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a b s t r a c t

By enabling the nodes or agents to solve small-sized subproblems to achieve coordination, distributed
algorithms are favored by many networked systems for efficient and scalable computation. While
for convex problems, substantial distributed algorithms are available, the results for the more broad
nonconvex counterparts are extremely lacking. This paper develops a distributed algorithm for a
class of nonconvex and nonsmooth problems featured by (i) a nonconvex objective formed by both
separate and composite components regarding the decision variables of interconnected agents, (ii) local
bounded convex constraints, and (iii) coupled linear constraints. This problem is directly originated
from smart buildings and is also broad in other domains. To provide a distributed algorithm with
convergence guarantee, we revise the powerful alternating direction method of multiplier (ADMM)
method and proposed a proximal ADMM. Specifically, noting that the main difficulty to establish the
convergence for the nonconvex and nonsmooth optimization with ADMM is to assume the boundness
of dual updates, we propose to update the dual variables in a discounted manner. This leads to the
establishment of a so-called sufficiently decreasing and lower bounded Lyapunov function, which
is critical to establish the convergence. We prove that the method converges to some approximate
stationary points. We besides showcase the efficacy and performance of the method by a numerical
example and the concrete application to multi-zone heating, ventilation, and air-conditioning (HVAC)
control in smart buildings.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

By enabling the nodes or agents to solve small-sized subprob-
ems to achieve coordination, distributed algorithms are favored
y many networked systems to achieve efficient and scalable
omputation. While distributed algorithms for convex optimiza-
ion have been studied extensively (Deng, Lai, Peng, & Yin, 2017;
alsone, Notarnicola, Notarstefano, & Prandini, 2020; Shi, Ling,
uan, Wu, & Yin, 2014), the results for the more broad noncon-
ex counterparts are extremely lacking. The direct extension of
istributed algorithms for convex problems to nonconvex coun-
erparts is in general not applicable either due to the failure
f convergence or the lack of theoretical convergence guarantee
see Houska, Frasch, and Diehl (2016) and Wang, Yin, and Zeng

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Kok Lay
Teo under the direction of Editor Ian R. Petersen.

∗ Corresponding author.
E-mail addresses: yangyu21@xjtu.edu.cn (Y. Yang), jiaqs@tsinghua.edu.cn

Q.-S. Jia), zhanbo.xu@xjtu.edu.cn (Z. Xu), xhguan@xjtu.edu.cn (X. Guan),
panos@berkeley.edu (C.J. Spanos).
https://doi.org/10.1016/j.automatica.2022.110551
0005-1098/© 2022 Elsevier Ltd. All rights reserved.
(2019) for some divergent examples). This paper focuses on de-
veloping a distributed algorithm for a class of nonconvex and
nonsmooth problems in the canonical form of

min
x=(xi)Ni=1

F (x) = g(x) +

N∑
i=1

fi(xi) (P)

s.t.
N∑
i=1

Aixi = b. (1a)

xi ∈ Xi, i = 1, 2, . . . ,N. (1b)

where i = 1, 2, . . . ,N denotes the computing nodes or agents,
xi ∈ Rni is the local decision variables of agent i and x =

(xi)Ni=1 ∈ Rn with n =
∑N

i=1 ni stacks the decision variables
of all agents. We have fi : Rni → R and g : Rn

→ R
denote the separate and composite objective components, which
are continuously differentiable but possibly nonconvex. We have
Xi represent the local bounded and convex constraints of agent
i. As expressed by the formulation, the agents are expected to
optimize their local decision variables in a cooperative manner
so as to achieve the optimal system performance measured by
F (x) = g(x) +

∑N f (x ) considering both their local constraints
i=1 i i
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i and the global coupled linear constraints (1a) encoded by Ai ∈

Rm×ni and b ∈ Rm. By defining A = (A1,A2, . . . ,AN ) ∈ Rm×n

and f (x) =
∑N

i=1 fi(xi), the coupled constraints and objective can
be expressed by Ax = b and F (x) = f (x) + g(x). Note that
the presence of local constraints Xi and nonconvex objectives
fi and g makes the problem nonconvex and nonsmooth, which
represents the major challenge to develop distributed algorithm
with convergence guarantee.

Problem (P) is directly originated from smart buildings where
smart devices are empowered to make local decisions while
accounting for the interactions or the shared resource limits with
the other devices in the proximity (see, for examples Yang, Hu,
& Spanos, 2020; Yang, Srinivasan, Hu and Spanos, 2021a). Many
other applications also fit into this formulation, including but not
limited to smart sensing (Ansere, Han, Liu, Peng, & Kamal, 2020),
energy storage sharing (Yang, Hu and Spanos, 2021), electric
vehicle charging management (Yang et al., 2018; Zhang, Kekatos,
& Giannakis, 2016), power system control (Arpanahi, Golshan,
& Siano, 2020), wireless communication control (Hashempour,
Suratgar, & Afshar, 2021). When the number of nodes is large,
centralized methods usually suffer bottlenecks from the heavy
computation, data storing and communication (see Arpanahi et al.
(2020), Hashempour et al. (2021) and Yang et al. (2020) and
the references therein). Also, centralized methods may disrupt
privacy as the complete information of all agents (e.g., the private
local objectives) are required by a central computing agent. As
a result, distributed algorithms are usually preferred for privacy,
computing efficiency, small data storage, and scaling properties.

When problem (P) is convex, plentiful distributed solution
methods are available. The methods can be distinguished by
the presence of the composite objective component g and the
number of decision blocks N . When g is null, we have the classic
dual decomposition methods (Falsone, Margellos, Garatti, & Pran-
dini, 2017; Necoara & Nedelcu, 2015), the well-known alternating
direction method of multiplier (ADMM) for two decision blocks
(N = 2) (Boyd, Parikh, & Chu, 2011) and the variations for multi-
block settings (N ≥ 3) (Bai, Li, Xu, & Zhang, 2018; Cai, Han, &
Yuan, 2017; Lin, Ma, & Zhang, 2015). While the classic ADMM
and its variations propose to update the decision components in
a sequential manner (usually called Gauss–Seidel decomposition),
the works Chatzipanagiotis and Zavlanos (2017) and Deng et al.
(2017) have made some effort in developing parallel ADMM and
its variations (usually called Jacobian ADMM or parallel ADMM).
The above methods are generally limited to separable objective
functions (i.e., only fi exist and g = 0). For the general case
with composite objective component g , linearized ADMM (Aybat,
Wang, Lin, & Ma, 2017) and inexact linearized ADMM (Bai, Hager,
& Zhang, 2022) are also studied.

The above results are all for convex problems. Nevertheless,
massive applications arising from the engineering systems and
machine learning domains require to handle the type of prob-
lem (P) with possibly nonconvex objectives fi and g . The non-
onvexity may originate from the complex system performance
etrics or the penalties imposed on the operation constraints.
hen the objectives fi and g lack convexity (i.e., the monoton-

cally non-decreasing property of gradients or subgradients is
ost), developing distributed methods with theoretical conver-
ence guarantee becomes a much more challenging problem.
hough some fresh distributed methods for constrained non-
onvex problems have been developed, they cannot be applied
o problem (P) due to the nonsmoothness caused by the local
onstraints Xi. This can be perceived from the following literature.
The existing works for constrained nonconvex optimization

an be distinguished by problem structures, main assump-
ions, decomposition scheme (i.e., Jacobian or Gauss–Seidel)

nd convergence guarantee as reported in Table 1. Overall,

2

they can be uniformly expressed by the template of problem (P)
but are slightly different in the settings and assumptions.

The first category (Type 1) is concerned with problem (P)
without any composite objective component g (Chatzipanagi-
otis & Zavlanos, 2017). An accelerated distributed augmented
Lagrangian (ADAL) method was proposed to handle the possi-
bly nonconvex but continuously differentiable objectives fi. This
method follows the classic ADMM framework but introduces an
interpolation procedure regarding the primal updates at each
iteration, which reads as Aixk+1

i = Aixki + T
(
Aix̂ki − Aixki

)
(k

the iteration and T is a weighted matrix). To our understanding,
this can be interpreted as a means to slow down the primal
update for enhancing the convergence in nonconvex settings. By
assuming the existence of stationary points that satisfy the strong
second-order optimality condition, this paper established the lo-
cal convergence of the method. The notion of local convergence is
that the convergence towards some local optima can be assured
if starting with a point sufficiently close to that local optima.

The subsequent four categories (Type 2, 3, 4, 5) differ from
the first one mainly in the presence of a last block encoded by B.
Note that Hong et al. (2016) can be viewed as a special case with
B = I, where I are identity matrices of suitable sizes. The last
block is exceptional due to the unconstrained and Lipschitz dif-
ferentiable property, which are critical to bound the dual updates
for establishing convergence (see the references therein). That
is why the last decision block is usually distinguished by some
special notations (i.e., y, x0). While the first category employs
Jacobian decomposition for primal update, these four categories
fall into Gauss–Seidel decomposition (i.e., alternating minimiza-
tion). Specially, the works Liu et al. (2019) and Wang et al. (2019)
have made some effort in handling possible composite objective
components g but via different ways. Specifically, Wang et al.
(2019) employed block coordinate and Liu et al. (2019) used
linearization technique. Particularly, Hong et al. (2016) and Wang
et al. (2019) build a general framework to establish the conver-
gence for Gauss–Seidel ADMM towards local optima or stationary
points in nonconvex settings, which comprises two key steps: (1)
identifying a so-called sufficiently decreasing Lyapunov function,
and (2) establishing the lower boundness property of the Lya-
punov function. The sufficiently decreasing and lower boundness
property of a proper Lyapunov function state that (Wang et al.,
2019)

T (xk+1, λk+1) − T (xk, λk)

≤ −ax∥xk+1
− xk∥2

− aλ∥λ
k+1

− λk
∥
2.

T (xk, λk) > −∞.

(2)

where T (·, ·) is a general Lyapunov function, x and λ are pri-
mal and dual variables, ax and aλ are positive coefficients. The
augmented Lagrangian (AL) function has been often used as the
Lyapunov function in nonconvex settings (see Hong et al. (2016)
and Wang et al. (2019) and the references therein). However,
they depend on the following two necessary conditions on the
last decision block encoded by B to bound the dual updates
∥λk+1

− λk
∥
2 by the primal updates ∥xk+1

− xk∥2 (Hong et al.,
2016; Wang et al., 2019).

(a) B has full column rank and Im(A) ⊆ Im(B) (Im(·) represents
the image of a matrix).

(b) The last decision block is unconstrained and with Lipschitz
differentiable objective.

Noted that the fourth and fifth category (Type 4, 5) originated
from Hong et al. (2016) are a special case with B = I and thus
satisfy the necessary condition (a).

Following the line of works, the sixth category (Type 6) studied

the extension of ADMM to non-linearly constrained nonconvex
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Table 1
Distributed constrained nonconvex optimization.
# Type Problem structures Main assumptions Methods Scheme Convergence Papers

1

min
(xi)Ni=1

N∑
i=1

fi(xi)

s.t.
N∑
i=1

Aixi = b.

xi ∈ Xi, i = 1, 2, . . . ,N.

fi continuously
differentiable. Strong
second-order
optimality condition.

ADAL Jacobian Local convergence.
Local optima.

Chatzipanagiotis and Zavlanos
(2017)

2

min
x=(xi)

p
i=0,y

g(x) +

p∑
i=0

fi(xi) + h(y)

s.t.
p∑

i=0

Aixi + By = 0.

g and h Lipschitz
continuous gradient.
fi weakly convex.
Im(A) ⊆ Im(B).

ADMM Gauss–Seidel Global
convergence.
Stationary points.

Guo, Han, and Wu (2017), Li
and Pong (2015), Wang et al.
(2019) and Yang, Pong, and
Chen (2017)

3

min
x=(xi)Ni=1,y

g(x, y) +

N∑
i=1

fi(xi) + h(y)

s.t.
N∑
i=1

Aixi + By = 0.

g and h Lipschitz
continuous gradient.
Im(A) ⊆ Im(B).

Linearized
ADMM

Gauss–Seidel Global
convergence.
Stationary points.

Liu, Shen, and Gu (2019)

4

min
(xk)Kk=0

k∑
k=1

gk(xk) + h(x0)

s.t. xk = x0.
x0 ∈ X.

g Lipschitz
continuous gradient.
h convex.

Flexible
ADMM

Gauss–Seidel Global
convergence.
Stationary points.

Hong, Luo, and Razaviyayn
(2016)

5

min
(xk)Kk=0

N∑
k=1

gx(xk) + ℓ(x0)

s.t.
K∑

k=1

Akxk = x0.

xk ∈ Xk, k = 1, . . . ,N.

ℓ Lipschitz
continuous gradient.
g nonconvex but
smooth or convex but
non-smooth.

Flexible
ADMM

Gauss–Seidel Global
convergence.
Stationary points.

Hong et al. (2016)

6

min
(xi)Ni=1,x̄

N∑
i=1

fi(xi)

s.t.
N∑
i=1

Aixi + Bx̄ = 0.

xi ∈ Xi, hi(xi) = 0,

i = 1, . . . ,N.

x̄ ∈ X̄.

fi continuously
differentiable. hi
non-linear (possibly
nonconvex). B full
column rank. Xi
possibly nonconvex.

ALM +

ADMM
Gauss–Seidel Global

convergence.
Stationary points.

Sun and Sun (2019, 2021)

7

min
(xi)Ni=1

g(x) +

N∑
i=1

fi(xi)

s.t.
N∑
i=1

Aixi = b.

xi ∈ Xi, i = 1, 2, . . . ,N.

fi and g Lipschitz
continuous gradient.

Proximal
ADMM

Jacobian Global
convergence.
Approximate
stationary points.

This paper

Note: the set Xi and X̄ are bounded convex sets.
c

roblems (Sun & Sun, 2019, 2021). Since it is difficult (if not
mpossible) to directly handle the non-linear couplings by the
L framework, Sun and Sun (2019) proposed to first convert the
on-linearly constrained problems to linearly constrained ones by
ntroducing decision copies for interconnected agents. This yields
inearly constrained nonconvex problems with local non-linear
onstraints. The work (Sun & Sun, 2019) argues that the direct
xtension of ADMM to the reformulated problem is not applicable
or the two necessary conditions condition (a) and (b) cannot be
atisfied simultaneously. To bypass the challenge, Sun and Sun
2019) proposed to introduce a block of slack variables working
s the last block. To force the slack block to zero, this paper

developed a two-level method where the inner-level uses classic
ADMM to solve a relaxed problem with a penalty on the slack
variables, and the outer-level gradually forces the slack variables
towards zero.
3

As can be perceived from the literature, it is difficult (if not
impossible) to develop a distributed method with convergence
guarantee for (P) due to the lack of a well-behaved last block
satisfying condition (a) and (b). The work (Chatzipanagiotis &
Zavlanos, 2017) provided a solution with local convergence guar-
antee but cannot handle the probable composite objective com-
ponents g . Though the idea of introducing slack variables in Sun
and Sun (2019) can provide a solution with global convergence
guarantee but at the cost of heavy iteration complexity caused by
the two-level structure. Despite these limitations, what we can
learn from the literature is that the behaviors of dual variables
is important to draw the convergence of ADMM for nonconvex
problems.

This paper focuses on developing a distributed method for
problem (P) with theoretical convergence guarantee. Our main
ontributions are
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• We propose a proximal ADMM by revising the dual update
procedure of classic ADMM into a discounted manner. This
leads to the boundness of dual updates, which is critical to
establish the convergence.

• We establish the global convergence of the method towards
approximate stationary points by identifying a proper Lya-
punov function which is sufficiently decreasing and lower
bounded as required.

• We showcase the performance of the distributed method
with a numerical example and a concrete application aris-
ing from smart buildings, which demonstrate the method’s
effectiveness.

The remainder of this paper is organized as follows. In Section 2,
we present the proximal ADMM. In Section 3, we study the con-
vergence of the method. In Section 4, we showcase the method’s
performance with a numerical example and smart building appli-
cation. In Section 5, we conclude this paper and discuss the future
work.

2. Proximal ADMM

2.1. Notations

Throughout the paper, we will visit the following notations.
We use the bold alphabets x, y, a, b, c and A,Ai,Q,M to repre-
sent vectors and matrices. We define In or I as identity matrices
of n × n or suitable size. We use the operator := to give defi-
nitions. We have Rn represent the n-dimensional real space and
(xi)Ni=1 := (x⊤

1 , x⊤

2 , . . . , x⊤

N )
⊤ is the stack of sub-vector xi ∈

Rni . We refer to ∥ · ∥ as Euclidean norm without specification,
i.e., ∥x∥ =

√∑n
i=1 x

2
i for x ∈ Rn, and ⟨x, y⟩ denote the dot

product of vector x, y ∈ Rn. We besides have ∥x∥2
A = x⊤Ax. We

use diag(A1,A2, . . . ,AN ) to denote the diagonal matrix formed by
the sub-matrices A1,A2, . . . ,AN . We have the normal cone to a
convex set X ⊆ Rn at x∗ defined by NX(x∗) := {ν ∈ Rn

|⟨ν, x −

x∗
⟩ ≤ 0, ∀x ∈ X}. For g : Rn

→ R and x = (xi)Ni=1 ∈ Rn, we denote
∇ig(x) = ∇xig(x) as the partial differential of g with respect to
component xi ∈ Rni . We define dist(x,X) = miny∈X ∥x−y∥ as the
distance of vector x ∈ Rn to the subset X ⊆ Rn.

2.2. Algorithm

In this part, we introduce the proximal ADMM for solving
problem (P) in a distributed manner. The proximal ADMM is a
type of AL methods that depend on the AL technique to relax
constraints and employ the primal–dual scheme to update vari-
ables. By defining Lagrangian multipliers λ ∈ Rm for the coupled
constraints (1a), we have the AL function for problem (P)

Lρ(x, λ) = F (x) + ⟨λ,Ax − b⟩ +
ρ

2
∥Ax − b∥

2 (3)

where F (x) = g(x) +
∑N

i=1 fi(xi) and ρ is the penalty parameter.
Following the standard AL methods, the proximal ADMM is

composed of Primal update and Dual update as shown in
Algorithm 1. In Primal update, the primal variables x = (xi)Ni=1
are updated in a distributed manner via Jacobian decomposition.
Particularly, to handle the composite objective component g ,
we linearize the composite term at each iteration k by g(xk) +

⟨∇g(xk), x−xk⟩ (the constant part g(xk) is dropped). Note that the
local objective terms fi can also be linearized similarly if necessary
and the proof of this paper still applies. To favor computation
efficiency and scaling properties, we adopt the Jacobian scheme
and empower the agents to update their decision components
in parallel at each iteration with the preceding information from
their interconnected agents. Particularly, to enhance convergence,
4

a proximal term ∥xi − xk+1
i ∥

2 is imposed on the local objective
of each agent (Step 3). This has been used in many Jacobian
ADMM both in convex (Chang, Hong, & Wang, 2014; Deng et al.,
2017; Li, Feng, & Xie, 2020) and nonconvex (Liu et al., 2019;
Lu, Lee, Razaviyayn, & Hong, 2021) settings. Note that the sub-
problems (6) are either convex or nonconvex optimization over
the local constraints Xi, depending on fi. There are many first-
order solvers to solve those subproblems, such as the projected
gradient method (Jain & Kar, 2017) and the proximal gradient
method (Li & Lin, 2015). This paper focuses on developing a
general distribute framework for solving problem (P) and will
not discuss the subproblems in detail. The major difference of the
proximal ADMM from the existing distributed AL methods is that
we have modified the Dual update by imposing a discounting
factor (1−τ ) (τ ∈ [0, 1)) (Step 4). The idea and motivation behind
re to update the dual variables by the constraints residual in
discounted manner so as to bound the dual variables in the

terative process, which has been identified as critical to draw
heoretical convergence. In this setting, the dual variables are the
iscounted running sum of the constraints residual, i.e.,
k+1

= (1 − τ )λk
+ ρ(Axk+1

− b)
= (1 − τ )2λk−1

+ (1 − τ )ρ(Axk − b)
+ ρ(Axk+1

− b)
· · ·

= (1 − τ )k+1λ0
+

k∑
ℓ=0

(1 − τ )k−ℓρ(Axℓ+1
− b).

(4)

his differs from classic ADMM where the dual variables are the
unning sum of the constraints residual, i.e.,
k+1

= λk
+ ρ(Axk+1

− b)
= λk−1

+ ρ(Axk − b) + ρ(Axk+1
− b)

· · ·

= λ0
+

k∑
ℓ=0

ρ(Axℓ+1
− b).

rom this perspective, classic ADMM can be viewed as a special
ase of the proximal ADMM with τ = 0. In the proximal ADMM,
he Primal update and Dual update are alternated until the
topping criterion

T k+1
c − T k

c ∥ ≤ ϵ (5)

is reached, where T k
c is the Lyapunov function to be discussed

ater. The parameter ϵ is a user-defined positive threshold.

Algorithm 1 Proximal ADMM for problem (P)

1: Initialize: x0, λ0 and ρ > 0, τ ∈ [0, 1), and set k → 0.
2: Repeat:
3: Primal update:

xk+1
i =argmin

xi∈Xi

⎧⎪⎪⎨⎪⎪⎩
⟨∇ig(xk), xi − xki ⟩
+fi(xi) + ⟨λk,Aixki ⟩
+ρ/2∥Aixi+

∑
j̸=iAjxkj −b∥

2

+β/2∥xi − xki ∥
2
Bi

⎫⎪⎪⎬⎪⎪⎭ (6)

4: Dual update:

λk+1
= (1 − τ )λk

+ρ
(
Axk+1

−b
)

(7)

5: Until the stopping criterion (5) is reached.

3. Convergence analysis

Before establishing the convergence of Algorithm 1, we first
clarify the main assumptions.
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∥

a

τ
b

T

f

.1. Main assumptions

A1) Function f : Rn
→ R and g : Rn

→ R have Lipschitz contin-
uous gradient (i.e., Lipschitz differentiable) with modulus Lf
and Lg over the set X = X1 × X2 × · · · × XN , i.e., (Guo et al.,
2017)

∥∇f (x) − ∇f (y)∥ ≤ Lf ∥x − y∥, ∀x, y ∈ X.

∥∇g(x) − ∇g(y)∥ ≤ Lg∥x − y∥, ∀x, y ∈ X.

A2) Function f : Rn
→ R and g : Rn

→ R are lower bounded
over the set X = X1 × X2 × · · · × XN , i.e.,

f (x) > −∞, ∀x ∈ X.

g(x) > −∞, ∀x ∈ X.

3.2. Main results

As discussed, there are two key steps to draw convergence
for a distributed AL method in nonconvex settings: (1) identi-
fying a so-called sufficiently decreasing Lyapunov function; and
(2) establishing the lower boundness property of the Lyapunov
function. To achieve the objective, we first draw the following
two propositions.

Proposition 1. For the sequences {xk}k∈K and {λk
}k∈K generated

by Algorithm 1, we have

1 − 2τ 2

2ρ

λk+1
− λk

2
+

1
2
∥xk+1

− xk∥2
Q

+
Lg
2

∥xk+1
− xk∥2

+
1
2
∥wk

∥
2
Q

≤
1 − 2τ 2

2ρ

λk
− λk−1

2
+

1
2
∥xk − xk−1

∥
2
Q

+
Lg
2

∥xk − xk−1
∥
2
+ ρF

xk+1
− xk

2

− τ (1 + τ )/ρ∥λk+1
− λk

∥
2.

here we have the iterations K := {1, 2, . . . , K } and
k
: = (xk+1

− xk) − (xk − xk−1)

GA : = diag
(
A⊤

1 A1, . . . ,A⊤

NAN
)

GB : = diag
(
B⊤

1 B1, . . . ,B⊤

NBN
)

Q : = ρGA + βGB − ρA⊤A
ρF : = Lf + Lg .

Proof of Proposition 1. We defer the proof to Appendix A.

Let L+
ρ (x, λ) := Lρ(x, λ) −

τ
2ρ ∥λ∥

2 be the regularized AL
unction. We have the subsequent proposition to quantify the
hange of regularized AL function over the successive iterations.

roposition 2. For the sequences {xk}k∈K and {λk
}k∈K generated

y Algorithm 1, we have
+

ρ (x
k+1, λk+1) − L+

ρ (x
k, λk)

≤ −∥xk+1
− xk∥2

Q +
ρF

2
∥xk+1

− xk∥2

−
ρ

2
∥A(xk+1

− xk)∥2
+

2 − τ

2ρ
∥λk+1

− λk
∥
2.

Proof of Proposition 2. We defer the proof to Appendix B.

In the literature, the AL function is often used as the Lya-
punov function if the sufficiently decreasing property can be
established (see Guo et al. (2017), Li and Pong (2015), Wang et al.
 e

5

(2019) and Yang et al. (2017) for examples). However, this is not
the case for Algorithm 1. From Proposition 2, we note that the
sufficiently decreasing property of the (regularized) AL function
can be established if and only if the dual updates ∥λk+1

− λk
∥
2

can be bounded by the primal updates ∥xk+1
− xk∥2 (see the

definition (2)). This is difficult (if not impossible) due to the lack
of a well-behaved last block (i.e., unconstrained and Lipschitz
differentiable) as discussed.

However, by combining Propositions 1 and 2, we indeed can
identify a sufficiently decreasing Lyapunov function. Specifically,
from Proposition 2, we have the (regularized) AL function L+

ρ

xk+1, λk+1) is ascending in ∥λk+1
− λk

∥
2 and descending in

xk+1
− xk∥2. This is exactly opposite to the descending and

scending properties of the term 1−2τ2
2ρ ∥λk+1

− λk
∥
2
+

1
2∥x

k+1
−

xk∥2
Q stated in Proposition 1. Note that this is attributed to the

imposed discounted factor τ > 0, otherwise the term τ (1 −

)/ρ∥λk+1
− λk

∥
2 in Proposition 1 would be zero. We therefore

uild the Lyapunov function as

c(xk+1, λk+1
; xk, λk) = L+

ρ (x
k+1, λk+1)

+ c
(
1 − 2τ 2

2ρ
∥λk+1

− λk
∥
2
+

1
2
∥xk+1

− xk∥2
Q

+
Lg
2

∥xk − xk−1
∥
2
)

(8)

where c is a constant parameter to be determined for ensuring
the sufficiently decreasing and lower boundness property of the
Lyapunov function.

Let T k+1
c := Tc(xk+1, λk+1

; xk, λk) be the Lyapunov function
at iteration k, we have the following proposition regarding the
sufficiently decreasing property.

Proposition 3. For the sequences {xk}k∈K and {λk
}k∈K generated

by Algorithm 1, we have

T k+1
c − T k

c ≤ −ax∥xk+1
− xk∥2

− aλ∥λ
k+1

− λk
∥
2
−

c
2
∥wk

∥
2

where we have ρF = Lf + Lg and

ax :=
2ρGA + 2βGB − ρA⊤A − (2c + 1)ρF IN

2

aλ :=
2cτ (1 + τ ) − (2 − τ )

2ρ
.

Proof of Proposition 3. Based on Propositions 1 and 2, we have

T k+1
c − T k

c = −∥xk+1
− xk∥2

Q +
ρF

2
∥xk+1

− xk∥2

−
ρ

2
∥A(xk+1

− xk)∥2
+

2 − τ

2ρ
∥λk+1

− λk
∥
2

+ c
(
ρF

xk+1
− xk

2
− τ (1 + τ )/ρ∥λk+1

− λk
∥
2

− 1/2∥wk
∥
2
Q

)
≤ −ax∥xk+1

− xk∥2
− aλ∥λ

k+1
− λk

∥
2
−

c
2
∥wk

∥
2
Q

where the inequality is directly derived by rearranging the terms.
We therefore close the proof.

Remark 1. Proposition 3 implies that we would have the suf-
ficiently decreasing property hold by the constructed Lyapunov
function T k

c if we have ax > 0, aλ > 0, c ≥ 0 and Q ≥ 0. Actually,
this can be achieved by setting the tuple (τ , ρ, β , Bi, c) properly
or Algorithm 1, which will be discussed shortly.

As discussed, another key step to draw the convergence is to
stablish the lower boundness property of the Lyapunov function.
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o this end, we first prove the lower boundness property of
agrangian multipliers resulting from the discounted dual update
cheme.

roposition 4. Let ∆k
:= ∥Axk − b∥ be the constraints residual

t iteration k, ∆max
:= maxx∈X ∥Ax − b∥ denote the maximal

onstraints residual over the closed feasible set X, and Algorithm
start with any given initial dual variable λ0, we have ∥λk

∥ is
bounded, i.e.,

∥λk
∥ ≤ ∥λ0

∥ + τ−1ρ∆max

or ∥λk
∥
2

≤ 2∥λ0
∥
2
+ 2τ−2ρ2(∆max)2.

(9)

Proof of Proposition 4. Recall the dual update scheme in (4), we
have

∥λk
∥ = ∥(1 − τ )k+1λ0

+

k∑
ℓ=0

ρ(1 − τ )k−ℓ∆ℓ+1
∥

≤ ∥(1 − τ )k+1λ0
∥ +

k∑
ℓ=0

∥ρ(1 − τ )k−ℓ∆ℓ+1
∥

≤ ∥(1 − τ )k+1λ0
∥ + ρ∆max 1 − (1 − τ )k

τ

≤ ∥λ0
∥ + τ−1ρ∆max

where the first inequality is by the triangle inequality of norm,
the second inequality infers from ∆k

≤ ∆max, ∀k, and the last
nequality holds because of τ ∈ (0, 1).

Further based on ∥a+ b∥
2

≤ 2∥a∥2
+ 2∥b∥

2, we directly have
λk

∥
2

≤ 2∥λ0
∥
2

+ 2τ−2ρ2(∆max)2. We therefore complete the
roof.
Based on Proposition 4, we are able to establish the lower

oundness property of Lyapunov function as below.

roposition 5. For the sequences {xk}k∈K and {λk
}k∈K generated

y Algorithm 1, we have
k+1
c > −∞, ∀k ∈ K. (10)

roof of Proposition 5. By examining the terms of T k+1
c in (8),

e only require to establish the lower boundness property of
+
ρ (xk+1, λk+1) = Lρ(xk+1, λk+1)− τ

2ρ ∥λk+1
∥
2 for the other terms

re all non-negative. Based on Proposition 4, we directly have
τ
2ρ ∥λk+1

∥
2 lower bounded since ∥λk+1

∥
2 is upper bounded. We

therefore only need to prove that Lρ(xk+1, λk+1) = f (xk+1) +

⟨λk+1,Axk+1
−b⟩+ρ/2

Axk+1
− b

2 is lower bounded. Note that
we have f (xk+1) > −∞ over the compact set X (see A2) and the
quadratic term non-negative. This infers we only need to prove
the lower boundness for the second term ⟨λk+1,Axk+1

−b⟩. Based
on the dual update (7), we have

⟨λk+1,Axk+1
− b⟩ =

⟨
λk+1,

λk+1
− (1 − τ )λk

ρ

⟩
=

⟨
λk+1,

1 − τ

ρ
(λk+1

− λk) +
τ

ρ
λk+1

⟩
(11)

=
τ

ρ
∥λk+1

∥
2
+

1 − τ

ρ

⟨
λk+1, λk+1

− λk⟩
=

τ

ρ
∥λk+1

∥
2
+

1 − τ

2ρ

(
∥λk+1

− λk
∥
2
+ ∥λk+1

∥
2
− ∥λk

∥
2)

Since we have ∥λk
∥
2 is upper bounded (see Proposition 4), we

therefore have Lρ(xk+1, λk+1) lower bounded for the other terms
of (11) are all non-negative. We thus complete the proof.
 L

6

To present the main results regarding the convergence of Al-
gorithm 1, we first give the definition on Approximate stationary
solution.

Definition 1 (Approximate Stationary Solution). For any given ϵ,
e say a tuple (x∗, λ∗) is an ϵ-stationary solution of problem (P),

if we have

dist
(
∇F (x∗) + A⊤λ∗

+ NX(x∗), 0
)
+ ∥Ax∗

− b∥ ≤ ϵ.

where ∇F (x∗) = ∇f (x∗) + ∇g(x∗).

In terms of the convergence of Algorithm 1 for problem (P),
we have the following main results.

Theorem 1. For Algorithm 1 with the tuple (τ , ρ, β , Bi, c) selected
y

: τ ∈ (0, 1)

: c >
2 − τ

2τ (1 + τ )
(C1)

(ρ, β,Bi) :

{
2ρGA + 2βGB − ρA⊤A ≥ (2c + 1)ρF IN
Q := ρGA + βGB − ρA⊤A ≥ 0

(a) The generated sequence {xk}k∈K and {λk
}k∈K are bounded and

convergent, i.e.,

λk+1
− λk

→ 0, xk+1
− xk → 0.

(b) Suppose we have the limit tuple (x∗, λ∗), then (x∗, λ̂
∗

) with
λ̂

∗

= (1 + τλ∗) is τρ−1
∥λ∗

∥-stationary solution of problem
(P).

roof of Theorem 1. (a) Recall Proposition 3, we have
K∑

k=1

(
T k
c − T k+1

c

)
≥ ax

K∑
k=1

∥xk+1
− xk∥2

+ aλ

K∑
k=1

∥λk+1
− λk

∥
2
+

c
2

K∑
k=1

∥wk
∥
2

By assuming K → ∞, we have

T 1
c − lim

K→∞

T k+1
c ≥ ax

∞∑
k=1

∥xk+1
− xk∥2

+ aλ

∞∑
k=1

∥λk+1
− λk

∥
2
+

c
2

∞∑
k=1

∥wk
∥
2

Since we have T k+1
c > −∞ (see Proposition 5), we thus have

∞ ≥ ax
∞∑
k=1

∥xk+1
− xk∥2

+ aλ

∞∑
k=1

∥λk+1
− λk

∥
2
+

c
2

∞∑
k=1

∥wk
∥
2.

We therefore conclude
∥xk+1

− xk∥ → 0, ∥λk+1
− λk

∥ → 0,

wk
∥ = ∥(xk+1

− xk) − (xk − xk−1)∥ → 0.

(b) According to (a), we have the sequences {xk}k∈K and {λk
}k∈K

onverge to some limit tuple (x∗, λ∗), i.e., if k → ∞, we have
k+1

→ x∗, λk+1
→ λ∗ and xk+1

→ xk and λk+1
→ λk.

Based on the dual update procedure (7), we have the station-
ry tuple (x∗, λ∗) satisfy

x∗
− b = τρ−1λ∗. (12)

ince we have λ̂
k
= λk

+ρ(Axk−b), we thus have λ̂
k
→ (1+τ )λ∗.

ˆ
∗

∗ ˆ
k

ˆ
∗

et λ = (1 + τ )λ , we have λ → λ .
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Recall the first-order optimality condition (A.4) and assume
k → ∞ that the stationary point (x∗, λ∗) is reached, we would
ave

∇f (x∗) + ∇g(x∗) + A⊤λ̂
∗

, x∗
− x⟩ ≤ 0, ∀x ∈ X.

his implies that

∈ ∇f (x∗) + ∇g(x∗) + A⊤λ̂
∗

+ NX(x∗).

We further have

dist
(
∇f (x∗) + ∇g(x∗) + A⊤λ̂

∗

+ NX(x∗), 0
)

= 0 (13)

By combining (12) and (13), we therefore conclude

dist
(
∇f (x∗) + ∇g(x∗) + A⊤λ̂

∗

+ NX(x∗), 0
)

+ ∥Ax∗
− b∥ ≤ τρ−1

∥λ∗
∥,

which closes the proof.
From Theorem 1, we note that if the convergent λ∗ does not

depend on τ and ρ, we could decrease τ or increase ρ to achieve
any sub-optimality. If that is not the case, we give the following
corollary to show that this still can be achieved by properly
setting the initial point and parameters.

Corollary 1. For any given ϵ > 0, if Algorithm 1 starts with λ0
= 0

and Ax0 = b, τ ∈ (0, 1), and the penalty parameter ρ is selected
that

ρ ≥ ϵ−2τ
(
4 + c(1 − 2τ 2) + c/2

)
dF + ϵ−2cLg/2∥x0∥2

+ ϵ−2τ cLg/2∥x0∥2
+ ϵ−2τ cρF/4 dx,

we have the limit tuples (x∗, λ∗) and (x∗, λ̂
∗

) with λ̂
∗

= (1 +

λ∗) is ϵ-stationary solution of problem (P). where we have dF =

maxx∈X f (x) + g(x), dx = maxx,y∈X ∥x − y∥2, and we assume
f (x) ≥ 0, g(x) ≥ 0 without losing any generality.

Proof of Corollary 1. We only give the sketch of the proof and
defer the details to Appendix C. The proof is structured by two
parts which include: (i) proving ∥λ∗

∥
2

≤ ρτ−1T 0
c , and (ii) proving

T 0
c ≤

(
4 + c(1 − 2τ 2) + c/2

)
dF + cLg/2∥x0∥2

+ cρF/4 dx. Based
n (i) and (ii), we have τ 2ρ−2

∥λ∗
∥
2

≤ ϵ2. We then directly draw
he conclusion based on Theorem 1.

. Numerical experiments

.1. A numerical example

We first consider a numerical example with N = 2 agents
iven by

in
x1,x2

0.1x31 + 0.1x32 + 0.1x1x2 (P1)

s.t. x1 + x2 = 1
− 1 ≤ x1 ≤ 1
− 1 ≤ x2 ≤ 1

For this example, we have f1(x1) = 0.1x31, f2(x2) = 0.1x32, and
(x1, x2) = 0.1x1x2. The Lipschitz continuous gradient modulus
or f and g are Lf = 0.6 and Lg = 0.2. Besides, we have A1 = 1,
2 = 1, A = (1 1). The stationary point of the problem is
⋆
1 = 0.5, x⋆

2 = 0.5.
To our best knowledge, there is no distributed solution meth-

ds for solving problem (P1) with theoretical convergence guar-
ntee. In the following, we apply the proximal ADMM to solve
his problem and verify the solution quality. We consider four
ifferent parameter settings for Algorithm 1:

(S1) τ = 0.1, ρ = 10, β = 10, c = 8.7
7

(S2) τ = 0.1, ρ = 20, β = 20, c = 8.7
(S3) τ = 0.05, ρ = 5, β = 16, c = 18.6
(S4) τ = 0.05, ρ = 10, β = 16, c = 18.6

The other parameters are set as B1 = B2 = 1, τ = 0.1, x01 = 0.2,
x02 = 0.8, λ0

= 0 and kept the same for S1–S4. Note that we
have τ/ρ = 0.01 for S1/S3 and τ/ρ = 0.005 for S2/S4. We make
such settings for comparisons as we have the suboptimality of
the method related to the ratio τ/ρ as stated in Theorem 1. We
therefore study how the ratio τ/ρ will affect the convergence rate
and the solution quality of the method.

Before running the algorithm, we first can easily verify the
convergence condition (C1) stated in Theorem 1 for S1–S4. We
use the interior-point method embedded in the fmincon
solver of MATLAB to solve subproblems (6). We run Algorithm
1 sufficiently long (i.e., K = 2000 iterations when the Lyapunov
function does not change apparently) for the settings S1–S4. We
first examine the convergence of the method indicated by the
Lyapunov function. Fig. 1(a) shows the evolution of the Lyapunov
function w.r.t. the iterations with S1–S4. We observe that for all
the settings S1–S4, the Lyapunov functions strictly decrease w.r.t.
the iterations and finally stabilize at some value that is close to
the optima f ⋆

= 0.1x⋆
1 + 0.1x⋆

2 + 0.1x⋆
1x

⋆
2 = 0.05. By further

examining the results, we note that a larger ratio τ/ρ yields
faster convergence rate as with S1/S3 (τ/ρ = 0.01) compared
with S2/S4 (τ/ρ = 0.005). This is caused by the relatively
smaller penalty factor ρ and proximal factor β required to ensure
the convergence condition (C1) for a larger τ/ρ. Note that the
penalty factor ρ and the proximal factor β can be interpreted
as some means to slow down the primal updates as they have
an effect in penalizing the deviation from current update xk.
Oppositely, a smaller ratio τ/ρ generally yields higher solution
quality (i.e., smaller suboptimality gap) as with S2/S4 (τ/ρ =

0.005) compared with S1/S3 (τ/ρ = 0.01). This is in line with
Theorem 1.

To further examine the solution quality, we report the detailed
results with the four settings S1–S4 (Prox-ADMM-Sx, x = 1, 2,
3, 4) and the centralized method (using the interior-point
method embedded in the fmincon solver of MATLAB) in Ta-
ble 2. Note that the convergent solution x̂1 and x̂2 with proximal
ADMM under the settings S1–S4 are quite close to the optimal
solution x⋆

1 = 0.5 and x⋆
2 = 0.5 obtained from the centralized

method. More specifically, by measuring the sub-optimality by
∥x̂ − x⋆

∥/∥x⋆
∥ where x̂ = (x̂1, x̂2) and x⋆

= (x⋆
1, x

⋆
2) are the

convergent and optimal solution, we have the sub-optimality of
proximal ADMM is around 1.2E−3 with S1/S3 (τ/ρ = 0.01)
and 5.9E−4 with S2/S4 (τ/ρ = 0.005). We therefore imply
that a smaller ratio τ/ρ can achieve higher solution quality but
generally at the cost of slower convergence rate as observed in
Fig. 1(a). This implies that a trade-off in terms of the solution
quality and the convergence speed is necessary while configuring
the algorithm (i.e., the ratio of τ/ρ) for specific applications. For
this example, considering both the solution quality and conver-
gence rate, we have S4 a preferred option. We therefore display
the convergence of primal variables x1 and x2 with S4 in Fig. 1(b).
Note that x1 and x2 gradually approach the optimal solution x⋆

1 =

0.5 and x⋆
2 = 0.5.

4.2. Application: multi-zone HVAC control

To showcase the performance of proximal ADMM in appli-
cations, we apply it to the multi-zone heating, ventilation, and
air conditioning (HVAC) control arising from smart buildings. The
goal is to optimize the HVAC operation to provide the comfortable
temperature with minimal electricity bill. Due to the thermal ca-

pacity of buildings, the evolution of indoor temperature is a slow
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Table 2
Performance of proximal ADMM under the settings S1–S4 vs. Centralized
method.
Method τ/ρ x̂1 x̂2 Sub-

optimality
Conver-
gence
rate

Centralized – 0.5 0.5 – –
Prox-ADMM-S1 0.01 0.4994 0.4994 1.1E−3 No. 1
Prox-ADMM-S2 0.005 0.4997 0.4997 5.7E−4 No. 4
Prox-ADMM-S3 0.01 0.4994 0.4994 1.2E−3 No .2
Prox-ADMM-S4 0.005 0.4997 0.4997 5.9E−4 No. 3

Fig. 1. (a) The evolution of Lyapunov function T k
c with S1–S4. (b) The evolution

f primal variables x1 and x2 with S4.

rocess affected both by the dynamic indoor occupancy (thermal
oads) and the HVAC operation (cooling loads). The general so-
ution is to design a model predictive controller for optimizing
VAC operation (i.e., zone mass flow and zone temperature tra-
ectories) to minimize the overall electricity cost while respecting
he comfortable temperature ranges based on the predicted infor-
ation (i.e., indoor occupancy, outdoor temperature, electricity
rice, etc.). The general problem formulation is presented below.

in
mz ,T

∑
t

ct
{
cp(1 − dr )

∑
i

mzi
t (T

o
t − T c) (P2)

+ cpηdr
∑

i

mzi
t (T

i
t − T c) + κf

(∑
i

mzi
t

)2}
∆t

s.t. T i
t+1 = AiiT i

t +

∑
j∈Ni

AijT
j
t

+ Ciimzi
t (T

i
t − T c) + Di

t , ∀i, t. (14a)

T i
min ≤ T i

t ≤ T i
max, ∀i, t. (14b)

mzi
min ≤ mzi

t ≤ mzi
max, ∀i, t. (14c)∑

i

mzi
t ≤ m, ∀t. (14d)

here i and t are zone and time indices, T = (T i
t )∀i,t and mz

=

mzi) are zone temperature and the supplied zone mass flow
t ∀i,t

8

Fig. 2. (a) The evolution of Lyapunov function. (b) The evolution of the norm
of constraints residual.

rates, which are decision variables. Note that we have the HVAC
system serves N zones with thermal couplings (i.e., heat transfer)
within a building. The other notations are parameters. For exam-
ple, [T i

min, T
i
max] represent the comfortable temperature range of

zone i. The problem is subject to the constraints including zone
thermal couplings (14a), comfortable temperature margins (14b),
zone mass flow rate limits (14c), and total zone mass flow rate
limits (14d).

Note that problem (P2) is generally in large scale for a com-
mercial building due to the large number of zones and rooms. This
problem represents one of the major challenging problems with
smart buildings. In this part, we show how the proximal ADMM
can be applied to solve problem (P2) in a distributed manner and
thus overcome the computation burden. Note that problem (P2)
can be transformed to the form of (P). We refer the readers to
our extended version (Yang, Jia, Xu, Guan, & Spanos, 2021b) for
details (see problem P3). We consider a case study with N = 10
ones and the predicted horizon T = 48 time slots (a whole day
ith a sampling interval of 30 min). We set the lower and upper
omfortable temperature bounds as T i

min = 24 ◦C and T i
max =

26 ◦C. The specifications for HVAC system can refer to Yang
et al. (2020) and Yang, Srinivasan et al. (2021a). The algorithm
of proximal ADMM is configured by ρ = 2.0, τ = 0.1, β = 3.0,
Bi = I (suitable sizes), and c = 8.7. We run the algorithm suitably
long (K = 200 iterations when both the residual and Lyapunov
function do not change apparently). We first examine the con-
vergence of the algorithm measured by the Lyapunov function
and the norm of (coupled) constraints residual. We visu-
alize the Lyapunov function and constraints residual in
Fig. 2. Note that the Lyapunov function strictly declines along
the iterations, which is consistent with our theoretical analysis.
Besides, the constraints residual almost strictly decreases
with the iterations as well and finally approaches zero. We have
the overall norm of the constraints residual at the end of
iterations is about 0.38, which is quite small considering the
problem scale T ·N = 480. This justifies the convergence property
of proximal ADMM for the smart building application.

We next evaluate the solution quality measured by the HVAC
electricity cost and human comfort. We randomly pick 3 zones
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Table 3
Prox-ADMM vs. Centralized for HVAC control in smart buildings (N = 10
zones).
Method Electricity

cost (s$)
Human
comfort

Constraints

residual

Computing

time

Centralized 153.12 Y 0 ≥ 10 h
Prox-ADMM 160.54 Y 0.38 50 min

(zone 1, 3, 7) and display the predicted zone occupancy (inputs),
he zone mass flow rates (zone MFR, control variables), and the
one temperature (zone temp., control variables) over the 48
ime slots in Fig. 3. Note that the variations of zone MFR are
lmost consistent with the zone occupancy. This is reasonable
s the zone occupancy determines the thermal loads which
eed to be balanced by the zone mass flow rates. We besides
ee that the zone temp. are all maintained within the com-
ortable range [24, 26] ◦C. This infers the satisfaction of human
omfort. To further evaluate the solution quality and compu-
ation efficiency, we compare the proximal ADMM (Prox-ADMM)
ith centralized method (Centralized). Specifically, we use the
nterior-point embedded in the fmincon solver of MATLAB
o solve both the subproblems (6) with Prox-ADMM and prob-
em (P2) with Centralized. For the Centralized, we run the
olver sufficiently long without considering the time with the
bjective to approach the best possible optimal solution. We
ompare the two methods in three folds, i.e., electricity cost,
he norm of constraints residual, and computation time
s reported in Table 3. We see that electricity cost with
rox-ADMM is about 160.20 (s$) versus 153.12 (s$) yield by Cen-
ralized. We imply the sub-optimality of Prox-ADMM in terms
f the objective is about 5.0%. However, the Prox-ADMM obviously
utperforms the Centralized in computation efficiency. The
verage computing time for each zone is about 50 min with
rox-ADMM (parallel computation) while the Centralized takes
ore than 10 h. Note that we have picked T = 48 time slots (a
hole day) as the predicted horizon, the computing time could
e largely sharpened in practice with a much smaller prediction
orizon, say T = 10 time slots (5 h).

. Conclusion and future work

This paper focused on developing a distributed algorithm for
class of nonconvex and nonsmooth problems with convergence
uarantee. The problems are featured by (i) a possibly nonconvex
bjective composed of both separate and composite components,
ii) local bounded convex constraints, and (iii) global coupled
inear constraints. This class of problems is broad in application
ut lacks distributed methods with convergence guarantee. We
urned to the powerful alternating direction method of multiplier
ADMM) for constrained optimization but faced the challenge
o establish convergence. Noting that the underlying obstacle
s to assume the boundness of dual updates, we revised the
lassic ADMM and proposed to update the dual variables in a
istributed manner. This leads to a proximal ADMMwith the con-
ergence guarantee towards the approximate stationary points
f the problem. We demonstrated the convergence and solution
uality of the distributed method by a numerical example and a
oncrete application to the multi-zone heating, ventilation, and
ir-condition (HVAC) control arising from smart buildings.
This paper proposed the discounted dual update scheme in

onjunction with ADMM for a class of nonconvex and nons-
ooth problems, some interesting future work includes studying
hether the discounted dual update scheme can be explored to
 λ

9

Fig. 3. (a) Zone occupancy. (b) Zone mass flow rate (Zone MFR). (c) Zone
temperature (Zone temp.).

develop distributed methods for more broad classes of problems
both in convex and nonconvex settings.
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Appendix A. Proof of Proposition 1

Proposition 1 is established based on the first-order optimal-
ity condition of subproblems (6) and the Lipschitz continuous
gradient property of f and g .

We first establish the following equality and notation.

Aixk+1
i +

∑
j̸=i

Ajxkj − b (A.1)

= Axk − b + Ai(xk+1
i − xki ).

= Axk+1
− b + A(xk − xk+1) + Ai(xk+1

i − xki ).

ˆ
k
:= λk

+ ρ(Axk+1
− b). (A.2)
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⟨

⟨

⟨

⟨

x

⟨

w

∥

w

(

W

A

e

For subproblems (6), the first-order optimality condition states
that there exists νk+1

i ∈ NXi (x
k+1
i ) that

0 = ∇fi(xk+1
i ) + ∇ig(xk) + A⊤

i λk

+ ρA⊤

i (Aixk+1
i +

∑
j̸=i

Ajxkj − b)

+ βB⊤

i Bi(xk+1
i − xki ) + νk+1

i

= ∇fi(xk+1
i ) + ∇ig(xk) + A⊤

i

(
λk

+ ρ(Axk+1
− b)

)
+ ρA⊤

i A(x
k
− xk+1) + ρA⊤

i Ai(xk+1
i − xki )

+ βB⊤

i Bi(xk+1
i − xki ) + νk+1

i by (A.1)

= ∇fi(xk+1
i ) + ∇ig(xk) + A⊤

i λ̂
k
+ ρA⊤

i A(x
k
− xk+1)

+ ρA⊤

i Ai(xk+1
i − xki )

+ βB⊤

i Bi
(
xk+1
i − xki

)
+ νk+1

i by (A.2).

Multiplying by (xk+1
i − xi) in both sides, we have

⟨∇fi(xk+1
i ), xk+1

i − xi⟩ + ⟨∇ig(xk), xk+1
i − xi⟩

+ ⟨λ̂
k
,Ai(xk+1

i − xi)⟩
+ ρ⟨A(xk − xk+1),Ai(xk+1

i − xi)⟩
+ ρ⟨Ai(xk+1

i − xki ),Ai(xk+1
i − xi)⟩

+ β⟨Bi(xk+1
i − xki ),Bi(xk+1

i − xi)⟩
= − ⟨νk+1

i , xk+1
i − xi⟩ ≤ 0, ∀xi ∈ Xi.

(A.3)

Summing up (A.3) over i, we have ∀xi ∈ Xi,

⟨∇f (xk+1), xk+1
− x⟩ + ⟨∇g(xk), xk+1

− x⟩

+ ⟨λ̂
k
,A(xk+1

− x)⟩ + (xk+1
− x)ρA⊤A(xk − xk+1)

+

∑
i

(xk+1
i − xi)⊤(ρA⊤

i Ai + βB⊤

i Bi)(xk+1
i − xki ) ≤ 0.

Plugging in Q := ρGA + βGB − ρA⊤A, we have

∇f (xk+1), xk+1
− x⟩ + ⟨∇g(xk), xk+1

− x⟩

+ ⟨λ̂
k
,A(xk+1

− x)⟩

+ (xk+1
− x)⊤Q(xk+1

− xk) ≤ 0, ∀x ∈ X. (A.4)

By induction, we have

∇f (xk), xk − x⟩ + ⟨∇g(xk−1), xk − x⟩

+ ⟨λ̂
k−1

,A(xk − x)⟩

+ (xk − x)⊤Q(xk − xk−1) ≤ 0, ∀x ∈ X. (A.5)

By setting x = xk and x = xk+1 with (A.4) and (A.5), we have

∇f (xk+1), xk+1
− xk⟩ + ⟨∇g(xk), xk+1

− xk⟩

+ ⟨λ̂
k
,A(xk+1

− xk)⟩

+ (xk+1
− xk)⊤Q(xk+1

− xk) ≤ 0. (A.6)

∇f (xk), xk − xk+1
⟩ + ⟨∇g(xk−1), xk − xk+1

⟩

+ ⟨λ̂
k−1

,A(xk − xk+1)⟩

+ (xk − xk+1)⊤Q(xk − xk−1) ≤ 0. (A.7)

Summing up (A.6) and (A.7) and plugging in wk
:= (xk+1

−
k) − (xk − xk−1), we have

∇f (xk+1) − ∇f (xk), xk+1
− xk⟩

+ ⟨∇g(xk) − ∇g(xk−1), xk+1
− xk⟩

+ ⟨λ̂
k
− λ̂

k−1
,A(xk+1

− xk)⟩
k+1 k ⊤ k

(A.8)
+ (x − x ) Qw ≤ 0.
10
Based on the Lipschitz continuous gradient property of f over
the compact set x ∈ X, we have

⟨∇f (xk+1) − ∇f (xk), xk+1
− xk⟩ ≥ −Lf ∥xk+1

− xk∥2. (A.9)

We also have

⟨∇g(xk) − ∇g(xk−1), xk+1
− xk⟩

= ⟨
∇g(xk) − ∇g(xk−1)√

Lg
,
√
Lg (xk+1

− xk)⟩

≥ −
1
2Lg

∥∇g(xk) − ∇g(xk−1)∥2
−

Lg
2

∥xk+1
− xk∥2

≥ −
Lg
2

∥xk − xk−1
∥
2
−

Lg
2

∥xk+1
− xk∥2

where the last equality is based on the Lipschitz continuous
gradient property of g .

Besides, we have

⟨λ̂
k
− λ̂

k−1
,A(xk+1

− xk)⟩
=

⟨
λk+1

− λk
+ τ (λk

− λk−1),A(xk+1
− xk)

⟩
=

⟨
λk+1

− λk
+ τ (λk

− λk−1),

λk+1
− λk

ρ
−

(1 − τ )
ρ

(λk
− λk−1)

⟩
=

∥λk+1
− λk

∥
2

ρ
−

(1 − 2τ )
ρ

⟨λk+1
− λk, λk

− λk−1
⟩

−
τ (1 − τ )

ρ
∥λk

− λk−1
∥
2

≥
∥λk+1

− λk
∥
2

ρ
−

1 − 2τ
2ρ

∥λk+1
− λk

∥
2

−
1 − 2τ
2ρ

∥λk
− λk−1

∥
2
−

τ (1 − τ )
ρ

∥λk
− λk−1

∥
2

=
1 − 2τ 2

2ρ
∥λk+1

− λk
∥
2
−

1 − 2τ 2

2ρ
∥λk

− λk−1
∥
2

+ τ (τ + 1)/ρ∥λk+1
− λk

∥
2

(A.10)

here the inequality is by ⟨a, b⟩ ≤
1
2 (∥a∥

2
+ ∥b∥

2).
Based on the inequality b⊤M(b − c) =

1
2 (∥b − c∥2

M + ∥b∥
2
M −

c∥2
M), and by setting M = Q, b = xk+1

− xk, and c = xk − xk−1,
e have

xk+1
− xk)⊤Qwk

=
1
2
(∥wk

∥
2
Q + ∥xk+1

− xk∥2
Q

− ∥xk − xk−1
∥
2
Q).

(A.11)

Plugging (A.9), (A.10), (A.11) into (A.8), we have

1 − 2τ 2

2ρ

λk+1
− λk

2
+

1
2
∥xk+1

− xk∥2
Q

+
Lg
2

∥xk+1
− xk∥2

+
1
2
∥wk

∥
2
Q

≤
1 − 2τ 2

2ρ

λk
− λk−1

2
+

1
2
∥xk − xk−1

∥
2
Q

+
Lg
2

∥xk − xk−1
∥
2
+ (Lg + Lf )

xk+1
− xk

2

− τ (1 + τ )/ρ∥λk+1
− λk

∥
2.

e therefore complete the proof.

ppendix B. Proof of Proposition 2

Before starting the proof, we first establish the following in-
qualities to be used. Based on the Lipschitz continuous gradient



Y. Yang, Q.-S. Jia, Z. Xu et al. Automatica 146 (2022) 110551

p
2

f

=

=

=

=

L

p

p

T

t

I

L

Q

S
t

∥

w

roperty of f : Rn
→ R over x ∈ X (see (A1)), we have (Guo et al.,

017)

(xk+1) − f (xk) ≤ ⟨∇f (xk+1), xk+1
− xk⟩

+ Lf /2∥xk − xk+1
∥
2. (B.1)

Similarly, for g : Rn
→ R with Lipschitz continuous gradient

over x ∈ X (see (A1)), we have (Guo et al., 2017)

g(xk+1) − g(xk) ≤ ⟨∇g(xk), xk+1
− xk⟩

+ Lg/2∥xk − xk+1
∥
2. (B.2)

Besides, we have
ρ

2
∥Axk+1

− b∥
2
−

ρ

2
∥Axk − b∥

2

ρ

2

⟨
A(xk+1

− xk),Axk+1
+ Axk − 2b

⟩
(B.3)

ρ

2

⟨
A(xk+1

− xk),A(xk − xk+1) + 2(Axk − b)
⟩

−
ρ

2
∥A(xk+1

− xk)∥2
+

⟨
A(xk+1

− xk), ρ(Axk+1
− b)

⟩
.

We next quantify the decrease of Lρ(x, λ) with respect to
(w.r.t.) the primal updates. We have

Lρ(xk+1, λk) − Lρ(xk, λk)

= f (xk+1) − f (xk) + g(xk+1) − g(xk) + ⟨λk,A(xk+1
− xk)⟩

+
ρ

2
∥Axk+1

− b∥
2
−

ρ

2
∥Axk − b∥

2

≤ ⟨∇f (xk+1) + ∇g(xk), xk+1
− xk⟩ + ρF/2∥xk − xk+1

∥
2

+
⟨
λk,A(xk+1

− xk)
⟩
−

ρ

2
∥A(xk+1

− xk)∥2

+
⟨
A(xk+1

− xk), ρ(Axk+1
− b)

⟩
by (B.1), (B.2), (B.3)

= ⟨∇f (xk+1) + ∇g(xk) + A⊤λ̂
k
, xk+1

− xk⟩
+ ρF/2∥xk − xk+1

∥
2
− ρ/2∥A(xk+1

− xk)∥2 by (A.2)

≤ − ∥xk+1
− xk∥2

Q + ρF/2∥xk − xk+1
∥
2

− ρ/2 ∥A(xk+1
− xk)∥2 by (A.6).

(B.4)

We next quantify the change of Lρ(x, λ) w.r.t. dual update. We
have

Lρ(xk+1, λk+1) − Lρ(xk+1, λk)

=
⟨
λk+1

− λk,Axk+1
− b

⟩
=

⟨
λk+1

− λk,
λk+1

− (1 − τ )λk

ρ

⟩
⟨
λk+1

− λk,
1 − τ

ρ
(λk+1

− λk) +
τ

ρ
λk+1

⟩
=

(1 − τ )
ρ

∥λk+1
− λk

∥
2
+

τ

2ρ

(
∥λk+1

− λk
∥
2

+ ∥λk+1
∥
2
− ∥λk

∥
2
)

=
2 − τ

2ρ
∥λk+1

− λk
∥
2
+

τ

2ρ
∥λk+1

∥
2
−

τ

2ρ
∥λk

∥
2.

(B.5)

Combining (B.4) and (B.5), we have

ρ(xk+1, λk+1) −
τ

2ρ
∥λk+1

∥
2
−

(
Lρ(xk, λk) −

τ

2ρ
∥λk

∥
2)

≤ −∥xk+1
− xk∥2

Q +
ρF

2
∥xk − xk+1

∥
2

−
ρ

2
∥A(xk+1

− xk)∥2
+

2 − τ

2ρ
∥λk+1

− λk
∥
2.

We have L+
ρ (x, λ) = Lρ(x, λ) −

τ
2ρ ∥λ∥

2, we therefore close the
roof.
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Appendix C. Proof of Corollary 1

(i) Prove ∥λ∗
∥
2

≤ ρτ−1T 0
c : Based on the sufficiently decreasing

roperty of T k+1
c (see Proposition 3), we have

k+1
c ≤ T 0

c (C.1)

Recalling the definition of the Lyapunov function in (8) and
invoking (11), we have

T k+1
c = f (xk+1) + g(xk+1) +

τ

ρ
∥λk+1

∥
2

+
1 − τ

2ρ

(
∥λk+1

− λk
∥
2
+ ∥λk+1

∥
2
− ∥λk

∥
2)

+
ρ

2
∥Axk+1

− b∥
2
+ c

(1 − 2τ 2

2ρ
∥λk+1

− λk
∥
2

+ 1/2∥xk+1
− xk∥2

Q + Lg/2∥xk − xk−1
∥
2
)

(C.2)

By combining (C.1) and (C.2), we have
1 − τ

2ρ

(
∥λk+1

∥
2
− ∥λk

∥
2)

+
τ

ρ
∥λk+1

∥
2

≤ T 0
c . (C.3)

The above holds because we have f (x) ≥ 0, g(x) ≥ 0 over X and
he other terms are all non-negative.

We next prove τ
ρ
∥λk+1

∥
2

≤ T 0
c by induction. For k = 0,

we can properly pick the initial point to satisfy the inequality.
For iteration k, we assume τ

ρ
∥λk

∥
2

≤ T 0
c . We consider the two

possible cases for iteration k + 1, i.e., if ∥λk+1
∥
2

≤ ∥λk
∥
2, we

straightforwardly have τ
ρ
∥λk+1

∥
2

≤
τ
ρ
∥λk

∥
2

≤ T 0
c , and else if

∥λk+1
∥
2

≥ ∥λk
∥
2, we also have τ

ρ
∥λk+1

∥
2

≤ T 0
c by (C.3). We

therefore conclude ∥λ∗
∥
2

≤ ρτ−1T 0
c .

(ii) Prove T 0
c ≤

(
4+c(1−2τ 2)+c/2

)
dF+cLg/2∥x0∥2

+cρF/4 dx:
nvoke Proposition 2 and set k = 0, we have

ρ(x1, λ1) −
τ

2ρ
∥λ1

∥
2

≤ Lρ(x0, λ0) −
τ

2ρ
∥λ0

∥
2

− ∥x1 − x0∥2
Q +

ρF

2
∥x1 − x0∥2

−
ρ

2
∥A(x1 − x0)∥2

+
2 − τ

2ρ
∥λ1

− λ0
∥
2.

By invoking (11) and setting λ−1
= 0, λ0

= 0, Ax0 = b,
:= ρGA + βGB − ρA⊤A, we have

ρ

2
∥Ax1 − b∥

2
+

2Q + ρA⊤A − ρf IN
2

∥x1 − x0∥2

≤ f (x0) + g(x0) − f (x1) − g(x1)

ince we have f (x) ≥ 0 and f (x) ≥ 0 over the set X, we have (the
erm ρA⊤A

2 ∥x1 − x0∥2 is non-negative)
ρ

2
∥Ax1 − b∥

2
≤ dF . (C.4)

2Q − ρF IN
2

∥x1 − x0∥2
≤ dF

x1 − x0∥2
Q ≤ dF + ρF/2dx. (C.5)

here the last inequality is by dx := maxx,y ∥x − y∥2.
Further, based on the dual update, we have

1
2ρ

∥λ1
∥
2

=
ρ

2
∥Ax1 − b∥

2
≤ dF (C.6)

Further, we have

T 0
c = f (x1) + g(x1) +

2 + c(1 − 2τ 2)
2ρ

∥λ1
∥
2
+

ρ

2
∥Ax1 − b∥

2

+
c
∥x1 − x0∥2

+
cLg

∥x0∥2 by (C.2) and λ0
= 0
2 Q 2
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≤ dF + (2 + c(1 − 2τ 2))dF + dF

+
c
2
dF +

cρF

4
dx +

cLg
2

∥x0∥2 by (C.4), (C.5), (C.6)

=
(
4 + c(1 − 2τ 2) + c/2

)
dF + cLg/2∥x0∥2

+ cρF/4 dx

By combining (i) and (ii), we have τ 2ρ−2
∥λ∗

∥
2

≤ ϵ2. By
invoking Theorem 1, we directly have

dist
(
∇f (x∗) + ∇g(x∗) + A⊤λ̂

∗

+ NX(x∗), 0
)

+ ∥Ax∗
− b∥ ≤ τρ−1

∥λ∗
∥ ≤ ϵ,

which closes the proof.
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