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Abstract— The development of renewable energy has been
recognized as a promising resolution to fuel depletion and excess
carbon emission. However, the utilization of renewable energy
is far less than satisfactory due to the inherent uncertainty. The
rapid development of electric vehicles (EVs) provides new op-
portunities to balance volatile renewable generation. Nowadays,
modern technology advances allow to mount on-site wind power
generators on the buildings. Considering that EVs are usually
parked in buildings, the problem to coordinate EV charging
with locally generated wind power of buildings shows various
significance. Therefore, we investigate this important problem
and three contributions are made. First, we formulated it as an
EV-based multiagent Markov decision process (MMDP), which
incorporates the uncertain wind power supply at different
buildings and the random driving requirements of EVs. Second,
to alleviate curses of dimensionality associated with the number
of EVs, we developed an EV aggregation framework, which
dynamically groups EVs into EVAs (electric vehicle aggregator)
based on their remaining parking time and locations. And
an EVA-based MMDP is derived. Third, scenario-tree based
dynamic programming (TSP) is introduced to incorporate the
multiple uncertainties in the problem. And the performance of
this method is demonstrated by a number of case studies.

Index Terms— Electric vehicles (EVs), building mounted
wind power, Multiagent Markov decision process, scenario tree

I. INTRODUCTION

The development of renewable energy, such as wind

power, has been recognized as a promising resolution to

fuel depletion and excess carbon emission. However, the

utilization of renewable energy is still far less than satisfac-

tory due to the inherent uncertainty [1]. Over the decades,

electric vehicles (EVs) have gained popularity worldwide due

to economical and environmental concerns [2]. On one hand,

the rapid growth of EVs will produce nonnegligible impacts

on the electric grid if not properly controlled [3], on the

other hand, it brings new opportunities to balance volatile

renewable generation due to their charging flexibility. Nowa-

days, modern technology advances have created conditions
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to mount on-site wind power generators on the buildings.

The huge number of high-rise buildings, especially in cities,

reveals great potential to fully explore wind power in the built

environment [4]. Considering that EVs are usually parked in

the parking lots of buildings for long time periods, the issue

to coordinate EV charging with the locally generated wind

power of buildings shows various significance. On one hand,

the variation of wind power can be regulated by shifting

flexible EV charging demand to periods with sufficient wind

power supply, on the other hand, the charging demand of EVs

can be partially supported by wind power thus reducing the

impacts on the electric grid.

However, there exists multiple difficulties. First, there exist

multiple randomness due to the uncertain wind power supply

at the buildings and the random driving behaviors of EVs.

Second, the problem is a multi-stage decision problem. The

charging demand of each EV should be accomplished during

their parking duration to satisfying the travel requirements.

Third, there exist multiple curses of dimensionality due to

the potentially large number of vehicles.

In the literature, much endeavor has been made to in-

vestigate the coordination of EV charging with renewable

energy. For example, Wu et at. [5] developed three heuristic

dispatching approaches for EVs based on the prediction of

wind generation to improve matching of energy consumption

and wind supply. Besides, the technique of model predictive

control (MPC) has been widely employed to deal with the

uncertainties [6], [7]. The main idea of this approach is to

make decisions at each stage based on prediction information

over a predefined future horizon. The above approaches are

advantageous in computation, however, their performance

usually depends on the accuracy of predictions. Multistage

stochastic programming (MSP), which makes use of sce-

narios to represent dynamics of stochastic variables is also

common in tackling EV charging problems [8]. However, the

number of scenarios usually increase exponentially with the

number of EVs to capture the uncertainties. Markov decision

process (MDP), which takes advantage of Markov property

of system, is another approach adaptable for multistage

stochastic problems like EV charging [9], [10]. However,

it is usually intractable to find the optimal solution of large

scale problems due to the curse of dimensionality.

In this paper, we follow up the existing researches and

concentrate on the coordination of EV charging with the

locally generated wind power of multiple buildings with the

aim to reduce the impacts of EV charging on the power grid.

The locally generated wind power at each building can be

utilized to charge the vehicles parked there. If not sufficient
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to charge the vehicles in time, the additional electricity

purchased from power grids supplements. The problem is

discussed in a stochastic framework, which incorporates the

stochastic wind generation of buildings and the random

driving requirements of EVs. The main contributions of the

paper are outlined. First, we investigate the problem and for-

mulate it as an EV-based multiagent Markov decision process

(MMDP). Second, to alleviate the curses of dimensionality

associated with the number of EVs, we develop an EV

aggregation framework, which dynamically groups EVs into

EVAs (electric vehicle aggregator) based on their remaining

parking time and locations. And an EVA-based MMDP is

derived. Third, scenario-tree based dynamic programming

(TSP) is introduced to tackle the uncertainties of the problem.

The remainders of this paper are as follows. In Section II,

we formulate the problem as a two-layer MMDP. In Section

III, TSP approach is introduced. In Section IV, the method

is assessed by a number of case studies. In Section V, we

briefly conclude this paper.

II. FORMULATION

A. System Descriptions

A typical microgrid [11] is shown in Fig. 1. There are

multiple high-rise buildings, building-equipped wind gener-

ators and a number of EVs. The EVs are driven among

the buildings or parked in the buildings during their idle

time. For example, an office worker may drive to work in

the morning from a residential building and park the EV

in the parking lot of an office building till after work. The

driving patterns of EVs are random, which depend on the

owners’ travel requirements. Considering that wind power

has a negligible marginal cost, the on-site wind power of

buildings is assumed free to charge EVs parked there. When

it is not enough to support the EVs’ charging demand in time,

the electricity from the power grid can supplement but with

cost. In the system, there is a local coordinator corresponding

to each building. Besides, an envisioned smart charger, which

possesses the ability of communication with the buildings

is attached to each individual EV. The EVs are required to

report their charging demand (next trip time) and parking

duration to the building coordinator upon arrival.

Similar to [12], we assume the EV owners are motivated

to register as dispatching load by providing some financial

compensation. However, the buildings are contractually ob-

ligated to satisfy the travel requirements of the owners. In

order to best utilize the local wind power harvested from the

buildings to charge the EVs, we select the objective as the

minimum of total EV charging cost.

The problem is formulated and discussed in a discrete time

framework corresponding to a Δt = 1 hour’s interval over

the optimization horizon T .

B. EV-Based MMDP

We first formulate the problem to coordinate EV charging

with locally generated wind power at multiple buildings as a

MMDP. MMDPs generalize MDPs to multiagents, which de-

scribe sequential decision tasks associated with multiagents

Fig. 1. System Architecture

to jointly achieve a common-owned objective [13]. In this

problem, each EV acts as an agent and coordinate with each

other to achieve the minimum of the total EV charging cost.

1) System States: we define the state component associ-

ated with EV n as Sn
t = [Ln

t , E
n
t , D

n
t ] (n = 1, 2, ..., N ),

where N is the number of EVs, En
t denotes the remaining

charging energy to support its next trip, Dn
t denotes its

location. In the formulation, we define the location space

as Dn
t ∈ D = {0, 1, ...,M}, where 1 ∼ M correspond to

M buildings and Dn
t = 0 indicates that EV n is on travel at

time t. Ln
t represents the remaining parking tine (Dn

t > 0)

or remaining trip time (Dn
t = 0). Besides, we define the

state component independent of EV agent as S0
t = [W j

t ]
(j = 1, 2, ...,M ), which represent the wind power generation

of each building at time t. Intuitively, the system state for

the EV-based MMDP can be described by St = [S0
t , S

n
t ].

2) Action Space: we assume the charging rates of EVs

are constant, therefore the problem to schedule EV charging

is to decide when to charge the vehicles during their parking

durations. A binary vector At = [ant ] (n = 1, 2, ..., N ) can

be used to denote the joint charging decisions for the EV

agents at time t. We have ant = 1, if EV n is selected to get

charged at time t, otherwise ant = 0.

3) System Dynamics: the dynamics of state component

associated with EV agent n can be described as follows.

The remaining parking time (Dn
t > 0) or remaining trip

time (Dn
t = 0) for EV n is depicted as

Ln
t+1 =

⎧⎨
⎩

Ln
t − 1 if Ln

t > 0
τnt+1 if Ln

t = 0, Dn
t = 0

ηnt+1 if Ln
t = 0, Dn

t > 0
(1)

where τnt+1 and ηnt+1 are random variables, τnt+1 represents

the possible parking duration of EV n when it arrives at

a building at time t + 1, ηnt+1 denotes the trip time for its

departure at time t+ 1.

The location transition of EV n is depicted as

Dn
t+1 =

⎧
⎨
⎩

Dn
t if Ln

t > 0
Rn

t+1 if Ln
t = 0, Dn

t = 0
0 if Ln

t = 0, Dn
t > 0

(2)

where the random variableRn
t+1 ∈ {1, 2, ...,M} denotes the
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building that EV n arrives at time t+ 1.
Accordingly, the dynamics of the remaining required

charging energy for EV n are written as

En
t+1 =

⎧
⎨
⎩

En
t − ant · P ·Δt if Ln

t ≥ 0, Dn
t > 0

En
t + fn(η

n
t+1) if Ln

t = 0, Dn
t = 0

En
t if Ln

t > 0, Dn
t = 0

(3)

where P represents the constant charging rate for EVs. The

function fn(·) describes the relationship between energy

consumption of EV n and its trip time. In the discussion, we

assume the energy consumption rates of EVs are constant,

therefore the required energy for EV n to support its next

trip can be calculated as fn(η
t+1) = Qn · ηt+1.

4) Constraints: as aforementioned, the buildings are ob-

ligated to satisfy the travel requirements of EVs, therefore

the charging decisions are constrained by

En
t − ant · P ·Δt ≤ (Ln

t − 1) · P ·Δt,

∀n = 1, 2, ..., N, t = 1, 2, ..., T
(4)

The constraint (4) implies that the remaining required charg-

ing energy can’t exceed the maximum possible charging

energy during the remaining parking time. This guarantees

that the EVs will finish charging before their departure.
Besides, the remaining required charging energy can’t

exceed EV battery capacities, i.e.

En
t ≤ Ecap, ∀n = 1, 2, ..., N, t = 1, 2, ..., T (5)

where Ecap represents the battery capacity.
Additionally, the charging processes of EVs are con-

strained by their parking durations, i.e.

ant ≤ Dn
t , ∀n = 1, 2, ..., N, t = 1, 2, ..., T (6)

The constraint (6) reveals that when EV n is on travel (Dn =
0), the EV is impossible to get charged (ant = 0).

5) Objective Function: as aforementioned, the one-step

cost for the buildings is to purchase electricity from power

grid to supplement surplus EV charging demand, i.e.

Ct(St, At) =

M∑
j=1

ct ·max(P j
t −W j

t , 0) ·Δt (7)

where ct denotes the TOU (Time-Of-Use) price of power

grid at time t. P j
t =

∑
n∈{Dn

t =j} a
n
t ·P is the total charging

power of EVs in building j at time t.
Therefore, the multistage stochastic problem to schedule

EV charging can be described as

min J(π, S1) =E
{ T∑

t=1

M∑
j=1

ct ·max(P j
t −W j

t , 0) ·Δt

}

s.t.(1)− (6)

(8)

where π = [A1, A2, ..., AT ] represents the charging policy

over the optimization horizon T .
It is not difficult to note that the state and action are high-

dimension vectors of size (M +3×N ) and N . This implies

that both the state and action space will increase exponen-

tially with the number of EVs. To tackle this difficulty, an

EV aggregation framework is developed.

C. EVA-Based MMDP

To alleviate the curse of dimensionality of problem (8), we

first introduce a vehicle aggregation framework. Specifically,

the EVs are dynamically aggregated into electric vehicle

aggregators (EVAs) based on their remaining parking time

and locations. In other words, at each stage the EVs of the

same remaining parking time and location will be aggregated

into an EVA. And an EVA-based MMDP is derived.

1) System state: at time t, the EVs parked in building j
with remaining parking time i are aggregated into EVA (i, j)

(i = 1, 2, ..., Tp, j = 1, 2, ...,M ), where Tp denotes the max-

imum parking intervals for the EVs. Similarly, we define the

state component for EVA (i, j) as Si,j
t = [Li,j

t , Ei,j
t , N i,j

t ],
where Li,j

t = i denotes the remaining parking time, Ei,j
t =∑

n∈EVA(i,j) E
n
t denotes the total remaining charging energy,

N i,j
t represents the number of EVs in the EVA.

Also, the EVs on travel are aggregated as EVA (i, j)
(i = 1, 2, ..., Tr, j = 0), where the index j = 0 denotes

the EVs are on travel, Tr represents the maximum parking

intervals. The state component for EVA (i, j) is described

as Si,j
t = [Li,j

t , Ei,j
t , N i,j

t ], where Li,j
t = i denotes the

remaining trip time for the EVA and Ei,j
t = i . Besides,

we define S0,0
t = [W j

t ] (j = 1, 2, ...,M ) (the same as S0
t )

as the EVA independent state component. Thus the system

state for EVA-based MMDP is described as St = [Si,j
t ]

(i = 0, 1, ...,max(Tp, Tr), j = 0, 1, ...,M ).

2) Action: the charging decision for EVA-based MMDP

is to determine the number of EVs in each EVA to get

charged at each stage. Therefore, the charging decision can

be defined as At = [ai,jt ] (i = 0, 1, ...,max(Tp, Tr), j =
0, 1, ...,M ), where ai,jt =

∑
n∈EVA(i,j) a

n
t denotes the num-

ber of EVs selected to charge in EVA (i, j) at time t.

3) System Dynamics: the system dynamics of EVA-based

MMDP can be derived from the EV-based MMDP. i.e., for

the EVAs (i, j) (i ≥ 1, j = 1, 2, ...,M ) that are parked in

buildings at time t+ 1, we have

Li,j
t+1 = i;

Ei,j
t+1 = Ei+1,j

t − ai+1,j
t · P ·Δt + Ei,j,in

t+1

N i,j
t+1 = N i+1,j

t +N i,j,in
t+1

(9)

where N i,j,In
t+1 and Ei,j,In

t+1 are random variables, N i,j,In
t+1 rep-

resents the number of EVs that arrives at building j at time

t with parking time i, Ei,j,In
t+1 denotes the remaining required

charging energy for those new arrival EVs.

For the EVAs (i ≥ 1, j = 0) that will depart from the

building at time t+ 1, we have

Li,0
t+1 = i;

Ei,0
t+1 = Ei+1,0

t +
M∑
j=1

E1,j,out
t

N i,0
t+1 = N i+1,0

t +
M∑
j=1

N1,j,out
t

(10)
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Fig. 2. The relationship of states in the two-layer MMDP

where E1,j,out
t and N1,j,out

t are random variables, N1,j,out
t

represents the number of EVs that departs from building j
at time t with trip time i, E1,j,out

t represents the remaining

charging energy for those new departure EVs.

In the literature, there exist a few works concerning the

scheduling of EV aggregators [6], [14], however, statistical

models are usually employed to describe the dynamics of

EVAs. The travel requirements of each individual EV is not

addressed. Different from the existed works, we present a

two-layer MMDP to schedule EV charging, which can in-

corporate the random travel requirements for each individual

EV. The relationship of the state dynamics in the two-layer

MMDP are shown in Fig. 2. At each stage, the dynamics for

the aggregated EV charging demand in EVAs can be derived

from the EV-based MMDP.

4) Constraints: to satisfy the travel requirements of EVs,

the charging decisions for EVAs should be constrained by

Ei,j
t − ai,jt · P ·Δt ≤ N i,j

t · (Li,j
t − 1) · P ·Δt,

∀i = 1, ..., Tp, j = 1, ...,M
(11)

N i,j,min
t ≤ ai,jt ≤ N i,j

t , ∀i = 1, ..., Tp, j = 1, ...,M (12)

ai,jt = 0, ∀i = 1, ..., Tr, j = 0 (13)

It is easily noted that the constraint (11) is a relaxation of

constraint (4), which alone is not enough to guarantee the

travel requirements of the EVs. Therefore, another constraint

(12) is added, where N i,j,min
t denotes the minimum number

of EVs of EVA (i, j) to get charged at time t, which can be

derived from N i,jmin
t =

∑
n∈EVA(i,j) I(L

n
t ≤ En

t · P · Δt),
where I(·) is an indicator function, we have I(A) = 1 if the

condition A is true, otherwise I(A) = 0. The constraint (13)

implies that the EVs on travel are impossible to get charged.

Accordingly, the charging decisions of EVAs are limited

by the battery capacity of EVs, i.e.

Ei,j
t ≤ N i,j

t · Ecap (14)

5) Objective function: Similarly, the one-step cost for the

buildings to support EV charging is calculated as (7) but with

P j
t =

∑Tp

i=1 a
i,j
t · P denoting the total charging power of

EVs parked in building j at time t. Therefore, the problem

to schedule charging of EVAs can be described as

Fig. 3. (a) Scenario tree for EV dependent state components. (b) Scenario
tree for wind power of buildings

min J(π, S1) =E
{ T∑

t=1

M∑
j=1

ct ·max(P j
t −W j

t , 0) ·Δt

}

s.t. (9)− (14)

(15)

In (15), the number of EVAs is usually much smaller than

the size of EVs, therefore both the state and action space

will be greatly reduced by introducing EVAs.

III. TREE-BASED DYNAMIC PROGRAMMING

It is well acknowledged that dynamic programming (DP)

is one of the common approaches adaptable for multistage

MDPs with different kinds of objective functions and con-

straints [15]. The main idea of DP is to find an optimal policy

by minimizing the value function of each state, i.e.

V (St) = min
At∈At

Ct(St, At) +E[Vt+1(St+1|St)] (16)

whereAt denotes the decision space at time t, which depends

on the constraints of the problem, such as (9)-(14).

From (16), we note that the main computation of making

decision at each stage based on DP is to enumerate the value

functions for all possible states in the future stages. In terms

of the EVA-based MMDP, the system space is composed of

the random wind power of buildings and the random charging

demand of the aggregators. Though the state space has

been greatly reduced, it is still time-consuming to enumerate

the state space of EVAs. The technique of scenario tree

modeling for multistage stochastic problem [16] provides

a new resolution to combine DP with scenario trees to

explore an approximated optimal solution. Therefore, tree-

based dynamic programming (TSP) proposed in [17] is

introduced in this part.

The main idea of TSP is to approximate the value function

of states based on a scenario tree, which is constructed

from a number of scenarios. This approach is advantageous

in incorporating the multiple randomness of the problem.

Considering that the dynamics of EV charging demand is

independent of the local wind power generation, two scenario

trees for the EV charging demand and wind power of

buildings can be constructed separately, thus reducing the
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total number of scenarios needed to capture the randomness.

An example of scenario tree for wind power of buildings

and the EVA charging demand is shown in Fig. 3. The value

function based on scenario tree can be estimated as

V̂t(St) = min
At∈At

Ct(St, At) +

nt+1∑
k=1

V̂t+1(Ŝ
k
t+1|St)

= min
At∈At

Ct(S
e
t , S

w
t At)

+

lt+1∑
l=1

p(ŵl
t+1)

nt+1∑
k=1

p(Ŝe,k
t+1)V̂ŵl

t+1,t+1(Ŝ
e,k
t+1)

(17)

where we use Sw
t = [S0,0

t ] and Se
t = [Si,j

t ] to represent

wind power of buildings and EVA charging demand. lt+1

and nt+1 denote the number of nodes for the two scenario

trees. The superscript k and l denotes the index of node in

the constructed scenario tree and p(·) indicates the transition

probability from one node to another.

The details of TSP to deal with the problem of this paper

is in Algorithm 1. In Step 6, the scenario trees for wind

power and the EVAs charging demand can be constructed

using backward tree construction proposed in [17]. In Step

7-10, the optimal charging decision for EVAs is determined

by TSP method. However, how to select EVs in each EVA

to charge is also an important problem. In this paper, the

less remaining time (LRT) rule developed in [10] can be

employed to address this problem. The main ideas of LRT

is that the optimal selection for a set of EVs with same

remaining parking time is to choose the vehicles by the

remaining required charging energy in the descent order.

From Step 2-13, we note that the charging decision at stage

t is determined by backward recursion the value functions

for the future states in the scenario tree. After the decision

at time t is taken, the system will evolve based on the action

and exogenous dynamics meanwhile. An sequence of the

charging decisions for EVs over the optimization horizon

can be attained until the time horizon T is reached.

Algorithm 1 Tree-based Dynamic Programming

1: Initialize the states for EVs Sn
1 (n = 1, 2, ..., N ) and

wind power of buildings S0
1 .

2: for t = 1, 2, ..., T do
3: Generate Mw scenarios for wind power of buildings.

4: Generate Me scenarios for N EVs

5: Aggregate the EVs into EVAs.

6: Construct Scenario trees for wind power and EVAs

7: Initialize VT (s) = 0 ∀s ∈ ST
8: for τ = (T − 1), ..., t do

Estimate V̂ k
t (Ŝk

t ), ∀k = 1, 2, ..., nτ using (17)

9: end for
10: Implement decision at time t based on LRT rule

11: Update State in EV-based MMDP at time t
12: end for

IV. CASE STUDIES

In this section, a number of case studies are conducted

to evaluate the performance of the approach. We consider

a microgrid of M = 2 buildings with N = 50 EVs over

the optimization horizon T = 12 hours. The probability

distribution for EV parking time and trip time is listed in

TABLE I. We assume the possible wind power generation

of the buildings are the same as W = [1, 2, ..., 18] kW with

transition probability Pi,i = 0.167, Pi,j = 0.049 (∀i, j ∈
W, j �= i). Though we consider a stationary wind power

generation of buildings in the case studies, the approach is

adaptable for time-dependent wind power generation. The

charging power and energy consumption rate of EVs are set

as P = 1 kW, Qn = 1 kW/h. The TOU price are assumed

as ct = 1 (t = 1, 2, ..., T ).

TABLE I

THE PROBABILITY DISTRIBUTION OF TRIP TIME AND PARKING TIME

Trip time (hr) 1 2 -
P 0.5 0.5 -

Parking time (hr) 4 5 6
P 0.25 0.5 0.25

In the case studies, Mw = 50 and Me = 50 randomly

generated scenarios are used to construct the scenario trees

for the local wind power and the EVA charging demand,

respectively. To evaluate the performance of the approach,

the tree-based dynamic programming is compared with (1)

greedy charging policy and (2) MyOpic charging policy.

• Greedy policy: in non-control environment, the EVs are

likely to get charged upon arrival until the required

charging energy is reached.

• Myopic policy: a one-step stochastic optimization is

conducted based on current state to minimize the one-

step cost in (7) constrained by (4)-(6) .

The total charging cost of EVs under 50 cases studies

(sample paths) are plotted in histograms as Fig. 4. From Fig.

4 (a) and (b), we note that the total charging cost of EVs

using myopic policy is apparently reduced compared with

greedy policy. The phenomenon result from that the infor-

mation for the local wind power of buildings is incorporated

in myopic policy at each stage. Additionally, from Fig. 4 (a)-

(c), we note that the total EV charging cost using TSP are

greatly reduced compared with the greedy charging policy

and MyOpic policy. This implies that the TSP is effective in

improving the coordination of EV charging with uncertain

locally generated wind power of buildings.

It is easily noted that the number of scenarios that used

to construct the scenario trees may affect the approximation

accuracy of the random variables (i.e. wind power generation

of buildings, EV charging demand). However, more scenarios

will contribute to an increase of computation in estimating

the value function. To address this problem, we conduct

a number of case studies to generate different number of

scenarios to construct scenario trees. The total EV charging

cost with Me = 50,Mw = 50 and Me = 80,Mw = 80
scenarios in TSP under 50 cases studies are plotted in Fig. 5.

From Fig. 5 (b) and (c), we conclude that the TSP approach
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Fig. 4. (a) Greedy charging policy. (b) MyOpic charging policy. (c) Tree-
based dynamic programming.
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Fig. 5. (a) Greedy charging policy. (b) Tree-based dynamic programming
with Me = 50, Mw = 50. (c) Tree-based dynamic programming with
Me = 80, Mw = 80.

for the EV scheduling problem shows better performance

with an increasing number of scenarios to construct the

scenario tree. The total EV charging cost is reduced by about

8.5% with an increase by 30 scenarios. However, the average

total simulation time to make decisions over T = 12 hrs is

apparently increased by about 38.5%. Therefore, the problem

how to choose a proper number of scenarios while ensure

a good enough performance of TSP should be interesting

problem. Besides, we note that the average simulation time

at each stage is about 21.7 s for N = 50 EVs, which is much

smaller than the 1 hour’s interval. Therefore, the TSP method

is time-efficient in making decisions and may be extended

to a larger scale problem if possible.

V. CONCLUSIONS

In this paper, the problem to coordinate EV charging with

locally generated wind power of buildings is investigated.

We first formulate the problem as a Multiagent Markov

decision process (MMDP), in which each EV acts as an

agent and cooperate with each other to jointly minimize the

total EV charging cost (therefore the charging cost for each

individual EV owner will be reduced). Considering that this

problem suffers from curse of dimensionality, an aggregation

framework, which dynamically groups the EVs into EVAs

(electric vehicle aggregator) based on their remaining park-

ing time and location is developed to alleviate dimension

explosion. And a EVA-based MMDP is derived to deal with

the charging decisions for EVAs. Meanwhile, a scenario tree-

based dynamic programming (TSP) method is introduce to

tackle the EVA-based MMDP. And we conclude that the

TSP method is efficient in improving the coordination of

EV charging with uncertain wind power of buildings.
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