floafing Point Registers (FR)| 0-31 | 32-127

Predicate Registers (PR) 0-15 | 16-63

The general, floating point and predicate registers are divided into
subsets of static and rotating sets. The above is the subdivision

29

Recap: Soft- Plpelmmg

Problems: Scheduled loops
require lots of registers 2>

prolog <

duplicated codes

iterate

<

r

—
loop:

—

Solution: Reduce loop codes

to one instruction

epilog <

Intl Int 2 M1 FP+ FPx
fid 1
fid £2
fid £3
add x1 fld f4
fid f1 fadd 5
fid £2 fadd 6
fid £3 fadd 7
add x1 fid f4 fadd 8
jmEmmm—m———— I |
| fld f1 | fsd f5 fadd 5
| fld f2 | fsd 6 fadd 6
add x4 fld 3 | fsd f7 fadd 7
add x1 bne 11ld f4 | fsd f8 fadd 3 E
Static Rotating
fsd f5
fsd f6
add x2 fsd 7
bne fsd f8

30

Rotating Register File

(Previous Loop Example)

Three cycle load latency encoded
as difference of 3 in register
specifier number (f4 - f1 = 3)

3 cycles later, f1 is renamed as f4

RRB=8
RRB=7
RRB=6
RRB=5
RRB=4
RRB=3
RRB=2
RRB=1

| fld 1, ()

~ /S

Four cycle fadd latency encoded as
difference of 4 in register specifier

number (fS — 5 = 4)

4 cycles later, f5is renamed as 9

Recognized
by hardware
decode

Only need 1
| instruction
In loop code!

fadd f5, 14, ... | fsdf9, () |(bloop
F1=P9
fld P9, ()« | fadd P13, P12, | fsd P17, () bloop
fld P8, () dd P12, P11, | fsd P16, () bloop
fld P7, () | fadd ¥ L, P10, | fsd P15, () bloop
F5=P10 F4=P9
fld P6, () tadd P&O, P9, 1sd P14, () bloop
fid P5, () fadd PORg, | fsd P13, () bloop
fld P4,). | fadd P8, P7, fsd P12, () bloop
fld PR3, () fadd P7, P6, d P11, () bloop
fld P2, () fadd P6, P5, fsd P10. (Y bloop
FO9=P10

31

IA-64 Predicated Execution

B Predication is the conditional execution of instructions.

B [n traditional architectures, conditional execution is
implemented through branches.

B In VLIW machine, predicated execution avoids branches,
and simplifies compiler optimization by converting a
control dependency to a data dependency.

32

IA-64 Predicated Execution

Problem: Mispredicted branches limit ILP

Solution: Eliminate hard to predict branches with predicated execution
- Almost all IA-64 instructions can be executed conditionally under predicate
- Instruction becomes NOP if predicate register false

4 basic blocks

bO: | Inst 1 it 1 basic block
Inst 2 Inst 1
br a==b, b2 — Inst 2
D pl,p2 <- cmp(a==h)
bl:|Inst3 else Predication (pl) Inst3 || (p2)Inst5
Lnség (pl) Inst4 || (p2) Inst 6
r) Inst 7
-’
b2: Inst 5 e < Inst 8
Inst 6
b3 < Mahlke et al, ISCA95: On average
> :22:; >50% branches removed

33

IA-64 Normal Compares

Compare operation works on a pair of predicate registers.
 Compare operations play a key role in IA-64, and particularly in
relation to predication.

Normal Compare instruction evaluates the expression and then:
» Set the first predicate register to the result of the comparison
» Set the second predicate register to the complement of the comparison.

cmp.eq Py, Py, ar Ip

—— o =

Normal Cmp Target Predicate Source Registers
Instruction Registers
If (a==Db) { {
C++; cmp.eq pl, . =ra, rb
} else { Predication (pl) add rc=rc, 1
d++; (P2) add rd =1rd, 1
) b

34

IA-64 Unconditional Compares

Unconditional Compare instructions are predicated themselves:
* When its self-predicate is 1, the compare executes normally and writes
to its target registers as would a normal compare.
 When its self-predicate is 0, write 0 to both of it's target registers.

[ps], cmp.eq.unc, p;, p,, r,, Iy

N\ TK

Self Predlcate Unconditional Cmp Target Predicate Source Registers
Register Instruction Registers

Unconditional Compare is usefui in nested if-conversion.

If (a>b){ {
C++; }{Cmp-gt pi, B2 = ra, rb
) else {
d+=c; (pl) add rc=rc, 1
if (e==f . (P2) add rd = rd rc
(g++;) t | Predication }{(i) cmp.eq.unc p3, p4 = re, rf
} else {
h--: (p3)add rg = rg, 1
) (p4) add rh = rh, -1
¥ h 35

|A-64 Speculative Execution

Problem: Branches restrict compiler code motion

Solution: Speculative operations that don’t cause exceptions

-- Requires associative hardware in register poison bit
-- Particularly useful for scheduling long latency loads early

__Speculative load never
:2:: % |IF1°tald.s " causes exception, but
br a==b, b2 In:t 5 sets “poison” bit on
1 br a==b, b2 destination register
7~ S =~
Load r1 - *E
Userl \ [.
Nt 3 \ Check for exception in
Can’t move load above branch Chlcs r1 - | original home block
. . Userl jumps to fixup code if
because might cause spurious Inst 3)
exception detected

exception

* Compiler guarantees the next reference of rl1 is not READ (except for check)

* If branch is not taken and check is never executed, clear poison bit when next time
rlis modified. 36

|A-64 Data Speculation

Problem: Possible memory hazards limit code scheduling

Solution: Hardware to check pointer hazards
-- Requires associative hardware in address check table

Inst 1

Data speculative load
adds address to
address check table

Inst 2

Store [X] /

Load [y], r1 <

Load.a [y}, 1

Store invalidates any

Userl
Inst 3 \

Can’t move load above store

:22:% matching loads in
Store [X] address check table
Load.c [y], r1

Aoge " Check if load invalid (or

because store might be to
same address

missing), jump to fixup
code if so

y

X

y

Address
Check
Table

37

Limits of Static Scheduling

= Unpredictable branches
- Solved by: predicated, speculate

= Code size explosion
- Solved by: compression, rotate register

= Variable memory latency (e.g. cache miss)
- Solved by: manually managed scratchpad

= Compiler complexity (unsolved)
= Poor compatibility (unsolved)

38

VLIW Today

= Despite several attempts, VLIW has failed in

general-purpose computing arena (so far).
- More complex VLIW architectures are close to in-order
superscalar in complexity, no real advantage on large
complex apps.

= Successful in embedded DSP market
- Simpler VLIWs with more constrained environment,
friendly code.
- E.g. Texas instrument (Tl) DSP series

39

Next Lecture : Vectors and SIMD
(Data Level Parallel)

40

Acknowledgements

= Some slides contain material developed and
copyright by:
- Arvind (MIT)
- Krste Asanovic (MIT/UCB)
- Joel Emer (Intel/MIT)
- James Hoe (CMU)
- David Patterson (UCB)
- David Wentzlaff (Princeton University)

= MIT material derived from course 6.823
= UCB material derived from course CS252 and CS
61C

41

	幻灯片 1: Computer Architecture Lecture 09 – VLIW (Instruction level Parallelism)
	幻灯片 2: Superscalar Control Logic Scaling
	幻灯片 3: Out-of-Order Control Complexity: MIPS R10000
	幻灯片 4: Sequential ISA Bottleneck
	幻灯片 5: VLIW: Very Long Instruction Word
	幻灯片 6: VLIW: Very Long Instruction Word
	幻灯片 7: VLIW Performance Example (2-wide bundles)
	幻灯片 8: VLIW Compiler Responsibilities
	幻灯片 9: Loop Execution
	幻灯片 10: Loop Unrolling
	幻灯片 11: Scheduling Loop Unrolled Code
	幻灯片 12: Scheduling Loop Unrolled Code
	幻灯片 13: Software Pipelining
	幻灯片 14: Software Pipelining
	幻灯片 15: Software Pipelining vs. Loop Unrolling
	幻灯片 16: Software Pipelining
	幻灯片 17: Software Pipelining
	幻灯片 18: Software Pipelining
	幻灯片 19: What if there are no loops?
	幻灯片 20: Trace Scheduling [Fisher,Ellis]
	幻灯片 21: Problems with “Classic” VLIW
	幻灯片 22: Intel Itanium, EPIC IA-64
	幻灯片 23: Eight Core Itanium “Poulson” [Intel 2011]
	幻灯片 24: VLIW Instruction Encoding
	幻灯片 25: IA-64 Instruction Format
	幻灯片 26: Recap: Soft-Pipelining
	幻灯片 27: IA-64 Registers
	幻灯片 28: Rotating Register Files
	幻灯片 29: Rotating Register Files (Software/Hardware Co-design)
	幻灯片 30: Recap: Soft-Pipelining
	幻灯片 31: Rotating Register File (Previous Loop Example)
	幻灯片 32: IA-64 Predicated Execution
	幻灯片 33: IA-64 Predicated Execution
	幻灯片 34: IA-64 Normal Compares
	幻灯片 35: IA-64 Unconditional Compares
	幻灯片 36: IA-64 Speculative Execution
	幻灯片 37: IA-64 Data Speculation
	幻灯片 38: Limits of Static Scheduling
	幻灯片 39: VLIW Today
	幻灯片 40
	幻灯片 41: Acknowledgements

