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Abstract—The surge of plug-in electric vehicles (PEV) on the
roads poses the issue to handle the substantial charging demand.
Particularly, the operation of charging stations requires an effi-
cient and scalable real-time scheduling method to accommodate
the dramatic charging requests in an economical (i.e., to best uti-
lize the local renewable generation) and friendly (i.e., to reduce
the impact on the electric grid) manner. This paper fulfills the
objectives and makes the following main contributions. First,
we develop a parameterized aggregated PEV charging model
using the energy boundaries to express the charging flexibility.
We propose to parameterize the aggregated charging policy by
the incomplete Beta function based on the problem structures.
The proposed model can scale down the decision variables from
O(NH) to O(2) where N is the number of PEVs and H is the
number of prediction horizon. Second, we develop an ordinal
optimization (OO) based method (denoted as OO-P) to search for
good enough charging policies within seconds while still providing
probabilistic performance guarantee. Third, we demonstrate the
performance of the proposed OO-P via simulations. The numeri-
cal results show that the solution of OO-P is only 4% worse than
the optima. However, OO-P shows high computation efficiency
and scalability. Compared with the existing real-time PEV charg-
ing scheduling method, OO-P can reduce 6% of the operation
cost for the charging station. OO-P is also shown to outperform
the existing heuristic rule.

Index Terms—Electric vehicle, ordinal optimization, stochastic
programming.

NOMENCLATURE

t Time index.
i PEV index.
N Charging station service capacity (The number

of charging piles).
βg(t) Time-of-Use price (CNY/kW).
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ηc Efficiency of charging piles.
cs Amortized maintenance cost of charging sta-

tion (CNY/kW).
cr Amortized maintenance cost of renewable energy

system (CNY/kW).
Ecap Battery capacity of PEV (kW h).
E The aggregated energy charging profile (kW h).
E+ Aggregated upper energy boundary

curve (kW h).
E− Aggregated lower energy boundary

curve (kW h).
e+

i Upper energy boundary curve of PEV i (kW h).
e−

i Lower energy boundary curve of PEV i (kW h).
Pg(t) The purchased power from the grid (kW).
Pw(t) Wind power (kW).
Pcap, w The nominal power of wind turbine (kW).
PPV(t) Solar power (kW).
PPV, w(t) The nominal power of solar panels (kW).
Pa(t) The total renewable generation power (kW).
P(t) The total charging power of the parked

PEVs (kW).
Pbase(t) The base load of the building (kW).
Pi(t) The charging power of PEV i (kW).
SoCi(t) The State-of-Charge of PEV i.
SoCd

i The desired SoC of PEV i at leaving.
tai /tdi The arrival/departure time of PEV i.
AH(t) The stored hydrogen in the HES.
Acap The hydrogen energy storage capacity.

I. INTRODUCTION

THE PLUG-IN electric vehicle (PEV) is being surging on
the roads at an annual pace of millions. It has been pre-

dicted that the global stock will reach nearly 140 millions,
accounting for 7% of the global vehicle fleet and around 4%
of global annual electricity demand by 2030 [1]. The induced
charging demand has emerged as an urgent issue to be han-
dled both for the power system operation and the transport
electrification transition [2]. If not appropriately controlled,
the substantial and spontaneous charging demand would cause
grid congestion, inflate demand peaks and degrade power qual-
ity (e.g., voltage and frequency fluctuation), challenging the
normal operation of power system [3]. On the other hand, if
the PEVs can not be “fueled” as demanded, it will slow down
the commercial rollout. To handle the PEV charging demand,
we have seen the renewable-powered commercial charging
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infrastructures are mounting everywhere [4]. As a major type
of flexible load, the PEV charging demand deems to be largely
filled by the green renewable supply, thus reducing the pres-
sure on the grid [5]. Yet it relies on an efficient and scalable
charging scheduling mechanism for the charging station (CS)
to shape the partially controllable PEV charging demand to
align with the non-dispatchable renewable supply.

Over the years, various solution methods have been stud-
ied for PEV charging scheduling. Some comprehensive review
can be found in [6]–[8], where the methods can usually be
distinguished by the way of addressing the computation bur-
den caused by the scale and uncertainties of the problem.
Particularly, as the charging sessions of PEVs usually extend
their entire parking duration, the problem is a recursive multi-
period optimization problem comprising a large number of
decision variables and temporally binding constraints imposed
by the heterogeneous charging requests. Moreover, the optimal
PEV charging scheduling should enable the best utilization
of local renewable for supplying the charging demand which
are both dynamic and uncertain, further compounding the
computational complexity.

To address the computational intensity, decentralized or
distributed methods have drawn dramatic attention from the
research communities (see [9]–[11]). These methods usually
can achieve high computational efficiency and scalability by
distributing the computation to individual PEVs via a certain
price mechanism. Moreover, the vehicle-centric implementa-
tions are usually suitable for accounting for individual charg-
ing preferences. However, when we face a systematic objective
such as the total operation cost for the CS that requires the
full cooperation of multiple PEVs, it may not work well due
to two underlying issues. First, the decentralized methods usu-
ally rely on the assumption that the individuals are sensitive to
the uniform charging price. Second, the convergence of decen-
tralized methods depend on a well-designed price mechanism
which is actually subtle especially with the presence of non-
smooth and non-convex objective or constraints (decentralized
optimization for non-smooth and non-convex problems is still
an unresolved direction [12]). Some other way to handle the
computation burden for real-time practice is to employ heuris-
tic methods or rules, such as [13]–[15]. The main idea is to
develop some static and descriptive charging rules based on
our sense and understanding of the problems. These methods
are usually easy to implement but subject to the drawback
of no systematic performance guarantees and big room for
performance improvement.

Another way to handle the computation complexity is to
find non-anticipative robust solution from off-line learning,
i.e., the on-line implementation will make decisions only
regard to the current system state. Stochastic optimization [16],
scenario-based stochastic programming [17]–[19] or dynamic
programming [20]–[22] have been extensively studied for that
category. However, they mostly suffer computational chal-
lenges from the well-known curse of dimensionality (i.e., large
state and action space, a large number of scenarios to cap-
ture the features of uncertainties). It was reported that it will
take hours to solve the stochastic programming problem for
the PEV charging scheduling even for a moderate scale [17].

Deep reinforcement learning methods (DRLs) have received
widespread interest by proposing to use neural networks or
feature functions to alleviate the computation burden for the
problem [23]–[26]. However, note that the performance of
DRLs depends on the neural network design and feature func-
tion recognition, which is challenging and subtle. Moreover,
the implementation of these methods require substantial and
historical data to capture the patterns and uncertainties of
the renewable generation and the dynamic PEV charging
demand.

Overall, we have seen substantial endeavor for handling the
computation burden of PEV charging. As discussed above,
some works have aimed for robust solutions from off-line
learning, such as the programming and learning based meth-
ods, whereas some have proposed to design decentralized
implementation or developing heuristic rules. Yet these meth-
ods still face obstacles for the CS operation in practice. First,
the group of served PEV customers are dynamically changing
over the time and the historical driving pattern data required
by learning-based method are usually not available to the
CS. Moreover, the well-tuned model offline may not adapt
to the expansion of the PEV market. Second, though decen-
tralized methods favor computational efficiency but it is hard
to uniformly price the service for the CS to achieve the
profit-maximization objective.

Motivated by the practice, we studies the real-time PEV
charging scheduling in the shoes of the CS in this paper.
We aim for an efficient and scalable method to minimize the
operation cost of the CS with performance guarantee under
uncertainties. To fulfill the objective, we make the following
contributions.

(C1) We develop a parameterized aggregated PEV charg-
ing model using the energy boundaries to express the
charging flexibility. We parameterize the aggregated
charging profile in array by the incomplete Beta func-
tion by exploring the problem structures. This model
can scale down the decision variables from O(NH) to
O(2) where N is the number of PEVs and H is the
number of prediction horizon.

(C2) We develop an ordinal optimization (OO) based
method (denoted as OO-P) to search for the
good enough solutions for the aggregated problem
within seconds while still providing probabilistic
performance guarantee. Further, we propose an mod-
ified Less Laxity and Longer Remaining Processing
Time (MLLLP) principle based method to distribute
the aggregated charging profile across the parked
PEVs. The proposed MLLLP method can provide
a full charging order while still preserving the
performance of the existing LLLP principle [27]. We
prove that the MLLLP principle based method guar-
antees to find a feasible solution whenever it exists
under mild assumptions (Theorem 1).

(C3) We demonstrate the performance (i.e., reducing oper-
ation cost and computational efficiency) of the
proposed OO-P via simulations. The results show that
the performance degradation is no more than 4% com-
pared with the optimal solution obtained from solving
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Fig. 1. A charging station operated by a smart building.

a large-scale multi-period optimization problem com-
prehensively. However, OO-P can solve the problem
within seconds. Comparing with the existing real-time
PEV charging method, OO-P can further reduce the
CS operation cost by 6%. Beside, OO-P is also shown
to outperform the existing heuristic rule in optimizing
the CS operation cost for the CS.

The rest of the paper is organized as follows. We introduce
the problem definition and formulation in Section II, introduce
the OO-based method in Section III, present numerical results
in Section IV, and finally conclude in Section V.

II. PROBLEM FORMULATION

A. Charging Station Configuration

We consider a public CS run by a smart building as in
Fig. 1. The building is fitted with a renewable energy system
(RES) comprising wind turbines, solar panels and a hydrogen
energy storage (HES). Like other energy storage techniques,
the HES can be “charged and discharged” to enhance the bal-
ance between generation and consumption. Besides, the HES
has some distinctive features such as high storage capacity
and enabling the conversion of different energy types, being
popular with energy system today.

In our setting, the renewable generation can be used to
support the building’s base load (non-elastic) or delivered
to the CS for charging service. When it is not enough, the
building can purchase the shortfall from the grid by paying
the Time-of-Use (ToU) price. Conversely, if there is excess
renewable energy, it can be converted to hydrogen and stored
in the HES, and re-electrified at the required time period
(discharging) [28].

In practice, the PEVs will arrive at the CS with certain
charging requirements. When an PEV arrives, it will propose
the charging request (i.e., parking duration and the charg-
ing demand) to the CS. Then, the CS is expected to respond
quickly by deciding its admission and returning the charging
plan (when the charging capacity has been fully occupied, the
CS will have to give up the new arrivals, however we assumes
sufficient service capacity in this paper).

Since both the building itself and the CS consume energy,
the whole system is coordinated by a smart building controller
(SBC) for minimizing the total operation cost. We assume

the building load is non-elastic and the CS will negotiate the
charging fees with individual PEV customers endogenously,
therefore the problem of maximizing the CS profit reduces to
minimize its total operation cost.

Before giving the problem formulation, we clarify our main
assumptions as below.

(A1) The PEV users will report their charging requests (i.e.,
parking duration and charging demand) to the CS at
arrival.

(A2) The CS has sufficient service capacity for the PEV
charging requests and we don’t consider admission
control.

(A3) The HES is only used to store the surplus renewable
generation not the electricity purchased from the grid.

B. Real-Time Scheduling Model

We consider the operation of an CS over the discretized
optimization horizon t ∈ T � {1, 2, . . . , T} where t denotes
the computing epoch and �T denotes the decision interval.
The CS has installed N charging piles (i.e., service capacity)
and the PEVs are labeled by N � {1, 2, . . . , N} in our for-
mulation. We consider the real-time scheduling in the sense
that at each time t0 the charging decision is made based on
i) the charging requests of the parked PEVs I(t0), and ii) the
predictions of renewable generation over the predicted horizon
H. In the following, we introduce the dynamics of the PEVs,
RES and HES, respectively.

1) PEV: At each time t ∈ [t0, t0 + H), we repre-
sent the charging request of the parked PEV by 4 tuples
(tai , tdi , SoCi(t), SoCd

i ), ∀i ∈ I(t0) which includes the arrival
and departure time tai and tdi , the current state-of-charge (SoC)
SoCi(t) ∈ [0, 1], and the desired SoCd

i ∈ [0, 1] at leaving.
Amid the charging process, the charging power of each

parked PEV i is restricted by the nominal charging power
of charging piles Prated and the PEV’s remaining charging
demand to fill (SoCd

i − SoCi(t))Ecap, i.e.,

0 ≤ Pi(t) ≤ min
{

Prated,
(

SoCd
i − SoCi(t)

)
Ecap/

(
ηc�T

)}
(1)

where Ecap denotes the battery capacity of PEVs and ηc

denotes the charging efficiency.
Accordingly, the SoC dynamics can be modeled as

SoCi(t + 1) = SoCi(t) + Pi(t)η
c�T/Ecap (2)

To ensure the PEV charging requests to be fulfilled before
the deadline, we impose the following feasibility constraint(

SoCd
i − SoCi(t)

)
Ecap ≤

(
tdi − t

)
Pratedηc�T. (3)

2) RES: The RES supply encompasses the wind and solar
generation. The wind power is determined by the instanta-
neous wind speed v(t), the wind turbine configurations and
number (i.e., cut-in speed vcutin, cut-out speed vcutout, rated
speed vrated, nominal power Pcap,w and the number of turbines
Nw). According to [29], the wind power can be estimated by

Pw(t) =

⎧⎪⎨
⎪⎩

NwPcap,w, vrated ≤ vt ≤ vcutout

NwPcap,w
(

v(t)
vrated

)3
, vcutin ≤ vt ≤ vrated

0, otherwise

(4)
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The solar power is determined by the instantaneous solar
radiation intensity GPV(t) and solar panel configurations (i.e.,
nominal radiation intensity Gref,PV, the nominal power Pcap,PV,
and the efficiency of solar panel inverters f PV) [30], which is

PPV(t) = Pcap,PVf PV
(

GPV(t)/Gref,PV
)

(5)

Thus, the total renewable supply at time t is

Pa(t) = Pw(t) + PPV(t). (6)

3) HES: In this paper, we do not consider the SBC feeding
renewable into the grid. In other word, when there exists the
RES supply over the total demand (i.e., the building base load
plus the CS charging load), the surplus will be converted to
hydrogen and stored in the HES for future use (charging).
On the contrary, the stored hydrogen can be converted to the
electric power to make up the gap between the supply and
demand (discharging). At each time t ∈ [t0, t0+H), the surplus
or deficient renewable supply over the total demand is

Ps+(t) =
[
Pa(t) − P(t) − Pbase(t)

]
+

Ps-(t) =
[
Pbase(t) + P(t) − Pa(t)

]
+ (7)

where we define the operator [x]+ � max{0, x} for x ∈ R. We
have P(t) = ∑

i∈I(t0) Pi(t), ∀t ∈ [t0, t0 + H) which denotes
the aggregated charging power of the parked PEVs.

The HES uses hydrogen as medium for energy storing and
releasing. While storing the surplus renewable supply Ps+(t),
the produced hydrogen through electrolysis is [31]

nH(t) = ηFIae(t)Nae/2F = ηFPs+(t)Nae/2UaeF (8)

where nH(t) denotes the generated hydrogen in moles. ηF is the
production efficiency and Nae is the number of electrolyzers.
Iae(t) and Uae are the current and voltage of electrolyzers.
F denotes the Faraday constant. After that, high-pressure gas
cylinders are used for hydrogen storing. According to the Ideal
Gas Law, we have

QH(t) = nH(t)RTH/pH (9)

where QH(t) represents the hydrogen in volume. R is the uni-
versal gas constant. TH and pH denote the standard temperature
and pressure of gas cylinders.

While the amount of energy is to be released, the stored
hydrogen is converted to electrical power via fuel cell (dis-
charging), and the discharged hydrogen power is [31]

Pe(t) = IH(t)UH = 2QH(t)FUH (10)

where IH(t) and UH are the current and standard voltage of
fuel cell.

Form (8)-(10), we can induce the round-trip efficiency for
the HES as follows

ηP2H = NFNaeRTH

2UaeFPH and ηH2P = 2FUH

Thus, we can model the dynamics of HES akin to other
energy storage techniques as

AH(t + 1) =
{

min
{
AH(t) + Ps+(t)ηP2H, Acap

}
, Ps+(t) ≥ 0

max
{
0, AH(t) − Ps-(t)/ηH2P

}
, Ps-(t) ≥ 0

(11)

When the stored hydrogen power is depleted and still not
enough to satisfy the demand, the SBC is required to purchase
the shortfall from the grid, which is denoted as

Pg(t) =
[
P(t) + Pbase(t) − PH(t) − Pa(t)

]
+ (12)

where we have PH(t) = AH(t)ηH2P.

4) Optimization Problem: At each time t0, we minimize
the total operation cost for the CS over the predicted horizon
[t0, t0 + H) which comprises the electricity bill paid to the
grid Pg(t)βg(t), the maintenance cost of the CS (i.e., charging
piles) csP(t) and the maintenance cost of the RES (i.e., wind
turbines, solar panels and the HES) crPa(t), and we have the
overall optimization problem as follows

J(t0) = min
Pi(t)

t0+H−1∑
t=t0

[
Pg(t)βg(t) + csP(t) + crPa(t)

]

s.t. (1) − (7), (11) − (12), ∀t ∈ [t0, t0 + H),

i ∈ I(t). (13)

Particularly, as the PEVs come and leave over the time and
new arrivals may occur during [t0, t0 + H), we only execute
the charging decision for the current time t0. For the next
moment, we will compute the charging decision by repeating
this process with the new arrivals involved.

We have built the PEV charging scheduling model in a
real-time manner. Yet solving problem (13) directly is not
desirable and scalable considering the computation burden.
We are facing O(HN) decision variables at each computing
epoch which can be quite large and result in time-consuming
solving process [17], [32]. The computation issue remains to
be addressed.

III. SOLUTION METHODOLOGY

In this section, we establish a computationally efficient
approach for handling problems (13) via soft optimization. The
main idea includes three phases: i) scaling down the decision
variables by aggregation, ii) searching good enough solutions
via order optimization, and iii) deciding the charging decisions
for individual PEV by a modified Less Laxity and Longer
Remaining Processing Time (MLLLP) principle.

A. Aggregated PEV Charging Model

There usually exists flexibility regarding the individual PEV
charging process. As we could imagine, the fastest way to
accomplish the charging request is “plug and play,” i.e.,
start uninterrupted charging at maximum rate at arrival until
the desired SoC is achieved. Oppositely, the slowest way is
to “standby and delay,” i.e., delay the charging to the last
moment. In light of that, the charging flexibility of a specific
PEV i can be characterized by the energy boundaries (e+

i , e−
i )
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Fig. 2. The energy boundary curve. (a) uncontrollable charging process.
(b) controllable charging process. (c) aggregated energy boundaries.

that represent the fastest and slowest charging process, respec-
tively. The idea of using energy boundaries to capture PEV
charging flexibility was first proposed in [33] and the energy
boundaries (e+

i , e−
i ) can be constructed by

e−
i (t) = max

{
e−

i (t − 1), ed
i − Pratedηc�T

(
tdi − t

)}
,(14a)

e+
i (t) = min

{
e+

i (t − 1) + Pratedηc�T, emax
i

}
,

∀t ∈ [t0, t0 + H). (14b)

where emax
i = Ecap denotes the battery capacity. Obviously,

we have e+
i ≥ e−

i .
Empirically, the space between the upper and lower energy

boundaries characterizes the PEV charging flexibility and any
monotonically non-decreasing curve in-between represent a
possible charging solution for the PEV. Therefore, it would
be easy to visually identify the PEV charging flexibility from
the energy boundaries (e+

i , e−
i ) and we can differentiate them

by uncontrollable and controllable charging process as in
Fig. 2, where ea

i = SoCa
i Ecap, and ed

i = SoCd
i Ecap denote

the stored energy at arrival and the desired stored energy
at leaving.

With the identified energy boundary model for individ-
ual PEV, it’s reasonable to aggregate them as the aggregated
energy charging profile which exclusively determines the total
operation cost for the CS. Intuitively, the aggregated energy
boundary model (E+, E−) for all parked PEVs is

E+/-(t) =
∑

i∈I(t0)

e+/-
i (t), ta,min ≤ t ≤ td,max (15)

where ta,min = mini∈I(t0) tai and td,max = maxi∈I(t0) tdi are the
earliest arrival and latest departure time for all parked PEVs.

We illustrate the aggregated energy boundary model in
Fig. 2(c). Thus, any monotonically non-decreasing curve E
in-between represents a possible solution for problem (13),
and the aggregated charging power profile can be
induced as

P(t) = (E(t + 1) − E(t))/
(
�Tηc),∀t ∈ [t0, t0 + H). (16)

Note that the aggregated charging profile P = [P(t)],∀t
determines the total operation cost defined in problem (13).
Therefore, we can obtain an equivalent optimization problem
for the CS by embodying the aggregated energy boundary

model as

J(t0) = min
P(t)

t0+H−1∑
t=t0

[
Pg(t)βg(t) + csP(t) + crPa(t)

]

s.t. (4) − (7), (11) − (12),

E(t + 1) = E(t) + P(t)ηc�T,

E-(t) ≤ E(t) ≤ E+(t), ∀t ∈ [t0, t0 + H). (17)

B. Soft Optimization Based on OO

To be noted, we have scaled down the decision variables
from O(HN) to O(H) in problem (17). However, solving
problem (17) is still time-consuming due to the bunch of tem-
porally binding constraints. Therefore, we apply the ordinal
optimization (OO) [34] to search for good enough solutions
to achieve high computation efficiency.

The basic idea of OO is hardly new to us: i) Order is eas-
ier to identify than value, especially when there is noise or
prediction error, and ii) the optima is usually very costly but
not the good enough. Until the recent decades, OO has been
developed as a systematic soft optimization technique with
performance to be quantified [34], and found its various suc-
cessful applications in power systems [35], file system [36]
and manufacturing system [37], etc. OO is suitable for the
performance improvement of complex systems by seeking
good enough solutions via simulations instead of solving a
complex optimization problem directly. In general, the signif-
icance of OO is to allow a trade-off between the computation
burden and the performance based on the “No-free-Lunch”
theory.

When it comes to problem (17), the problem can be trans-
lated into the search of energy charging profile E within the
energy boundaries (E−, E+). However, the decision variable
E ∈ R

H is in array and it is impossible to simulate the
H-dimensional decision space. To handle this issue, we param-
eterize the policy E by exploring the problem structure: the
energy charging profile E is monotonically non-decreasing.
This feature suggests us to use the incomplete Beta function
(characterized by two parameters α, β) to parameterize E.

The incomplete beta function is characterized by two posi-
tive parameters α, β > 0, and we have

F(y|α, β) =
∫ y

0
f (z|α, β)dz (18)

where f (z|α, β) = Czα−1(1 − z)β−1 represents the probabil-
ity density function with C = �(α+β)

�(α)�(β)
(�(·) represents the

gamma function).
For any monotonically non-decreasing curve restricted to

the unit square [0, 1] × [0, 1], it can be determined by the
inverse function of F(y|α, β) as

�(x|α, β) = F−1(x|α, β) = F(x|1/α, 1/β), (19)

where F(·|·, ·) can be evaluated via numerical approximation
formulas. In this way, we can use two parameters α and β to
represent any standard monotone nondecreasing curves [38].

We can normalize the aggregated energy boundary curve by
dividing the vertical axis by (Ed − Ea) and the horizontal axis
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Fig. 3. Graphical illustration of OO for problem (21).

by td,max − ta,min. Therefore, the policy E can be formulated
by parameter αe and βe as

E(t) = �
(

t/
(

td,max − ta,min
)
|αe, βe

)(
Ed − Ea

)
(20)

By using the incomplete Beta function to parameterize the
energy charging profile E, we can relax problem (17) to
problem (21) with two decision variables αe and βe. This
implies that we now have 2D decision space to be simulated
and evaluated for OO implementation.

J(t0) = min
αe,βe

t0+H−1∑
t=t0

[
Pg(t)βg(t) + csP(t) + crPa(t)

]

s.t. (4) − (7), (11) − (12), (20),

E(t + 1) = E(t) + P(t)ηc�T,

E-(t) ≤ E(t) ≤ E+(t), ∀t ∈ [t0, t0 + H). (21)

Subsequently, we introduce the implementation of OO to
search for good enough policies for problem (21). Fig. 3
shows the graphical illustration, where � denotes the feasi-
ble decision space for the parameters αe and βe. Particularly,
the ranges can be determined by fitting the upper and lower
energy boundaries (E−, E+) using incomplete Beta function.
This implies that all the parameterized policies are feasible. G
represents the real top-|G| solutions among the whole deci-
sion space, which is usually known a priori. S represents the
simulated decision space.

Based on the theory of OO [34], for a specified Alignment
Level k, i.e., the simulated set S contains at least k solutions
belonging to real good enough set G with the Alignment
probability AP = Prob(|G ∩ S| ≥ k), the required size of S
can be determined by the following formula

Z(k, g) = eZ1 kZ2gZ3 + Z4 (22)

where g = |G| denotes the carnality of set G. The coefficients
Z1, Z2, Z3, Z4 are determined by problem structure character-
ized by the 4 tuple (OPC, δ, AP, SR) (pp. 42, [39]). OPC
denotes the class of the ordered performance curve (OPC)
which is a plot of the objective value with respect to the
ordered policies (i.e., the worst to the best). Conceptually, the
OPC classes include “Flat,” “U-Shaped,” “Neutral,” “Bell” and
“Steep.” δ represents the prediction error level of the renew-
able generation. SR is the selection rule including the options
of “blind pick” and “horse race.”

C. MLLLP

Once the aggregated charging policy E (or P) is decided by
OO, the remaining problem is to distribute the charging power
among the parked PEVs I(t0). Related to this issue, [27]
proposed the Less Laxity and Longer Remaining Processing
Time (LLLP) principle. The significance of LLLP is to spot the
dominated charging priority (order) among the parked PEVs
from their charging laxity defined as

θi(t) = λi(t) − γi(t) (23)

where λi(t) = tdi − t denotes the remaining parking time of
PEV i. γi(t) = ((SoCd

i −SoCi(t))Ecap)/(Pratedηc�T) represents
the minimal charging period required to fulfill the remaining
charging demand.

Based on the pairs (θi(t), λi(t)), LLLP can provide a partial
charging order described as below.

Definition 1 (LLLP: partial order) [27]: For any two PEV
i, j ∈ I(t0), we say i � j (j has higher priority in charging
order over PEV i), if j has less laxity and longer remaining
processing time, i.e., θi(t) ≥ θj(t), γi(t) ≤ γj(t), and at least
one of these two inequalities strictly holds.

LLLP can reduce the problem complexity without losing
the optimality. However, there are two underlying issues for
our application. First, it deals with the constant charging rate
and we study the general case with varying charging rate
(i.e., [0, Prated]). Second, it can only provide a partial charg-
ing order, i.e., we may encounter PEV i, j incomparable under
LLLP (for example, θi(t) ≥ θj(t) and γi(t) ≥ γj(t) or the
opposite). To handle the first issue, we always distribute the
maximum charging rates to the PEVs with a higher charging
priority. For the second issue, we propose a modified LLLP
(MLLLP) principle based method to provide a full charging
order.

Definition 2 (MLLLP: full order): For any two PEV i, j ∈
I(t0), we say i � j (j has higher priority in charging order
over PEV i) if we have: i) θi(t) > θj(t) or ii) θi(t) = θj(t) and
γi(t) ≤ γj(t).

The interpretation of MLLLP is to decide the charging
order by taking two steps. First, decide the charging order
of the parked PEVs by their laxity θi(t) in a non-decreasing
order. Second, regulate the charging order within each group
of parked PEV with equal laxity (e.g., θi(t) = θj(t)) with
LLLP. The significance of MLLLP is to provide a full charg-
ing order while preserving the performance of LLLP. Besides,
it can ensure the feasibility (i.e., the charging request of
all parked PEV to be filled before leaving) under some
conditions.

Theorem 1: For a monotonically non-decreasing energy
charging profile E satisfying

E−(t) ≤ E(t) ≤ E+(t), (24a)

E(t + 1) − E(t) ≥
∑

i∈J (t0)

min
{

Pratedηc�T,

(
SoCd

i − SoCi,t

)
Ecap

}
,

∀t ∈ [t0, t0 + H), (24b)
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Fig. 4. The PEV charging scheduling based on ordinal optimization (OO).

TABLE I
PARAMETER SETTINGS

we can obtain a feasible charging policy for problem (21)
based on MLLLP. J (t0) ⊆ I(t0) denotes the set of parked
PEVs with zero laxity (θi(t) = 0,∀t ∈ [t0, t0 + H)).

Proof: The proof is intuitive. Constraint (24a) ensures
the feasibility of the aggregated energy charging profile E.
Constraint (24b) ensures that the induced charging power
P(t) = E(t + 1) − E(t) is at least enough to support the non-
controllable charging demand (i.e., PEVs with θi(t) = 0) at
each time t. Based on MLLLP, we know the parked PEVs with
zero laxity is prioritized. Therefore, the feasibility of solution
can be recursively ensured.

We illustrate the complete framework of our approach in
Fig. 4 which includes the following five steps.

Step 1: At each time t0, collect all the available information
which includes the charging requests of new arrivals, the
predictions of the RES over the predicted horizon H, the stored
hydrogen in the HES and the ToU price.

Step 2: Aggregate the charging demand of the parked PEVs
and determine the policy space � for (αe, βe).

Step 3: Randomly sample |S| policies from � and construct
the sampled policy space �e.

Step 4: Simulate the sampled policy space �e and select
the observed best by ranking their operation cost in a non-
decreasing order.

Step 5: Distribute the aggregated charging policy among the
parked PEV with the MLLLP principle based method.

IV. NUMERICAL RESULTS

A. Simulation Settings

We consider a CS run by a smart building with the service
capacity of N = 400. We study the PEV charging scheduling

Fig. 5. The normalized OPC of PEV charging scheduling.

for the CS on a daily basis with the computing epoch �T =
15 min and the prediction horizon H = 8 (2h). The parame-
ter settings for the wind turbine, solar panels, HES, CS and
PEV are shown in Table I. The historical meteorological data
(i.e., solar radiation and wind speed profiles) [40] are used to
capture the uncertain renewable generation in our simulation.
Besides, we use the real traffic data of Shanghai, China [41] to
simulate the charging requirements of PEVs. We refer to the
TOU price in [42]. This experiment is run on a desktop with
a 4 core 3.2-GHz Intel i5-4460 processor and 8 GB RAM.

B. OO Settings

For the OO implementation, we assume that the prediction
error of the RES is δ = 10% and set AP = 0.95, k = 2,
|g| = 25 and SR = “blind pick” (random sampling). The
interpretation is that we expect at least k = 2 policies over the
simulated set S will be in real Good Enough set G (i.e., real
top-25) with a probability of 95%. To be noted, the carnality
g is totally decided by our sense of Good Enough. Besides,
we equally discretize the ranges of αe and βe into 20 and we
thus have a policy space |�| = 202 = 400 for sampling. To
identify the OPC class, we simulate and rank the policies in �

by their performance, and then we can obtain the normalized
OPC curve shown in Fig. 5. The numerical results show that
the PEV charging scheduling problem has a “Flat” OPC. We
indicate the real top-25 best policies in shadow which are the
Good Enough polices to be obtained via OO.
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TABLE II
PERFORMANCE OF THE DIFFERENT POLICIES

Further, we compute the required size of simulated set S for
implementation: Z(25, 2) = 131 which means |S| = 131 over
the policy space |�| = 400 will be randomly simulated.

C. Performance Analysis

To evaluate the performance of the proposed method in the
CS operation cost reduction and computation efficiency, we
make the following comparisons.

1) BM-P: The optimal solution obtained by solving the
original problem (13) with CPLEX based on the predicted
information. We use this as a benchmark to quantify the
performance gap.

2) OO-P: Our proposed OO-based method and use the
predicted information. This supposes to be used for practice.

3) OO-P(5%): Our proposed OO-based method but assumed
with prediction accuracy δ = 5%. This is designed to study
the effect of noise level (i.e., prediction accuracy) on the
performance of OO-based method.

4) Opt-PC [15]: A real-time PEV charging scheduling
method that first decides the aggregated charging power PC

by achieving valley-filling and then distribute it among the
parked PEVs by their charging priority index defined as the
proportion of remaining charging energy and the remaining
charging time.

5) CToU: A heuristic rule where we first use the free renew-
able energy to support the PEV charging demand and then
purchase the shortfall at the time-period with the lowest price
over each planning horizon H.

The settings (i.e., the information used) along with the
numeric results (i.e., the CS operation cost and average com-
puting time) of different methods are shown in Table II.
Particularly, though the service capacity of the CS is N = 400
(charging piles), it can provide PEV charging services to sev-
eral times of that number as the PEVs will come and leave over
the time. Therefore, the operation cost is the total charging cost
for all the served PEVs over the day.

We first look into the comparisons under 10% prediction
error (i.e., BM-P, OO-P, Opt-PC and CToU). We find that
BM-P provides the lowest operation cost. This is reasonable
since it solves the optimization problem (13) comprehensively
and supposes to provide the optimal bound. However, BM-P
requires much higher computation expense (319.7 seconds)
over the others (less than one second). To be noted, our OO-P
has a performance gap of 2.33% but shows high computation
efficiency (less than one second). When comparing our OO-P
with the existing real-time scheduling method Opt-PC, we see

they have equal high computation efficiency but our OO-P
can provides lower performance degradation, i.e., 2.33% vs.
7.47%. The underlying reason is that Opt-Pc aims for valley-
filling instead of operation cost reduction for the CS. Further,
the comparison with CToU has demonstrated the superiority
of OO-P for optimizing the operation cost over the heuristic
rule. The latter usually provide an experience-based solution
but leave big room for performance improvement.

Considering the uncertainties, we also studied the impact
of noise level (i.e., prediction error of renewable generation)
on the performance of OO-P. From the numeric results with
δ = 5% (OO-P(5%)) and δ = 10% (OO-P) noise level, we
have some insight that the performance of OO-P can be further
enhanced by improving the prediction accuracy of the renew-
able generation over the predicted horizon H. The essential
impact of noise level δ is that it will affect our observations
with the simulated set S. More specifically, when there is no
noise, we are sure that the observed best is exactly the real
best within the simulated set S. However, if there exists noise,
the observe best may not be the real best in realization due
to the prediction error of the renewable generation. To further
illustrate it, we have used a time instant as an example and
inspected the top-10 observed best policy and their real cost
under different realizations. Fig. 6 shows three cases that may
happen: i) the observed best is exactly the real best within
the simulated set S; ii) the observe best is not the real best
but still shows desirable performance in realization (i.e., the
real third-best is identified as the observed best in this case);
and iii) the observed best is actually infeasible in realization.

D. Scalability Analysis

To evaluate the scalability of the proposed OO-P, we have
increased the service capacity of CS to N = 700, 1200, 2000.
The other parameter settings are the same as Section IV-A. We
compare the proposed OO-P with BM-P, Opt-PC and CToU
under the noise level of δ = 10% (i.e., prediction error of the
renewable generation). For the different scales and methods,
the induced operation cost and the average computing time
(ACT) are shown in Table III. Overall, we can observe similar
results as discussed in Section IV-C. Specifically, as a bench-
mark of optimal bound, BM-P provides the lowest operation
cost over the other methods. However, the computation burden
represents a issue for large scale practice. For example, it takes
about 25 min for BM-P to obtain the optimal charging pol-
icy from solving the optimization problem (13). Moreover, we
see that the ACT is superlinear w.r.t. the scale N. Therefore,
it does not scale well for implementation. Importantly, the
performance gap of our OO-P over BM-P is no more than
4% with all the scales. However, OO-P shows much higher
computation efficiency (i.e., at second level). Moreover, we
only see a minor increase of ACT w.r.t. the scale N. The
underlying reason is that we have scale down the decision
variables to O(2) by proposing a parameterized aggregated
model, and thus make OO-P almost not restricted to the scale.
Besides, compared with the existing real-time PEV scheduling
method Opt-Pc, OO-P shows less performance discount over
the optimal (BM-P), showing about 6% more operation cost
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Fig. 6. Three cases of observations with the simulated set S.

TABLE III
THE PERFORMANCE FOR LARGE SCALES WITH THE DIFFERENT METHODS

TABLE IV
PERFORMANCE OF OO-P WITH DIFFERENT (k, g) SETTINGS

reduction for the CS. Obviously, we see OO-P outperforms
the heuristic rule CToU in optimizing the operation cost with
all the scales.

E. OO Parameter Analysis

As aforementioned, the settings of OO-P (i.e., the
Alignment Level k and the carnality of Good Enough set
g) will affect the performance (i.e., the CS operation cost).
To give some insights, we use the case with a CS service
capacity N = 100 as an example to study the performance of
OO-P with the different settings of (k, g). We first decide the
required size of simulated set S according to (22) and then
perform OO-P for the different settings. The induced opera-
tion cost and the average computing time (ACT) are shown in
Table IV.

First, we can spot that a larger Alignment Level k plus a
smaller Good Enough set g will induce a larger simulated
set s to be simulated and evaluated. For example, when we

set k = 8 and g = 10, we will require a simulated set of size
s = 1383. That will slightly increase the computing time.

Besides, when the Alignment Level k is fixed, we observe
the performance of OO-P first increases and then begins to
drop w.r.t. the carnality of Good Enough set s. For example,
when we set k = 2 (the top-left block), we see the operation
cost decrease when we increase from g = 10 to g = 20.
However, when we keep increasing to g = 30 and g = 40,
the performance drops. This implies for some fixed Alignment
Level k, there exists an appropriate carnality of Good Enough
set g to achieve better performance.

We can observe the same trend when we fix g and
increase k. These results show that in the real-time operation,
the CS needs to choose the appropriate parameter settings for
OO-P to achieve a better economic benefits.

V. CONCLUSION

In this paper, we studied the real-time operation of a public
charging station (CS) providing charging service to large-
scale PEVs. To enable a computationally efficient and scalable
implementation, we first developed a parameterized aggre-
gated PEV charging model based on the problem structure,
which can largely scale down the decision variables from
O(NH) to O(2). This makes it possible to apply the ordi-
nal optimization (OO) technique to search for good enough
parameterized aggregated charging policy within the 2D deci-
sion space. After that, we modify the existing Less Laxity and
Longer Remaining Processing Time (LLLP) principle [27] to
distribute the aggregated charging profile among the individual
PEVs. We demonstrated that the proposed method can ensure
high computation efficiency and scalability at the expense of
a minor performance degradation (i.e., no more than 4%). Our
method also outperforms the existing real-time and heuristic
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PEV charging scheduling methods in reducing the operation
cost for the CS. This paper can work as an example that how
the soft optimization technique and problem structure can be
explored to achieve the performance improvement of complex
dynamic systems.
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