Online Supplementary Material for Reliability Estimation of k-Out-of-n: G System with Model Uncertainty[‡]

Ziwen Gao* Dalei Yu[†] and Xinyu Zhang*

*Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China 100190 ziwen@amss.ac.cn; xinyu@amss.ac.cn

[†]School of Mathematics and Statistics, Xi'an Jiaotong University China 710049 yudalei@126.com

This Supplementary Material includes the proofs for theoretical results and some numerical results. Section A1 provides the proof for Theorem 1, and Section A2 shows the proof for Theorem 2. Some numerical results are included in Section A3.

A1. PROOF OF THEOREM 1

First, it is obvious that $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \widetilde{CV}(\mathbf{w})$. From Lemma 1 of Gao *et al.* [1], Theorem 1 is valid if the following holds:

$$\sup_{\mathbf{w}\in\mathcal{W}}\frac{|\mathrm{KL}(\mathbf{w}) - \mathrm{KL}^*(\mathbf{w})|}{\mathrm{KL}^*(\mathbf{w})} = o_p(1)$$
(A1)

and

$$\sup_{\mathbf{w}\in\mathcal{W}} \frac{|\tilde{CV}(\mathbf{w}) - KL(\mathbf{w})|}{KL^*(\mathbf{w})} = o_p(1).$$
(A2)

Under Condition 1, for each $\mathbf{w} \in \mathcal{W}$ and any fixed $\delta > 0$, one has

$$\Pr\left(\sum_{m=1}^{M} w_m \left\| T^{1/2}(\widehat{\boldsymbol{\theta}}_m - \boldsymbol{\theta}_m^*) \right\| > \delta\right) \le \frac{\sum_{m=1}^{M} w_m \mathbb{E} \left\| T^{1/2}(\widehat{\boldsymbol{\theta}}_m - \boldsymbol{\theta}_m^*) \right\|}{\delta} \le \frac{c_1}{\delta}.$$

Then, it is seen that under Conditions 1, 2 and 5, for each $w \in W$,

$$\frac{|\mathbf{KL}(\mathbf{w}) - \mathbf{KL}^*(\mathbf{w})|}{\mathbf{KL}^*(\mathbf{w})} \leq \xi_T^{-1} \sum_{t=1}^T \mathbb{E}_{\mathbf{X}^*} \left| \log \left[\sum_{m=1}^M w_m c_m \{ \widehat{F}_1(X_{t,1}^*), \dots, \widehat{F}_n(X_{t,n}^*); \widehat{\boldsymbol{\theta}}_m \} \right] - \log \left[\sum_{m=1}^M w_m c_m \{ \widehat{F}_1(X_{t,1}^*), \dots, \widehat{F}_n(X_{t,n}^*); \boldsymbol{\theta}_m^* \} \right]$$

 ‡ The first two authors contributed equally to this work and should be considered co-first authors, and the corresponding author is Xinyu Zhang.

$$= \xi_{T}^{-1} \sum_{t=1}^{T} \mathbb{E}_{\mathbf{X}^{*}} \left| \sum_{m=1}^{M} w_{m} \mathbf{v}_{m}^{\top} \left\{ \widehat{F}_{1}(X_{t,1}^{*}), \dots, \widehat{F}_{n}(X_{t,n}^{*}), \mathbf{w}, \overline{\boldsymbol{\theta}}_{m} \right\} (\widehat{\boldsymbol{\theta}}_{m} - \boldsymbol{\theta}_{m}^{*}) \right|$$

$$\leq \xi_{T}^{-1} \sum_{t=1}^{T} \sum_{m=1}^{M} w_{m} \left\| \widehat{\boldsymbol{\theta}}_{m} - \boldsymbol{\theta}_{m}^{*} \right\| \mathbb{E}_{\mathbf{X}^{*}} \left\| \mathbf{v}_{m} \left\{ \widehat{F}_{1}(X_{t,1}^{*}), \dots, \widehat{F}_{n}(X_{t,n}^{*}), \mathbf{w}, \overline{\boldsymbol{\theta}}_{m} \right\} \right\|$$

$$\leq c_{1} \xi_{T}^{-1} \sum_{t=1}^{T} \sum_{m=1}^{M} w_{m} \left\| \widehat{\boldsymbol{\theta}}_{m} - \boldsymbol{\theta}_{m}^{*} \right\|$$

$$= O_{p}(T^{1/2} \xi_{T}^{-1})$$

$$= o_{p}(1), \qquad (A3)$$

where $\bar{\boldsymbol{\theta}}_m$ lies between $\hat{\boldsymbol{\theta}}_m$ and $\boldsymbol{\theta}_m^*$ and we have used the fact that $\left\| \hat{\boldsymbol{\theta}}_m - \boldsymbol{\theta}_m^* \right\|$ is independent to \mathbf{X}^* . In addition, for any $\mathbf{w} \in \mathcal{W}$,

$$\frac{|\widehat{CV}(\mathbf{w}) - \mathbf{KL}^{*}(\mathbf{w})|}{\mathbf{KL}^{*}(\mathbf{w})} = \left\{ \mathbf{KL}^{*}(\mathbf{w}) \right\}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m,[-l]} \right\} \right] - \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}^{*}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}^{*}); \widehat{\boldsymbol{\theta}}_{m,[-l]}^{*} \right\} \right] \right) \right| \\ \leq \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m,[-l]}^{*} \right\} \right] \right| \\ - \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m}^{*} \right\} \right] \right| \\ + \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left\{ \sum_{m=1}^{M} w_{m} c_{m} \left(\widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m}^{*} \right) \right\} \\ - \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}^{*}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m}^{*} \right\} \right] \right) \right|.$$
(A4)

Similar to the proof of (A1), under Conditions 1, 2 and 5, for each $\mathbf{w} \in \mathcal{W}$, one has

$$\begin{aligned} \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m,[-l]} \right\} \right] \\ &- \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right| \\ &= o_{p}(1). \end{aligned}$$
(A5)

In addition, note that

$$\xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] - \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}^{*}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right|$$

$$\leq \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \hat{F}_{1}(X_{(l-1)H+h,1}), \dots, \hat{F}_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right|$$

$$- \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}), \dots, F_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right|$$

$$+ \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}), \dots, F_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right|$$

$$- \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}^{*}), \dots, F_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right|$$

$$+ \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}^{*}), \dots, F_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right|$$

$$- \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}^{*}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right|.$$

$$(A6)$$

Under Conditions 2 and 5, by the DKW inequality after Dvoretzky, Kiefer and Wolfowitz [2, page 268], one has

$$\begin{split} \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right| \\ &- \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}), \dots, F_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right| \\ &\leq \xi_{T}^{-1} \sum_{l=1}^{J} \sum_{h=1}^{H} \sum_{m=1}^{M} w_{m} \sum_{j=1}^{n} \left| r_{m,j}(\overline{F}_{1}, \dots, \overline{F}_{n}, \mathbf{w}, \boldsymbol{\theta}_{m}^{*}) \{ \widehat{F}_{j}(X_{(l-1)H+h,j}) - F_{j}(X_{(l-1)H+h,j}) \} \right| \\ &\leq \xi_{T}^{-1} \sum_{l=1}^{J} \sum_{h=1}^{H} c_{1} \sum_{j=1}^{n} \sup_{x \in \mathbb{R}^{1}} \left| \widehat{F}_{j}(x) - F_{j}(x) \right| \\ &= O_{p}(T^{1/2}\xi_{T}^{-1}) \\ &= o_{p}(1), \end{split}$$
(A7)

where \overline{F}_j lies between $\widehat{F}_j(X_{(l-1)H+h,j})$ and $F_j(X_{(l-1)H+h,j})$. In addition, under Conditions 3 and 5, by the Central Limit Theorem, it is seen that

$$\begin{split} \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}), \dots, F_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \\ &- \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}^{*}), \dots, F_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right| \\ &= \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}), \dots, F_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right. \\ &- \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}), \dots, F_{n}(X_{(l-1)H+h,n}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right| \\ &= o_{p}(1). \end{split}$$
(A8)

Similar to the derivation of (A7), one has

$$\begin{split} \xi_{T}^{-1} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ F_{1}(X_{(l-1)H+h,1}^{*}), \dots, F_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \\ - \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}^{*}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right| \\ \leq c_{1} T \xi_{T}^{-1} \sum_{j=1}^{n} \sup_{x \in \mathbb{R}^{1}} \left| \widehat{F}_{j}(x) - F_{j}(x) \right| \\ = o_{p}(1), \end{split}$$
(A9)

where the first inequality is owning to the fact that the Kolmogorov-Smirnov statistic $\sup_{x \in \mathbb{R}^1} |\widehat{F}_j(x) - F_j(x)|$ is based on X and is irrelevant to X^{*}. By combining (A7)–(A9) with (A6), we have

$$\begin{aligned} \xi_T^{-1} \left| \sum_{l=1}^J \sum_{h=1}^H \log \left[\sum_{m=1}^M w_m c_m \left\{ \widehat{F}_1(X_{(l-1)H+h,1}), \dots, \widehat{F}_n(X_{(l-1)H+h,n}); \boldsymbol{\theta}_m^* \right\} \right] \\ &- \sum_{l=1}^J \sum_{h=1}^H \mathbb{E}_{\mathbf{X}^*} \left(\log \left[\sum_{m=1}^M w_m c_m \left\{ \widehat{F}_1(X_{(l-1)H+h,1}^*), \dots, \widehat{F}_n(X_{(l-1)H+h,n}^*); \boldsymbol{\theta}_m^* \right\} \right] \right) \right| \\ &= o_p(1). \end{aligned}$$

Then, by combining this with (A4) and (A5), it is readily seen that for any $\mathbf{w} \in \mathcal{W}$,

$$\frac{\widetilde{\mathrm{CV}}(\mathbf{w}) - \mathrm{KL}^*(\mathbf{w})|}{\mathrm{KL}^*(\mathbf{w})} = o_p(1).$$
(A10)

Now, by the pointwise convergence established in (A3) and (A10), Condition 4 and the proof of Theorem 2 of [3], we obtain (A1) and (A2). This completes the proof.

A2. PROOF OF THEOREM 2

Let \mathbf{w}_{m^*} be the vector whose m^* th component is one and the others are zeros, then, under Condition 2 and the third part of Condition 6, one has

$$\frac{1}{T}\mathrm{KL}^*(\mathbf{w}_{m^*}) = o_p(1). \tag{A11}$$

In addition, under Conditions 1-3, by the proof of (A10), we know that for any $\mathbf{w} \in \mathcal{W}$,

$$\frac{|\widetilde{CV}(\mathbf{w}) - \mathrm{KL}^*(\mathbf{w})|}{T} = O_p(T^{-1/2}).$$
(A12)

Now, recall that for any $\mathbf{w}, \mathbf{w}' \in \mathcal{W}$, one has, under Condition 6,

$$\begin{aligned} & \frac{|\widetilde{CV}(\mathbf{w}) - \mathrm{KL}^{*}(\mathbf{w}) - \widetilde{CV}(\mathbf{w}') + \mathrm{KL}^{*}(\mathbf{w}')|}{T} \\ & \leq \quad \frac{1}{T} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m,[-l]} \right\} \right] \\ & - \sum_{l=1}^{J} \sum_{h=1}^{H} \log \left[\sum_{m=1}^{M} w_{m}' c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}); \widehat{\boldsymbol{\theta}}_{m,[-l]} \right\} \right] \end{aligned}$$

$$+ \frac{1}{T} \left| \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}^{*}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) - \sum_{l=1}^{J} \sum_{h=1}^{H} \mathbb{E}_{\mathbf{X}^{*}} \left(\log \left[\sum_{m=1}^{M} w_{m}^{\prime} c_{m} \left\{ \widehat{F}_{1}(X_{(l-1)H+h,1}^{*}), \dots, \widehat{F}_{n}(X_{(l-1)H+h,n}^{*}); \boldsymbol{\theta}_{m}^{*} \right\} \right] \right) \right| \\ \leq 2c_{1} \| \mathbf{w} - \mathbf{w}^{\prime} \|_{1},$$

where $\|\cdot\|_1$ is the L_1 -norm. This indicates that $\{\widetilde{CV}(\mathbf{w}) - KL^*(\mathbf{w})\}/T$ is equicontinuous. Then, similar to the proof of Theorem 1 in [3], by Corollary 2.2 of [4] and pointwise convergence established in (A12), one has

$$\sup_{\mathbf{w}\in\mathcal{W}} \left| \frac{\widetilde{CV}(\mathbf{w}) - \mathbf{KL}^*(\mathbf{w})}{T} \right| = o_p(1).$$
(A13)

In addition, since $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \widetilde{CV}(\mathbf{w})$, we have $\widetilde{CV}(\widehat{\mathbf{w}}) \leq \widetilde{CV}(\mathbf{w}_{m^*})$, which along with (A11) and (A13), implies

$$\frac{\mathrm{KL}^*(\widehat{\mathbf{w}})}{T} \le \frac{\mathrm{KL}^*(\mathbf{w}_{m^*})}{T} + o_p(1).$$
(A14)

From (A11) and (A14), we obtain

$$\frac{\mathrm{KL}^*(\widehat{\mathbf{w}})}{T} = o_p(1). \tag{A15}$$

In addition, define $\mathbf{X}_t^* = (X_{t,1}^*, \dots, X_{t,n}^*)$, i.e., $f(\mathbf{X}_t^*) = f(X_{t,1}^*, \dots, X_{t,n}^*)$, and let

$$\Xi = \frac{\prod_{t=1}^{T} \left\{ \sum_{m=1}^{M} \widehat{w}_m f_m(\mathbf{X}_t^*; \boldsymbol{\theta}_m^*) \right\}}{\prod_{t=1}^{T} \left[\sum_{m=1}^{M} \widehat{w}_m c_m\{\widehat{F}_1(X_{t,1}^*), \dots, \widehat{F}_n(X_{t,n}^*); \boldsymbol{\theta}_m^*\} \prod_{j=1}^{n} \widehat{f}_j(X_{t,j}^*) \right]}$$

Then, we have

$$\begin{aligned} \mathsf{KL}^{*}(\widehat{\mathbf{w}}) &= \mathbb{E}_{\mathbf{X}^{*}} \left[\log \left\{ \prod_{t=1}^{T} f(\mathbf{X}_{t}^{*}) \right\} - \log \left\{ \prod_{t=1}^{T} \widehat{f}_{\widehat{\mathbf{w}}}(\mathbf{X}_{t}^{*}; \boldsymbol{\theta}^{*}) \right\} \right] \\ &= \mathbb{E}_{\mathbf{X}^{*}} \left[\log \left\{ \frac{\prod_{t=1}^{T} f(\mathbf{X}_{t}^{*})}{\prod_{t=1}^{T} \left\{ \sum_{m=1}^{M} \widehat{w}_{m} f_{m}(\mathbf{X}_{t}^{*}; \boldsymbol{\theta}_{m}^{*}) \right\} \right\} \right] + \mathbb{E}_{\mathbf{X}^{*}} \left\{ \log(\Xi) \right\} \\ &= \mathbb{E}_{\mathbf{X}^{*}} \left[\log \left\{ \frac{\prod_{t=1}^{T} f(\mathbf{X}_{t}^{*})}{\prod_{t=1}^{T} \left\{ \sum_{m \in \mathcal{D}} \widehat{w}_{m} f_{m}(\mathbf{X}_{t}^{*}; \boldsymbol{\theta}_{m}^{*}) + \sum_{m \notin \mathcal{D}} \widehat{w}_{m} f_{m}(\mathbf{X}_{t}^{*}; \boldsymbol{\theta}_{m}^{*}) \right\} \right\} \right] + \mathbb{E}_{\mathbf{X}^{*}} \left\{ \log(\Xi) \right\} \\ &= \mathbb{E}_{\mathbf{X}^{*}} \left[\log \left\{ \prod_{t=1}^{T} \frac{f(\mathbf{X}_{t}^{*})}{\Gamma(\widehat{\mathbf{w}}) f(\mathbf{X}_{t}^{*}) + \sum_{m \notin \mathcal{D}} \widehat{w}_{m} f_{m}(\mathbf{X}_{t}^{*}; \boldsymbol{\theta}_{m}^{*})} \right\} \right] + \mathbb{E}_{\mathbf{X}^{*}} \left\{ \log(\Xi) \right\}, \end{aligned}$$

$$(A16)$$

where the last second equality is from the definition of correctly specified model. For Ξ , as $\sup_{x \in \mathbb{R}^1} |\widehat{F}_j(x) - F_j(x)| = O_p(T^{-1/2})$ and $\sup_{x \in \mathbb{R}^1} |\widehat{f}_j(x) - f_j(x)| = o_p(1)$ for j = 1, ..., n as $T \to \infty$, under Condition 6, we

have

$$\begin{array}{lll} 0 &\leq & \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{n} \mathbb{E}_{\mathbf{X}^{*}} \left[\log \left\{ f_{j}(X_{t,j}^{*}) \right\} - \log \left\{ \widehat{f}_{j}(X_{t,j}^{*}) \right\} \right] \\ &= & \sum_{j=1}^{n} \mathbb{E}_{\mathbf{X}_{1}^{*}} \left[\log \left\{ f_{j}(X_{1,j}^{*}) \right\} - \log \left\{ \widehat{f}_{j}(X_{1,j}^{*}) \right\} \right] \\ &\leq & \sum_{j=1}^{n} \mathbb{E}_{\mathbf{X}_{1}^{*}} \left\{ \frac{f_{j}(X_{1,j}^{*})}{\widehat{f}_{j}(X_{1,j}^{*})} - 1 \right\} \\ &= & \sum_{j=1}^{n} \int_{-\infty}^{\infty} \frac{f_{j}(x) - \widehat{f}_{j}(x)}{\widehat{f}_{j}(x)} f_{j}(x) dx \\ &\leq & \max_{1 \leq j \leq n} \sup_{x \in \mathbb{R}^{1}} \left| f_{j}(x) - \widehat{f}_{j}(x) \right| \sum_{j=1}^{n} \int_{-\infty}^{\infty} \frac{f_{j}(x)}{\widehat{f}_{j}(x)} dx \\ &= & \max_{1 \leq j \leq n} \sup_{x \in \mathbb{R}^{1}} \left| f_{j}(x) - \widehat{f}_{j}(x) \right| \sum_{j=1}^{n} \mathbb{E}_{\mathbf{X}_{1}^{*}} \left\{ \widehat{f}_{j}^{-1}(X_{1,j}^{*}) \right\} \\ &= & o_{p}(1), \end{array}$$

further,

$$\mathbb{E}_{\mathbf{X}^{*}} \left\{ \frac{\log(\Xi)}{T} \right\} = \frac{1}{T} \mathbb{E}_{\mathbf{X}^{*}} \left\{ \log \left(\frac{\prod_{t=1}^{T} \left\{ \sum_{m=1}^{M} \widehat{w}_{m} f_{m}(\mathbf{X}_{t}^{*}; \boldsymbol{\theta}_{m}^{*}) \right\}}{\prod_{t=1}^{T} \left[\sum_{m=1}^{M} \widehat{w}_{m} c_{m} \{\widehat{F}_{1}(X_{t,1}^{*}), \dots, \widehat{F}_{n}(X_{t,n}^{*}); \boldsymbol{\theta}_{m}^{*}\} \prod_{j=1}^{n} \widehat{f}_{j}(X_{t,j}^{*}) \right]} \right) \right\}$$
$$= \frac{1}{T} \mathbb{E}_{\mathbf{X}^{*}} \left\{ \log \left(\frac{\prod_{t=1}^{T} \left[\sum_{m=1}^{M} \widehat{w}_{m} c_{m} \{F_{1}(X_{t,1}^{*}), \dots, F_{n}(X_{t,n}^{*}); \boldsymbol{\theta}_{m}^{*}\} \prod_{j=1}^{n} f_{j}(X_{t,j}^{*}) \right]}{\prod_{t=1}^{T} \left[\sum_{m=1}^{M} \widehat{w}_{m} c_{m} \{\widehat{F}_{1}(X_{t,1}^{*}), \dots, \widehat{F}_{n}(X_{t,n}^{*}); \boldsymbol{\theta}_{m}^{*}\} \prod_{j=1}^{n} \widehat{f}_{j}(X_{t,j}^{*}) \right]}{\widehat{f}_{j}(X_{t,j}^{*})} \right\} \right\}$$
$$= o_{p}(1),$$

which with (A15) indicates that

$$\frac{1}{T}\mathbb{E}_{\mathbf{X}^*}\left[\log\left\{\prod_{t=1}^T \frac{f(\mathbf{X}_t^*)}{f^*(\widehat{\mathbf{w}}, X_{t,1}^*, \dots, X_{t,n}^*; \boldsymbol{\theta}_0^*)}\right\}\right] = o_p(1).$$

It is readily seen that for any $\epsilon > 0$, under Condition 6, for any fixed $\epsilon > 0$

$$\Pr\left(1 - \Gamma(\widehat{\mathbf{w}}) > \epsilon\right) \leq \Pr\left(\frac{1}{T}\mathbb{E}_{\mathbf{X}^*}\left[\log\left\{\prod_{t=1}^T \frac{f(\mathbf{X}_t^*)}{f^*(\widehat{\mathbf{w}}, X_{t,1}^*, \dots, X_{t,n}^*; \boldsymbol{\theta}_0^*)}\right\}\right] > c_0\right) \to 0$$

and this concludes the proof.

A3. MORE SIMULATION RESULTS

We supplement a simulation using 3-variate t-distribution as DGP to generate the observations. The degree of freedom and location parameter in the 3-variate t-distribution are set as 4 and $(1, 2, 3)^{\top}$, respectively. The positive definite scale matrix $\Sigma = 0.5(\mathbf{I}_3 + \mathbf{1}_{3\times 1}\mathbf{1}_{3\times 1}^{\top})$, where \mathbf{I}_3 is identity matrix and $\mathbf{1}_{3\times 1} = (1, 1, 1)^{\top}$. The simulation results are shown in Table A1. The KL loss of 10-KLMA is significantly smaller than that of the other methods, while the L_1 loss and L_2 loss of all methods are relatively close.

Loss	T		5-KLMA	10-KLMA	CVMA	CW	QMLE	BICMS	SBIC	EWMA
KL	200	Mean	13.60	13.25	15.86	16.91	13.86	19.94	18.79	17.90
		Median	13.76	13.44	16.49	16.09	14.03	19.67	18.55	17.41
	500	Mean	26.51	26.00	32.21	32.70	27.64	45.63	43.77	41.42
		Median	28.17	27.79	33.49	28.48	29.66	43.45	42.87	40.94
T	200	Mean	6.30	6.30	6.32	6.33	6.34	6.28	6.28	6.26
		Median	6.09	6.07	6.11	6.13	6.10	6.08	6.08	6.04
L_1	500	Mean	5.32	5.32	5.34	5.34	5.34	5.31	5.31	5.28
		Median	5.35	5.34	5.37	5.36	5.35	5.36	5.36	5.31
L_2	200	Mean	0.46	0.46	0.46	0.47	0.46	0.46	0.46	0.47
		Median	0.42	0.42	0.42	0.43	0.42	0.42	0.42	0.43
	500	Mean	0.38	0.38	0.37	0.38	0.38	0.37	0.37	0.39
	500	Median	0.37	0.36	0.37	0.37	0.37	0.36	0.36	0.38

TABLE A1 Comparison of KL, $L_{\rm 1}$ and $L_{\rm 2}$ losses for different methods.

Fig. A1. L_1 loss comparison of different methods when k = 1, n = 3 and DGP is composed of Gumbel and Student-t copulas.

DGP	T	KL loss	5-KLMA	10-KLMA	CVMA	CW	QMLE	BICMS	SBIC	EWMA
		Mean	4.72	4.60	9.50	9.01	5.27	11.30	9.83	5.90
	200	Median	4.56	4.40	11.16	8.29	5.03	10.73	9.28	5.40
Cumbal(2.5) + Normal(0.5)		SD	2.15	2.16	4.30	8.23	2.93	2.91	2.91	1.51
Guiider(2.3)+iNofiliar(0.3)		Mean	6.87	6.32	15.36	21.76	7.96	24.58	22.69	13.96
	500	Median	6.62	6.10	13.61	14.09	7.26	22.52	21.99	13.23
		SD	3.25	3.29	9.48	82.19	5.15	4.04	4.71	2.52
		Mean	3.05	3.02	10.93	7.13	9.55	6.32	5.22	10.53
	200	Median	2.32	2.29	6.62	5.28	6.12	5.56	5.08	9.76
Gumbal(2,5) + Loa(3)		SD	2.82	2.83	10.89	12.22	8.65	2.09	2.76	1.97
Gumber(2.3) + Joe(3)		Mean	3.02	3.01	10.86	12.63	18.99	13.71	11.83	25.25
	500	Median	2.16	2.27	7.64	10.89	8.97	12.95	12.54	24.45
		SD	2.64	2.50	11.24	23.71	21.12	2.01	3.99	2.83
		Mean	5.57	5.28	12.50	8.96	6.15	13.29	12.04	9.07
	200	Median	4.96	4.87	10.05	7.54	5.19	11.26	10.80	8.48
Gumbal(2,5) $Frank(2)$		SD	3.00	2.80	8.97	13.65	6.23	4.17	3.22	1.58
Guilloel(2.3)+Flank(2)		Mean	8.23	7.62	19.23	14.32	10.40	28.11	27.18	21.76
	500	Median	7.73	7.19	14.67	12.67	8.03	25.94	25.85	21.02
		SD	3.82	3.78	14.65	36.50	11.56	5.81	4.62	2.35
		Mean	4.83	4.62	9.93	8.19	6.23	9.85	8.99	5.71
	200	Median	4.58	4.44	8.73	7.45	4.93	7.73	7.58	5.12
Normal(0.5) + Log(3)		SD	2.47	2.47	6.38	8.15	5.66	4.48	3.35	1.77
$\operatorname{Normal}(0.3) + \operatorname{JOe}(3)$	500	Mean	7.50	6.36	12.87	13.05	10.22	19.20	18.94	13.49
		Median	6.76	5.83	10.34	12.17	7.12	18.22	18.20	12.67
		SD	4.08	3.77	10.06	18.94	9.54	4.00	2.69	2.62
		Mean	1.76	1.75	2.49	5.23	2.56	3.15	2.20	3.16
	200	Median	1.51	1.50	2.00	2.60	2.05	2.50	1.81	2.85
Normal(0.5) Frank(2)		SD	1.35	1.33	2.31	23.77	2.89	1.85	1.72	0.86
$\operatorname{Normal}(0.3) + \operatorname{Frank}(2)$		Mean	2.05	2.06	3.79	8.20	4.60	5.79	4.53	7.30
	500	Median	1.60	1.61	3.96	5.69	3.18	5.57	4.30	6.86
		SD	1.52	1.53	2.20	28.48	15.57	2.40	2.47	1.36
		Mean	5.77	5.34	11.03	7.16	7.07	12.00	11.05	9.37
	200	Median	5.48	5.10	9.55	7.20	6.00	10.30	10.03	8.83
$Log(3) \mid Erank(2)$		SD	2.67	2.63	7.51	4.36	4.55	3.44	2.56	1.60
JUC(J) + TIAllK(Z)		Mean	9.50	8.23	16.26	15.81	13.03	25.66	25.15	22.49
	500	Median	9.13	8.05	15.43	8.45	10.01	24.34	24.28	21.93
		SD	4.41	4.32	9.94	59.28	10.32	3.90	2.89	2.27

TABLE A2 Comparison of KL loss for different methods based on 500 repetitions.

Note: The smallest loss in each Mean row and Median row is in boldface type. Abbreviations: Gumbel(2.5)+Normal(0.5): 0.5Gumbel(2.5)+0.5Normal(0.5), others are similar. SD: standard deviation.

DGP	Т	L_2 loss	5-KLMA	10-KLMA	CVMA	CW	QMLE	BICMS	SBIC	EWMA
		Mean	0.97	0.95	1.31	2.19	1.09	2.25	1.89	1.31
	200	Median	0.73	0.72	1.16	1.83	0.87	2.13	2.05	1.11
Cumbal(2.5) + Normal(0.5)		SD	0.83	0.78	0.86	2.26	0.89	0.94	0.94	0.53
Gunder(2.3)+Normar(0.3)		Mean	0.53	0.48	0.85	1.73	0.64	2.01	1.83	1.08
	500	Median	0.40	0.36	0.74	1.41	0.50	2.08	2.06	1.00
		SD	0.45	0.41	0.55	2.58	0.51	0.49	0.64	0.21
		Mean	0.56	0.55	2.27	1.29	1.85	1.37	1.13	2.18
	200	Median	0.39	0.41	1.45	1.19	1.11	1.29	1.21	2.10
$Gumbel(2.5) \pm Ioe(3)$		SD	0.53	0.53	2.20	0.93	2.05	0.34	0.50	0.33
Guilloel(2.3)+J0e(3)		Mean	0.21	0.21	0.96	1.08	1.56	1.28	1.11	2.11
	500	Median	0.15	0.15	0.65	1.03	0.56	1.28	1.23	2.07
		SD	0.20	0.19	1.04	0.55	2.01	0.19	0.37	0.16
		Mean	1.54	1.44	2.93	2.67	1.62	3.05	2.64	1.54
	200	Median	1.18	1.09	2.40	2.00	1.14	2.15	2.00	1.28
$Gumbel(2,5) \pm Frank(2)$		SD	1.39	1.23	2.36	2.79	1.96	2.01	1.73	0.69
Gumber(2.3)+11ank(2)		Mean	0.83	0.74	1.80	1.65	0.98	2.28	2.13	1.21
	500	Median	0.63	0.59	1.27	1.23	0.70	1.81	1.79	1.10
		SD	0.69	0.60	1.56	2.61	1.44	1.28	1.10	0.28
		Mean	1.40	1.33	3.03	3.12	2.02	2.21	1.93	0.58
	200	Median	1.04	0.94	2.87	2.49	1.49	1.13	1.17	0.26
Normal(0.5)+Ioe(3)		SD	1.28	1.24	2.16	2.69	1.82	2.40	1.87	0.90
Normal(0.5)+30C(3)		Mean	0.83	0.69	1.56	1.76	1.41	1.26	1.22	0.34
	500	Median	0.63	0.48	1.04	0.97	0.87	0.99	1.00	0.18
		SD	0.69	0.65	1.39	2.14	1.39	0.81	0.70	0.42
		Mean	1.36	1.34	1.33	2.67	1.45	1.92	1.48	4.20
	200	Median	0.96	0.92	0.81	1.01	0.81	1.00	0.85	3.56
Normal(0.5)+Frank(2)		SD	1.44	1.39	1.98	6.61	2.20	2.22	1.66	1.75
$\operatorname{Hormal}(0.3) + \operatorname{Hank}(2)$		Mean	0.57	0.58	0.72	1.76	0.84	1.15	0.94	3.98
	500	Median	0.36	0.35	0.55	0.74	0.42	0.75	0.67	3.69
		SD	0.67	0.67	0.72	4.20	2.70	1.36	1.09	1.16
		Mean	2.05	1.92	3.92	3.48	3.04	3.36	2.95	1.96
	200	Median	1.58	1.46	2.94	2.94	2.54	1.93	2.08	1.51
$Log(3) \pm Frank(2)$		SD	1.66	1.56	3.15	2.71	2.27	2.70	2.10	1.25
$JUU(J) \mp I TallK(2)$		Mean	1.27	1.09	2.03	2.22	2.20	2.13	2.02	1.60
	500	Median	1.03	0.86	1.50	1.44	1.54	1.53	1.56	1.40
		SD	0.92	0.86	1.64	3.76	1.90	1.66	1.25	0.59

TABLE A3	
Comparison of L_2 loss for different methods based on 500 repetitions (×10 ⁻³).	

Note: The smallest loss in each Mean row and Median row is in boldface type. Abbreviations: Gumbel(2.5)+Normal(0.5): 0.5Gumbel(2.5)+0.5Normal(0.5), others are similar. SD: standard deviation.

Fig. A2. L_1 loss comparison of different methods when k = 1, n = 3 and DGP is composed of Normal and Student-t copulas.

Fig. A3. L_1 loss comparison of different methods when k = 3, n = 3 and DGP is composed of Gumbel and Student-t copulas.

Fig. A4. L_1 loss comparison of different methods when k = 3, n = 3 and DGP is composed of Normal and Student-t copulas

Fig. A5. L_1 loss comparison of different methods when k = 2, n = 4 and DGP is composed of Gumbel and Student-t copulas.

Fig. A6. L_1 loss comparison of different methods when k = 2, n = 4 and DGP is composed of Normal and Student-t copulas.

Fig. A7. L_1 loss comparison of different methods when k = 4, n = 4 and DGP is composed of Gumbel and Student-t copulas.

Fig. A8. L_1 loss comparison of different methods when k = 4, n = 4 and DGP is composed of Normal and Student-t copulas.

TABLE A4
COMPARISON OF KL LOSS FOR DIFFERENT METHODS BASED ON 500 REPETITIONS. THE BEST, SECOND BEST, AND THIRD BEST METHODS
IN EACH CASE ARE FLAGGED BY ①, ② AND ③ RESPECTIVELY.

DGP	KL loss	10-KLMA	CVMA	CW	QMLE	BICMS	SBIC	EWMA
	Mean	15.86^{\odot}	64.63	22.50 ³	19.92^{\odot}	90.42	87.86	69.56
10-KLMA	Median	15.56^{\odot}	75.27	19.47^{3}	19.15^{\odot}	86.92	86.47	68.93
	SD	5.51	38.40	22.78	6.30	7.61	7.30	3.31
	Mean	7.53^{\oplus}	55.96	9.93^{\odot}	8.33^{\odot}	169.21	168.68	165.66
CVMA	Median	2.89^{\odot}	14.70	2.95^{\odot}	2.49^{\odot}	167.91	167.87	165.39
	SD	8.67	71.30	18.45	11.33	6.67	4.72	4.35
	Mean	8.65^{\oplus}	50.47	10.13 ³	9.73^{\odot}	187.01	185.94	177.78
CW	Median	4.23^{\odot}	8.63	4.38^{3}	3.91^{\oplus}	185.32	185.16	177.31
	SD	9.59	72.17	20.06	12.88	7.04	5.75	4.45
	Mean	7.34^{\oplus}	46.88	$9.08^{(3)}$	$8.35^{@}$	169.13	168.44	164.96
QMLE	Median	$2.99^{(3)}$	7.30	2.37^{\odot}	2.61^{O}	167.92	167.88	164.62
	SD	9.76	67.18	14.73	13.16	6.52	4.39	3.94
	Mean	0.93^{\odot}	2.32	6.67	2.44	0.51^{\oplus}	0.51^{\oplus}	32.68
BICMS	Median	0.62	0.65	0.50^{3}	1.22	0.26^{\odot}	0.26^{\odot}	32.34
	SD	1.13	5.32	16.92	3.40	0.70	0.70	1.78
	Mean	0.96^{3}	2.06	6.19	2.33	$0.60^{ ext{(D)}}$	0.60^{\oplus}	31.47
SBIC	Median	0.59^{\odot}	0.69	0.55	1.24	0.32^{\odot}	0.32^{\oplus}	31.05
	SD	1.08	3.89	18.21	3.24	0.76	0.76	1.64
	Mean	3.63^{\odot}	23.82	12.20	10.68 ³	12.57	11.61	2.96^{\odot}
EWMA	Median	3.28^{\odot}	23.79	$7.25^{(3)}$	8.01	10.81	10.75	2.55^{\odot}
	SD	1.97	12.28	56.39	8.07	5.78	3.95	1.86

SD: standard deviation.

TABLE A5Comparison of L_2 loss for different methods based on 500 repetitions. The best, second best, and third best methodsIN Each case are flagged by (), (2) and (3) respectively.

DGP	$L_2 \text{ loss } (\times 10^{-3})$	10-KLMA	CVMA	CW	QMLE	BICMS	SBIC	EWMA
	Mean	6.87^{\oplus}	29.87	14.20 ³	7.20^{\odot}	17.45	16.56	17.25
10-KLMA	Median	4.38^{\oplus}	24.32	7.43^{3}	5.14^{\odot}	12.06	11.62	14.07
	SD	7.53	25.31	52.79	6.78	14.78	14.20	13.15
	Mean	4.30^{\oplus}	9.35	$8.68^{(3)}$	5.08°	20.34	20.28	31.11
CVMA	Median	$2.46^{()}$	5.85	3.01^{3}	$2.49^{\text{(2)}}$	18.57	18.36	27.17
	SD	5.14	9.84	30.08	7.32	11.71	11.74	15.28
	Mean	$4.04^{^{(1)}}$	8.51 ³	8.62	5.20°	21.13	20.89	24.66
CW	Median	2.14^{\odot}	4.84	2.88^{3}	2.40^{2}	18.44	18.16	21.03
	SD	4.95	10.29	41.97	7.00	12.49	12.59	14.61
	Mean	3.90^{\oplus}	7.89	6.37^{3}	4.98^{\odot}	18.84	18.65	28.28
QMLE	Median	2.12^{\oplus}	3.85	2.50^{3}	2.17^{\odot}	16.83	16.27	25.36
	SD	5.36	10.18	25.82	9.36	11.57	11.57	14.47
	Mean	1.48 ³	2.68	4.03	3.37	1.25^{D}	1.25^{\oplus}	26.44
BICMS	Median	$0.83^{(3)}$	1.10	0.84	1.25	0.65^{\oplus}	0.65^{\oplus}	24.50
	SD	2.46	4.87	8.97	5.78	1.72	1.72	7.06
	Mean	1.49^{3}	2.57	3.95	3.65	1.22^{D}	$1.22^{\text{(D)}}$	25.82
SBIC	Median	0.73	0.94	0.70^{3}	1.34	0.55^{\odot}	0.56^{O}	24.21
	SD	2.41	4.44	12.38	6.54	1.80	1.80	6.42
	Mean	$7.20^{(1)}$	37.32	14.73	11.04	10.05^{3}	9.39°	10.71
EWMA	Median	4.74^{\odot}	35.89	5.44^{\odot}	9.41	6.98	6.48^{3}	8.89
	SD	7.44	22.96	88.63	9.95	8.80	8.12	8.60

SD: standard deviation.

REFERENCES

- Y. Gao, X. Zhang, S. Wang, T. Chong, and G. Zou, "Frequentist model averaging for threshold models," *Annals of the Institute of Statistical Mathematics*, vol. 71, no. 2, pp. 275–306, 2019.
- [2] A. W. van der Vaart, *Asymptotic Statistics*, ser. Cambridge Series in Statistical and Probabilistic Mathematics. New York, New York: Cambridge University Press, 2000.
- [3] D. Yu, X. Zhang, and H. Liang, "Unified optimal model averaging with a general loss function based on cross-validation," *Available at SSRN*, 2022.
- [4] W. K. Newey, "Uniform convergence in probability and stochastic equicontinuity," *Econometrica*, vol. 59, no. 4, pp. 1161–1167, 1991.