
Computer Architecture

Lecture 10 – Vector Machine

(Data Level Parallel)

Tian Xia
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

http://gr.xjtu.edu.cn/web/pengjuren

SISD、MIMD、SIMD and MIMD (Flynn’s Taxonomy)

2

Data Streams

Single Multiple

Instruction

Streams

Single SISD: Intel Pentium 4 SIMD: SSE of x86

Multiple MISD: No example today MIMD: Intel Core i7

SISD: Single Instruction stream, Single Data Stream
MIMD: Multiple Instruction streams, Multiple Data Streams
SIMD: Single Instruction stream, Multiple Data Streams
MISD: Multiple Instruction streams, Single Data Stream

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Agenda

▪ Vector Processors

▪ Single Instruction Multiple Data (SIMD)

▪ Instruction Set Extensions （Neon, SVE@ARM, AVX@Intel, etc.)

3

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Modern SIMD Processors

4

◼ SIMD architectures can exploit significant data-level parallelism
for:
 Linear algebra scientific computing
 Media-oriented image and sound processors
 Machine Learning Algorithms

◼ Most modern CPUs have SIMD architectures
 Intel SSE and MMX, AVX, AVX2 (Streaming SIMD Extension, Multimedia

extensions、Advanced Vector extensions)
➢ Introduced in 1999 in the Pentium III processor
➢ AVX512 currently used in Xeon Core series

 ARM NEON, MIPS MDMX
➢ Included in Cortex-A8 and Cortex-A9 processors

◼ These architectures include instruction set extensions which
allow both sequential and parallel instructions to be executed

◼ Some architectures include separate SIMD coprocessors for
handling these instructionsPen

gju
 R

en
 an

d T
ian

 Xia@
XJT

U 20
24

Instruction Set Extension (ARM)

5

SVE2

Scalable Vector Extension

(SVE)

NEON

SVE

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Instruction Set Extension (Intel/AMD x86)

6

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Processor

7

◼ Basic idea:
– Load sets of data elements into “vector registers”
– Operate on those registers
– Disperse the results back into memory

◼ Overcoming limitations of ILP:
– Loops are reduced to vector instructions

➢ Less instruction amount
➢ Dramatic reduction in fetch and decode bandwidth
➢ No control hazards.
➢ No data hazard between elements of the same vector. Data hazard

logic is required only between two vector instructions.

– Multiple parallel data accesses
➢ Improve memory bandwidth usage
➢ Heavily interleaved memory banks
➢ Latency of initiating memory access versus cache access is amortized.
➢ Good performance for poor localityPen

gju
 R

en
 an

d T
ian

 Xia@
XJT

U 20
24

RV64V Extension (RISC-V Vector Extension)

8

◼ Vector Register：32x64 bit
(16 read and 8 write ports)

◼ Vector Functional Units：
Each unit is fully Pipelined

◼ Vector Load/Store Unit

◼ Scalar register: Normal 31
general-purpose registers

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Programming Model (RISC-V)

9

Scalar Registers

x0

x31
Vector Registers

v0

v31

[0] [1] [2] [MAXVL-1]

VLVector Length Register

Dynamic data type: If a vector register has 2048-bit width,
then it can hold:

⚫ 128 * 16-bit elements (e.g. 128 elements of Int16)
⚫ 64 * 32-bit elements (e.g. 64 elements of Single-Float)
⚫ 32 * 64-bit elements (e.g. 32 elements of Double-Float)
⚫ …… Pen

gju
 R

en
 an

d T
ian

 Xia@
XJT

U 20
24

Vector Programming Model (RISC-V)

10

+ + + + + +

[0] [1] [VL-1]

Vector Arithmetic Instructions
vadd(.i).vv v3,v1,v2

v3

v2
v1

⚫ Vector Arithmetic Instructions can use both vector and
scalar registers

⚫ They are followed with Suffix:
⚫ .vv = both operand are vector
⚫ .vs = second operand is a scalar
⚫ .sv = first operand is a scalar register.

+ + + + + +

[0] [1] [VL-1]

Vector Arithmetic Instructions
vadd(.i).vs v3,v1,x2

v3

x2
v1

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Programming Model (RISC-V)

11

v1
Vector Load Store Instructions
vls v1,(x1),x2

Base, x1 Stride, x2

Memory

Vector Register

Scalar Registers

⚫ Access a contiguous block of memory (Continuous load/store)

⚫ Access memory in a fixed stride pattern (Strided load/store)

v1vlsx v1,(x1),v2

Base, x1

Memory

v2

⚫ Access a group of arbitrary addresses in memory
⚫ Gather (load) and Scatter (store)Pen

gju
 R

en
 an

d T
ian

 Xia@
XJT

U 20
24

Vector Code Example

12

Scalar Code

 li x4, 64

 li x6, a

loop:

 fld f1, 0(x1)

 fld f2, 0(x2)

 fmul.d f3,f1,x6

 fadd.d f4,f1,f2

 fsd f4, 0(x3)

 addi x1, 8

 addi x2, 8

 addi x3, 8

 subi x4, 1

 bnez x4, loop

C code

for (i=0; i<64; i++)

 C[i] = a*A[i]+B[i];

Vector Code

 li x4, 64

 li x6, a

 setvl x4

 vld v1, x1

 vld v2, x2

 vmul.d.vs v3,v1,x6

 vadd.d.vv v4,v3,v2

 vst v4, x3

⚫ Less code lines: 640+ Instructions → 8 Instructions

⚫ Explicit independency: less dependency checks

⚫ Programming-friendly: maintain classical code styles.
Pen

gju
 R

en
 an

d T
ian

 Xia@
XJT

U 20
24

Vector Instruction Set Advantages

▪ Compact
– one short instruction encodes N operations

▪ Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in same pattern
– access a contiguous block of memory

 (unit-stride load/store)
– access memory in a known pattern

(stride load/store)

▪ Scalable
– can run same code on more parallel pipelines (lanes)

13

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Arithmetic Execution

14

• Use deep pipeline (=> fast clock) to
execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)

• No data hazards

• No bypassing needed

v1 v2 v3

v3 <- v1 * v2

Six-stage multiply pipeline

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Processor Optimization

15

How can a vector processor execute a single vector faster than one
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector
Register

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

Vector Unit Structure- Multiple Lanes

16

Lane

Functional Unit

Memory Subsystem
The same element position in the input and output registers is referred to as a lane.
There cannot be a carry or overflow from one lane to another

FP add FP add FP add FP add

FP Mul FP Mul FP Mul FP Mul

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

T0 Vector Microprocessor (UCB/ICSI, 1995)

17

LaneVector register
elements striped
over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Instruction Execution

18

Execution using
one pipelined

functional unit

Execution using
four pipelined

functional units

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

… …

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

… …

C[1]

C[5]

C[9]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

… …

C[2]

C[6]

C[10]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

… …

C[3]

C[7]

C[11]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

… …

vmul vc, va, vb (Vector length=32)

Latency = 32 +2 cycles Latency = 32/4 +2 = 10 cyclesPen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Chaining

19

▪ Vector version of register bypassing
– Chaining allows vector operation to start as soon as the individual

elements of its vector source operand become available

▪With Vector Chaining, vadd waits for 2 cycles

Memory

V1

Load
Unit

Mult.

V2 V3

Add

V4 V5

Chain

vld v1

vmul v3,v1,v2

vadd v5, v3,v4

(Vector length=32, Lane=4)

Have to wait 10 cycles ? Chain

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Chaining Advantage

20

• With chaining, can start dependent instruction as soon as first
result appears

Load
Mul

Add

Load
Mul

AddTime

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Instruction Parallelism
▪ Can overlap execution of multiple vector instructions

– example machine has 32 elements per vector register and 8 lanes

21

load

load
mul

mul

add

add

Load Unit (1 cycle) Multiply Unit (2-cycle) Add Unit (1-cycle)

ti
m

e

Instruction
issue

⚫ Complete 24 operations/cycle
⚫ Issuing 3 vector instruction/4 cycles

(Vector length=32, Lane=8)

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Processor Optimization

22

How can a vector processor execute a single vector faster than one
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (Strip Mining)

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

2*MVL MVL

Vector Strip Mining

Problem: What happens if the length is not matching the
length of the vector registers?

A vector-length register (VLR) contains the number of
elements used within a vector

Solution: “Strip mining” split a large loop into loops less
or equal the maximum vector length (MVL)

23

+ ++

1st Loop 2nd Loop 3rd Loop

Loop N

C

A

B

for(i=0;i<N;i++)

 C[i]=A[i]+B[i];

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Strip mining: Example 1

24

andi x1,xN,63 # N mod 64

 setvl x1 # Do remainder

loop:

 vld v1,(xA) # Vector (length=x1)

 sll x2,x1,3 # Multiply by 8

 add xA,x2 # Bump A pointer

 vld v2,(xB) # Vector (length=x1)

 add xB,x2 # Bump B pointer

 vadd v3,v1,v2 # Vector (length=x1)

 vst v3,(xC) # Vector (length=x1)

 add xC,x2 # Bump C pointer

 sub xN,x1 # Subtract elements

 li x1,64

 setvl x1 # Reset full length

 bgtz xN,loop # Continue if xN>0

for (i=0; i<N; i++)

 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

64 elements

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Strip mining: Example 2

25

loop:

 setvl xN,64 # vl=min(xN,64)

 vld v1,(xA)

 sll x2,x1,3 # Multiply by 8

 add xA,x2 # Bump A pointer

 vld v2,(xB)

 add xB,x2 # Bump B pointer

 vadd v3,v1,v2

 vst v3,(xC)

 add xC,x2 # Bump C pointer

 sub xN,xN,64 # Subtract elements

 bltz xN,loop # Any more to do?

for (i=0; i<N; i++)

 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

64 elements

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Processor Optimization

26

How can a vector processor execute a single vector faster than one
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF-ELSE statement inside the code to
be vectorized ?

⚫ Predicate Registers: vector-mask control

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Conditional Execution

27

Problem: Want to vectorize loops with conditional code:
for (i=0; i<N; i++)

 if (A[i]>0) then

 A[i] = B[i];

Solution: Add vector mask registers:
– Vector version of predicate registers, 1 bit per element

…and maskable vector instructions:
– Vector operation becomes bubble (“NOP”) at elements

where mask bit is zero
– Provide special instructions to generate masks (vm**)

Code example:

cvm # Turn on all elements(clear vector masks)

vld v1,(x1) # Load entire A vector

vmgt.vi v0,v1,0 # Set bits in mask register where A>0

vld v2,(x2) # Load B vector into A under mask

vst v2,(xA),v0.t# Store A back to memory under mask
Pen

gju
 R

en
 an

d T
ian

 Xia@
XJT

U 20
24

Masked Vector Instructions

28

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– Scan mask vector

– Only execute elements with non-zero
masks

– Requires more hardware resources

M[0]=0

Write Enable?

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[7]=1

Simple Implementation
– Execute all N operations

– Turn off result writeback according
to mask

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Processor Optimization

29

How can a vector processor execute a single vector faster than one
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF statement inside the code to be
vectorized ?

⚫ Predicate Registers: vector-mask control

What does a vector processor need from the memory system ?
⚫ Memory banks: supplying bandwidth for vector Load/Store Units

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Interleaved Vector Memory System
▪ Memory system must be designed to support high bandwidth for

vector loads and stores
– E.g. 16 Banks, each has 4-cycle latency between two responses

30

0 1 2 3 4 5 6 7 8 9 A B C D E F

Vector Registers

Memory Banks

▪ Spread accesses across multiple banks
– Control bank addresses independently
– Load or store non sequential words (with intervals not multiple of bank

number, need independent bank addressing)
– Support multiple vector processors sharing the same memory （to have

more opportunity for bank-interleave ）

+

Base Stride

Address
Generator

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Processor Optimization

31

How can a vector processor execute a single vector faster than one
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF statement inside the code to be
vectorized ?

⚫ Predicate Registers: vector-mask control

What does a vector processor need from the memory system ?
⚫ Memory banks: supplying bandwidth for vector Load/Store Units

How does a vector processor handle multiple dimensional matrices ?
⚫ Auto-vectorizing
⚫ Data structure must vectorize

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Automatic Code Vectorization

32

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing
 requires extensive loop-dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Ti
m

e

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Example: Handling Multi-dimensional Arrays

33

Problem: Want to vectorize rows/columns
for (i=0; i<100; i++)

 for (j=0; j<100; j++){

 A[i][j] = 0.0

 for (k=0; k<100; k++)

 A[i][j]=A[i][j]+B[i][k]*D[k][j];

Solution: non-unit strides

Access non-sequential memory locations and to reshape them into a dense
structure is one of the major advantages of a vector architecture.

RV64V: VLDS (load vector with stride)
 VSTS (store vector with stride)

Row Column

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Example: Vector Reduction
Problem: Loop-carried dependence on reduction variables

sum = 0;

for (i=0; i<N; i++)

 sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform reduction

Rearrange as:

sum[0:VL-1] = 0 # Vector of VL partial sums

for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks

 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {

 VL = VL/2; # Halve vector length

 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

34

A[0:N-1]A[0:N-1] + +Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Vector Processor Optimization

35

How can a vector processor execute a single vector faster than one
element per clock cycle ?

⚫ Multiple Lanes: beyond one element/cycle

How does a vector processor handle programs where the vector
lengths are not the same as the maximum vector length ?

⚫ Vector-length Registers: Handling loops not equal to MVL (strip Mining)

What happens when there is an IF statement inside the code to be
vectorized ?

⚫ Predicate Registers: vector-mask control

What does a vector processor need from the memory system ?
⚫ Memory banks: supplying bandwidth for vector Load/Store Units

How does a vector processor handle multiple dimensional matrices ?
⚫ Data structure must vectorize

How does a vector processor handle sparse matrices ?
⚫ Vector scatter/gather ：indexed（gather) … = a[b[i]]
 indexed (scatter) a[b[i]]=…Pen

gju
 R

en
 an

d T
ian

 Xia@
XJT

U 20
24

Vector Scatter-Gather

36

▪ Consider:
for (i = 0; i < n; i=i+1)

 A[K[i]] = A[K[i]] + C[M[i]];
▪ Use index vector K[] and M[]:

vsetdcfg 4*FP64 # 4 64b FP vector registers

vld v0, x7 # Load K[]

vldx v1, x5, v0 # Load A[K[]]

vld v2, x28 # Load M[]

vldx v3, x6, v2 # Load C[M[]]

vadd v1, v1, v3 # Add them

vstx v1, x5, v0 # Store A[K[]]

vdisable # Disable vector registers

Problem: Handling indirect index access
Solution: Gather-Scatter operations

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Compress/Expand Operations
▪ Compress packs non-masked elements from one vector register

contiguously at start of destination vector register
– population count of mask vector gives packed vector length

▪ Expand performs inverse operation

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

A[3]

A[4]

A[5]

A[6]

A[7]

A[0]

A[1]

A[2]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

B[3]

A[4]

A[5]

B[6]

A[7]

B[0]

A[1]

B[2]

Expand

A[7]

A[1]

A[4]

A[5]

Compress

A[7]

A[1]

A[4]

A[5]

10110010

Used for density-time conditionals and also for general
selection operations

26

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

38

Example of Compress Operations
Compress an array (stream) of values
 values =

into
 result =

3 0 4 1 0 0 3 1

3 4 1 3 1

0 1 1 2 3 3 3 4

3 4 1 3 1

•Step 2: Compute an exclusive add scan of flags to get index

•Step 3: “Scatter” values into result at index, masked by flags

Index =

0 1 1 2 3 3 3 4

1 0 1 1 0 0 1 1

Values(v1):

Mask(vp1):

Index(v2):

Result (Mem):

•Step 1: Generate an array of 0/1 flags (mask) :

Flag = 1 0 1 1 0 0 1 1

3 0 4 1 0 0 3 1Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Summary Performance Optimizations

39

▪ Multiple Parallel Lanes, or Pipes
➢ Allows vector operation to be performed in parallel on multiple elements

of the vector

▪ Strip Mining
➢ Generates code to allow vector operands whose size is less than or

greater than size of vector registers

▪ Vector Chaining
➢ Equivalent to data forwarding in vector processors

➢ Results of one pipeline are fed into operand registers of another pipeline

▪ Increase Memory Bandwidth
➢ Memory banks are used to reduce load/store latency

➢ Allow multiple simultaneous outstanding memory requests

▪ Scatter and Gather
➢ Retrieves data elements scattered throughout memory and packs them

into sequential vectors in vector registers

➢ Promotes data locality and reduces data pollutionPen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

Advantages of Vector Processors

40

▪ Reduced Code Size
➢ Short, single instruction can describe N operations

▪ Require Lower Instruction Bandwidth
➢ Reduced by fewer fetches and decodes

▪ Easier Stride Addressing of Main Memory
➢ Load/Store units access memory with known patterns

▪ Elimination of Memory Waste (good spatial locality)
➢ Unlike cache access, every data element that is requested by the

processor is actually used – no cache misses

➢ Latency only occurs once per vector during pipelined loading

▪ Simplification of Control Hazards (less dependency)
➢ Loop-related control hazards from the loop are eliminated

▪ Scalable Platform
➢ Increase performance by using more hardware resources

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

41

Next Lecture：Multithreading and
Multicore (Thread-level Parallel)

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

42

Acknowledgements

▪ Some slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– David Patterson (UCB)

– David Wentzlaff (Princeton University)

▪ MIT material derived from course 6.823

▪ UCB material derived from course CS252 and CS 61C

Pen
gju

 R
en

 an
d T

ian
 Xia@

XJT
U 20

24

	幻灯片 1: Computer Architecture Lecture 10 – Vector Machine (Data Level Parallel)
	幻灯片 2: SISD、MIMD、SIMD and MIMD (Flynn’s Taxonomy)
	幻灯片 3: Agenda
	幻灯片 4: Modern SIMD Processors
	幻灯片 5: Instruction Set Extension (ARM)
	幻灯片 6: Instruction Set Extension (Intel/AMD x86)
	幻灯片 7: Vector Processor
	幻灯片 8: RV64V Extension (RISC-V Vector Extension)
	幻灯片 9: Vector Programming Model (RISC-V)
	幻灯片 10: Vector Programming Model (RISC-V)
	幻灯片 11: Vector Programming Model (RISC-V)
	幻灯片 12: Vector Code Example
	幻灯片 13: Vector Instruction Set Advantages
	幻灯片 14: Vector Arithmetic Execution
	幻灯片 15: Vector Processor Optimization
	幻灯片 16: Vector Unit Structure- Multiple Lanes
	幻灯片 17: T0 Vector Microprocessor (UCB/ICSI, 1995)
	幻灯片 18: Vector Instruction Execution
	幻灯片 19: Vector Chaining
	幻灯片 20: Vector Chaining Advantage
	幻灯片 21: Vector Instruction Parallelism
	幻灯片 22: Vector Processor Optimization
	幻灯片 23: Vector Strip Mining
	幻灯片 24: Vector Strip mining: Example 1
	幻灯片 25: Vector Strip mining: Example 2
	幻灯片 26: Vector Processor Optimization
	幻灯片 27: Vector Conditional Execution
	幻灯片 28: Masked Vector Instructions
	幻灯片 29: Vector Processor Optimization
	幻灯片 30: Interleaved Vector Memory System
	幻灯片 31: Vector Processor Optimization
	幻灯片 32: Automatic Code Vectorization
	幻灯片 33: Example: Handling Multi-dimensional Arrays
	幻灯片 34: Example: Vector Reduction
	幻灯片 35: Vector Processor Optimization
	幻灯片 36: Vector Scatter-Gather
	幻灯片 37: Compress/Expand Operations
	幻灯片 38: Example of Compress Operations
	幻灯片 39: Summary Performance Optimizations
	幻灯片 40: Advantages of Vector Processors
	幻灯片 41
	幻灯片 42: Acknowledgements

