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Efficient Subspace-Based Algorithm for Adaptive
Bearing Estimation and Tracking

Jingmin Xin, Member, IEEE, and Akira Sano, Member, IEEE

Abstract—In some practical applications of array processing, the
directions of the incident signals should be estimated adaptively,
and/or the time-varying directions should be tracked promptly. In
this paper, an adaptive bearing estimation and tracking (ABEST)
algorithm is investigated for estimating and tracking the uncorre-
lated and correlated narrow-band signals impinging on a uniform
linear array (ULA) based on the subspace-based method without
eigendecomposition (SUMWE), where a linear operator is obtained
from the array data to form a basis for the null space by exploiting
the array geometry and its shift invariance property. Specifically,
the null space is estimated using the least-mean-square (LMS)
or normalized LMS (NLMS) algorithm, and the directions are
updated using the approximate Newton method. The transient
analyses of the LMS and NLMS algorithms are studied, where the
“weight” (i.e., the linear operator) is in the form of a matrix and
there is a correlation between the “additive noise” and “input data”
that involve the instantaneous correlations of the received array
data in the updating equation, and the step-size stability conditions
are derived explicitly. In addition, the analytical expressions for
the mean-square error (MSE) and mean-square deviation (MSD)
learning curves of the LMS algorithm are clarified. The effec-
tiveness of the ABEST algorithm is verified, and the theoretical
analyses are corroborated through numerical examples. Simula-
tion results show that the ABEST algorithm is computationally
simple and has good adaptation and tracking abilities.

Index Terms—Adaptive filtering, direction-of-arrival (DOA)
estimation, eigendecomposition, learning curve, subspace-based
methods, transient analysis.

I. INTRODUCTION

SUBSPACE-BASED methods have been extensively
studied for estimating the directions-of-arrivals (DOAs)

of the incident signals in array processing or the frequencies
of (complex-valued) sinusoids in time-series spectral analysis
from the noisy measurements because of their high-resolution
and computational simplicity (e.g., [1]–[12]). Traditionally,
most subspace-based methods require either the eigenvalue
decomposition (EVD) of a covariance matrix or the singular
value decomposition (SVD) of a data matrix to compute the
signal or noise subspace, and these methods are usually imple-
mented in batch mode. Unfortunately, the eigendecomposition
is computationally intensive and time-consuming [13]–[15],
especially when the number of sensors (or the assumed order
of the signal model) is large. Consequently, in some practical
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situations (e.g., [55]), where the directions of the incident
signals (or sinusoid frequencies) should be estimated adap-
tively and/or the time-varying directions/frequencies should
be tracked promptly, repeated EVD/SVD computation of a
continually updated sample covariance or data matrix is very
burdensome in general, and this heavy computational load often
makes subspace-based methods difficult to implement in an
online manner. To reduce the computational burden of eigen-
decomposition, many efficient techniques have been developed
over the past two decades from different perspectives, such as
computing only a few eigenvectors or a subspace basis, approx-
imating the eigenvectors or basis, and recursively updating the
eigenvectors or basis (see [15]–[18] and references therein).

Recently, computationally simple subspace-based methods
have been proposed for estimating the directions of narrow-band
signals efficiently [19]–[22], where the need for computation
of EVD/SVD is avoided. The representative methods are the
bearing estimation without eigendecomposition (BEWE) [19],
propagator method (PM) and orthonormal propagator method
(OPM) [57], [20], and subspace methods without eigendecom-
position (SWEDE) [21], in which the exact signal/noise sub-
space is easily obtained from the array data based on a parti-
tion of the array response matrix. The PM, in particular, has
been well studied in various aspects in the recent decade [20],
[37], [58]–[65]. For improving the estimation performance, the
OPM was proposed to orthonormalize the noise subspace basis
in [20], and two variants of OPM were presented to estimate
the propagator (or a part of that) by using three (or two) sub-
array covariance matrices of three nonoverlapping subarrays to
eliminate the noise effect in [59], [64], and [65] in a similar
way to the SWEDE. The statistical performances of the PM and
OPM were analyzed and compared with the other “linear” sub-
space-based methods such as the BEWE and SWEDE in [60],
[63], [64], and [65]. In addition, the real-time implementation
of the OPM was considered, where two gradient-based algo-
rithms and a recursive least squares (RLS)-based algorithm were
presented for direction finding and tracking in [61], [62], [37],
and the convergence and optimal step-size of the gradient-based
adaptive algorithm were studied based on a first-order approx-
imation for small step-size (i.e., slow variations with time) in
[61] and [62]. Furthermore, the least squares (LS)-type online
implementation of the SWEDE was considered in [21], and an
adaptive algorithm based on the projection approximation sub-
space tracking with deflation (PASTd) [18] and the approxi-
mate Newton iteration for direction updating was proposed in
[66B]. However, the performances of these simple subspace-
based methods and algorithms [19]–[22], [37], [57]–[66] de-
grade severely when the incident signals are coherent (i.e., fully

1053-587X/$20.00 © 2005 IEEE
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correlated), and/or the signal-to-noise ratio (SNR) is low and
the data length is short. The sensor array is usually arranged in
a regular and structured geometry, and this special geometry is
useful in developing computationally efficient direction estima-
tion methods [24]. By exploiting the array geometry of a uni-
form linear array (ULA) and its shift-invariance property, we
proposed a subspace-based method without eigendecomposi-
tion (SUMWE) for estimating the directions of the uncorrelated
and correlated signals impinging on the ULA [23]. We also pre-
sented an LS-type adaptive algorithm for the DOA estimation of
coherent cyclostationary signals [38]; regrettably it is based on
the special temporal property of signals, and its computational
load is heavy.

In this paper, we address the problem of adaptive DOA esti-
mation and tracking of narrow-band signals in a computation-
ally efficient way and propose an adaptive bearing estimation
and tracking (ABEST) algorithm for estimating and tracking the
uncorrelated and correlated signals impinging on a ULA based
on the SUMWE [23], where a linear operator is obtained from
the array data to form a basis for the null space by exploiting
the array geometry and its shift invariance property. Because
the direction estimator is a complicated nonlinear function of
the received array data, the real-time implementation of a sub-
space-based method involves the estimation of the signal/noise
subspace and the minimization of a cost function for direction
finding. Inspired by the computational simplicity and easy im-
plementation of the least-mean-square (LMS) algorithm and the
fast tracking capability of Newton method [25]–[28], [68], we
use the LMS or normalized LMS (NLMS) algorithm for the null
space estimation and use the approximate Newton method to up-
date the direction finding in the ABEST algorithm. The ABEST
algorithm inherits the advantages of the SUMWE: the reduced
computational load, a less restrictive model of additive noise,
and a remarkable insensitivity to the correlation of the incident
signals. Although the behaviors of the LMS algorithm and its
variants have been analyzed extensively in the adaptive filtering
literature (e.g., [25]–[36] and references therein), these studies
were generally done under different assumptions and with ap-
proximations to simplify the analysis and produce reliable re-
sults. One of the most common assumptions is the independence
between the additive noise and input data. However, in the up-
dating equation of the ABEST algorithm, the “weight” (i.e., the
linear operator) is in the form of a matrix, and there is a correla-
tion between the “additive noise” and “input data” that involve
the instantaneous correlations of the received array data (and
additive noise). In this paper, the laborious transient analyses of
the LMS and NLMS algorithms are studied, and the step-sizes
that guarantee the mean and mean-square stabilities are derived
explicitly. Furthermore, the analytical expressions of the mean-
square error (MSE) and mean-square deviation (MSD) learning
curves of the LMS algorithm are clarified, and an analytical
study of the LMS stability is performed for the case of a single
signal. The estimation performance of the ABEST algorithm
is demonstrated in stationary and nonstationary environments.
The simulation results show that the ABEST algorithm is com-
putationally simple and has good adaptability and tracking ca-
pabilities and that there is relatively good agreement between
the theoretical analyzes and practical results.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Data Model and Basic Assumptions

We consider a ULA of identical and omnidirectional sen-
sors with adjacent spacing , and we assume that narrow-band
signals with the center frequency are in the field far
from the array and impinge on the array from distinct bearings
(i.e., directions) . Under the narrow-band assumption,
the received noisy signal at the th sensor can be expressed
as [1]–[12], [19]–[24]

(1)

(2)

where is the noiseless received signal, is the ad-
ditive noise, , , is the
propagation speed, and the DOAs are measured relative
to the normal of array. The received signals can be re-expressed
more compactly as

(3)

where , , and are the vectors of the received
signals, the incident signals, and the additive noise given by

,
is the array response matrix given by

with
, and denotes

transpose.
We make the following basic assumptions about the data

model, which are similar to those introduced in [23].

1) The array is calibrated and the array response ma-
trix is unambiguous, i.e., the array response
vectors are lin-
early independent for any set of distinct directions

. Equivalently, the matrix
has full column rank.

2) Without loss of generality, the signals are all co-
herent so that they are all some complex multiples of a
common signal ; then, under the flat-fading multi-
path propagation, they can be expressed as [1], [3], [12],
[39]–[44]

for (4)

where is the unknown complex attenuation coefficient
with and .

3) For the simplicity of theoretical performance analysis,
the incident signal is a temporally complex white
Gaussian random process with zero-mean, and the vari-
ance given by

(5)

where , , and denote the expectation, the
complex conjugate, and Kronecker delta.
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4) The additive noise is a temporally and spatially
complex white Gaussian random process with zero-mean
and the following covariance matrix:

(6)

where , , and indicate the identity
matrix, the null matrix, and the Hermitian transpose,
and the additive noise is uncorrelated with the incident
signals.

5) The number of incident signals is known, and it satisfies
the inequality that .

Remark 1: Although the incident signals are assumed to be
all coherent, the proposed ABEST algorithm can be extended
to the case of partly coherent or incoherent signals (cf. [23]).
The identifiability condition that guarantees the uniqueness of
direction estimation is that , which is less strict than
the necessary condition with probability one [45].
Furthermore, if the number of incident signals is unknown, it
can be estimated by some proposed techniques (see [12] and
references therein).

Remark 2: The tracking of the crossing directions is not con-
sidered in this paper. In this situation, we would need to intro-
duce a dynamic model of the incident directions. Moreover, an
additional procedure based on some kinematic parameters such
as bearing velocities and accelerations could be useful in pre-
dicting the crossover points on the trajectories and blocking the
tracking procedure during crossover intervals [46], [47]. Such
an elaborate procedure is currently under investigation.

In this paper, we address the adaptive estimation and tracking
of the DOAs of coherent signals in a computationally simple
way. An efficient subspace-based algorithm is developed, and
the statistical properties of the LMS and NLMS algorithms used
for the null space estimation are analyzed in details.

B. Review of SUMWE

The SUMWE is a computationally efficient and batch method
for estimating the constant directions of the incident signals
[23]. Here, this method is briefly summarized, where the DOAs
are assumed to be time invariant (i.e., ), and
is denoted as for simplicity.

Under the basic assumptions, from (3), we obtain the array
covariance matrix as

(7)

where . Due to the coherency between
the incident signals, the source signal covariance matrix is
singular (i.e., rank , when ). By defining the
correlation between the signals and as

, where , we find that the diagonal
elements of are affected by the noise.

Now, we divide the full array into overlapping subarrays
with sensors in the forward and backward directions [39], [40],
where , and the (conjugate) signals in the th

forward/backward subarray can be expressed in a compact form
for [12], [23], [43]

(8)

(9)

where ,

, and is the
submatrix of consisting of the first rows with the
column . By
defining the correlation vectors as ,

, , and
, after some manipulations, we obtain

four Hankel correlation matrices [23]

(10)

(11)

(12)

(13)

where
,

, ,
, , ,

,
and is the submatrix of con-
sisting of its first rows with the column

.
Clearly, the correlation matrices , , , and

in (10)–(13) are not affected by the additive noise,
, and , where is

an counteridentity matrix. These Hankel
matrices can be formed simply from the elements
and in the th and first columns and of array
covaraince matrix in (7) except for the autocorrelations

and , which contain the noise variance , where
, and . Furthermore,

the ranks of these matrices equal ; that is, the dimension of
their signal subspace equals the number of coherent signals.

Because it is assumed that , we can partition the
matrix , and hence the correlation matrices in

(10)–(13), into two submatrices as

(14)

(15)
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Under the assumptions for the data model, the rows of can be
expressed as a linear combination of the rows of [20], [23],
[57], [58]

(16)

where denotes a linear operator. Hence, from
(10)–(13) and (15), the relationship between and can be
expressed as that between the submatrices of , , , and

as

i.e., (17)

where , ,
, and . Clearly, the

columns of matrix form a basis for the null space of
.

Thus, when the finite array data are available, the directions
can be estimated based on (17) without any eigendecom-

position by minimizing the cost function

(18)

where

, ,

, and denotes an estimate of the quantity .

III. ADAPTIVE BEARING ESTIMATION AND

TRACKING ALGORITHM

The computational load of the batch implementation of
SUMWE is dominated by the computation of estimated corre-
lation vectors and , the estimation of orthogonal projector

(i.e., linear operator ), and the minimization of cost
function [23]. Hence, these major steps should be carried
out efficiently, when the SUMWE is implemented in a real-time
manner. Now, we consider the SUMWE-based ABEST algo-
rithm for estimating the constant directions and for tracking the
slowly time-varying directions.

A. LMS Algorithm for Null Space Estimation

First, in the case of constant directions of the incident signals,
we can write the Hankel correlation matrices , , , and

in (10)–(13) at the instant by using the instantaneous cor-
relations

(19)

(20)

By letting , , , , , ,
, and be the corresponding submatrices of the

Hankel matrices in (19) and (20), from (1), (8), (9), (14), and
(16), we get the following relation between these instantaneous
correlation matrices after some simple algebraic manipulations:

(21)

where ,
, ,

,

, and
. Note that the linear operator is inde-

pendent of the correlation matrices and , whereas
the “additive noise” is correlated with and
due to the presence of and in . Thus, from
(21), we can find that the estimation of linear operator at
the instant is reduced to the minimization of the time-varying
cost function given by

(22)

where the matrix is the estimation error
given by

(23)

while and denote the square of the Frobenius norm
and the trace operation.

By defining the derivative of a function with re-
spect to a complex variable vector and
the gradient vector of as (e.g., [27] and [48])

and , where , after some ma-
nipulations (cf. [48]), we can obtain the instantaneous gradient
matrix of in (22) with respect to the linear operator

(24)

Thus, we can easily obtain the LMS algorithm for updating the
linear operator [25]–[28]

(25)

where is a positive step-size, which should be chosen ap-
propriately to guarantee the stability (see Section IV for de-
tails). Henceforth, we also call the linear operator as the weight
and assume that the current weight matrix is statisti-
cally independent of the current correlation matrices and

as usually assumed in the adaptive filtering literature (cf.
[25]–[36]).

Furthermore, by using the matrix inversion lemma (e.g., [2],
[27], and [68]), from (18), we can obtain the instantaneous or-
thogonal projector onto the null space [23]

(26)
where . Although the computa-
tional complexity is reduced for the calculation of , where
a matrix is inversed instead of an

matrix , this inversion may
be unsuitable for the real-time application. Due to the compu-
tational expediency of the Householder transformation (cf. [13]
and [48]), which is a reflection operation done to annihilate all
the elements of a column except for the first one, we perform the
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QR decomposition of using the Householder
transformation (see Appendix A for details)

(27)

where and are the unitary matrix and upper
triangular matrix. Then, the instantaneous orthogonal projector

can be obtained

(28)
where denotes the inversion operation of with
a simple back-substitution, because is an upper triangular
matrix (see Appendix B for details).

B. NLMS Algorithm for Null Space Estimation in
Nonstationary Environment

The LMS algorithm in (25) has good convergence in a sta-
tionary environment, and its stability and rate of adaptation are
governed by the step-size , whose stability region generally
depends on the statistics of the signals (e.g., incident directions
herein) and on the additive noise. Because the step-size im-
pacts the performance in a rather complicated way, it is very
difficult in practice to choose an appropriate step-size to track
the time-varying directions [49], though some variable step-size
methods have been proposed (e.g., [50]). As normalization has
been used as a heuristics method for stability in numerical anal-
ysis and optimization, the NLMS algorithm can provide im-
proved performance while maintaining the simplicity and ro-
bustness of the LMS algorithm with a fixed step-size (cf. [27],
[28], and [56]). Here, we consider the NLMS algorithm for es-
timating the linear operator , when the directions
are slowly time-varying (relative to the sampling rate [21]).

The NLMS algorithm can be viewed as the solution to the
following optimization problem [27]: minimizing the squared
Frobenius norm of the change
under the constraint . We can define the
time-varying cost function as

(29)
where is a Lagrange matrix, and
denotes the real part of the bracketed matrix. By differenti-
ating with respect to the weight and letting
this differentiation be zero (i.e.,

), we get the optimum weight

(30)

In view of the constraint , from (30) and
(23), we easily obtain

(31)

when the matrix is invertible. Then, by sub-
stituting (31) into (30) to eliminate the Lagrange matrix and in-
troducing a positive step-size to control the change in

from one iteration to the next, we obtain the NLMS algorithm
for updating of linear operator

(32)

where the update term is premultiplied (normalized) by the in-
versed time-varying covariance matrix of the
“input” matrix , whereas the stability region of step-size

is independent of the signal statistics and given by
(see Section IV for details).

Furthermore, with the SVD of the matrix given
by [13], [23]

(33)

where ,
,

with , we readily
find that the term (i.e., ) of the

LMS algorithm in (25) is replaced by (i.e.,
) of the NLMS algorithm in (32). Thus,

we can view the NLMS algorithm as the LMS algorithm with
a time-varying step-size diagonal matrix ,
whereas the latter has a constant step-size matrix .

The normalization makes the NLMS algorithm less sensitive
to the variations in matrix at the cost of increased compu-
tational complexity, where the matrix inversion is neces-
sitated. However, this difficulty can be alleviated by using the
QR decomposition given by

(34)

where and are the unitary matrix and upper tri-
angular matrix, respectively. Consequently, from (34) and (32),
the NLMS algorithm can be rewritten as

(35)

Then, the instantaneous orthogonal projector can be esti-
mated using (27) and (28).

Remark 3: When the matrix is small, the numerical
instability may arise due to the small singular values
[12]. Hence, we can modify (32) by introducing a sufficiently
small and positive regularization parameter

(36)
Thus, we call (36) the -NLMS algorithm.

C. Approximate Newton Method for Direction Finding

Now, we consider the online implementation of direction
finding based on the minimization of the cost function
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in (18). As discussed in [23], the first-order expression for the
estimation error of direction can be obtained as

(37)

where
Then, by substituting

the orthogonal projector obtained by the LMS or NLMS
algorithm into (37) to replace the estimated and true orthogonal
projectors and , we get the approximate Newton itera-
tion formula for direction updating (e.g., [25]–[28], [21], [66],
and [68])

(38)

D. Online Bearing Estimation and Tracking Algorithm

Based on the above analyses of null space estimation and di-
rection finding, we can summarize the online ABEST algorithm
as follows.
1) Calculate the instantaneous correlation

vectors between and and
between and as

(39)

where , and
.

flops
2) Form the Hankel correlation matrices

, , , and from and
as

(40)

(41)

where

,
, and denotes the Hankel

operation.
3) Calculate the instantaneous estimation

error by using (23).
flops

4) LMS: Update the linear operator by
using (25).

flops
NLMS: Perform the QR decomposition shown
in (34), and update the linear operator

by using (35).

flops
5) Calculate the QR decomposition of by

using (27) with Appendix A.
flops

6) Calculate the orthogonal projector
by using (28) with Appendix B.

flops

7) Update the estimates by using the
approximate Newton iteration shown in
(38).

flops

The computation complexity of each step above is roughly in-
dicated in terms of the number of flops, where a flop is defined as
a floating-point addition or multiplication operation as adopted
by MATLAB software. The NLMS algorithm needs approxi-
mately more flops than the LMS algorithm.
Furthermore, the LMS and NLMS algorithms are initialized by

, and the first snapshots of the
received data are accumulated for the offline SUMWE [23] to
provide the initial values of directions for the Newton
method [21].

Remark 4: Like the SUMWE, the proposed ABEST algo-
rithm can accommodate a more general noise model of the spa-
tially correlated noise if we choose appropriate subarrays (i.e.,
instantaneous cross correlations of the array data) (see [23] for
reference).

Remark 5: In practice, the subarray size should be chosen
appropriately because the information on the number of sig-
nals is unavailable in some applications. When the number
of signals is presumed as , if there is an error in this pre-
sumption, the estimation performance of the ABEST will be
affected. If with or , the ranks of
the matrices , , , and in (10)–(13)
will be smaller than , and apparently, the dimensions of signal
subspace of these matrices cannot be restored to the number of
coherent signals [12], [43]. Consequently, the
linear operator in (17) cannot be used to estimate the di-
rections of coherent signals accurately, and it will severely de-
grade the estimation performance of the ABEST algorithm. If

and satisfies the condition , the
matrices , , , and are rank deficient,

and the ordinary LS estimate from (17)
becomes numerically unstable [12], [43]. However, due to the
finite number of snapshots, the absence of additive noise in
the array data will alleviate the ill-conditioning in the estima-

tion to a certain extent [12], where
is used in (18) for direction estimation from the finite and

noisy array data. Thus, the ABEST algorithm still holds in this
case by choosing the step-size of the LMS/NLMS algorithm
properly. From Remark 1, we can see that the maximum de-
tectable number of incident signals is . Thus, if the
number of signals is unknown, we can choose a conservative
value of the number of incident signals (i.e., subarray size) as

, where the inequality condition
is satisfied as well, where denotes the largest integer smaller
than or equal to .

Furthermore, by estimating the matrices ,

, , and from the finite array data with

and by performing the QR decomposition of the matrix as

, where , the number of inci-
dent signals can be determined accurately by using the elements

of [75] (yet it is beyond the scope of this paper).
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TABLE I
COMPARISON BETWEEN THE COMPUTATIONAL COMPLEXITY OF SIMPLE ONLINE IMPLEMENTATION OF BENCHMARK METHODS

WITH EVD AT EACH INSTANT AND THAT OF THE ABEST ALGORITHM IN MATLAB FLOPS AT EACH INSTANT

Fig. 1. Relative efficiency ratios between the estimated number of MATLAB
flops required by the (a) LMS- and (b) NLMS-based ABEST algorithm and that
needed by the MUSIC and SS-based MUSIC in terms of the number of sensors
at each instant (p = 2).

Remark 6: Basically, a simple and direct online implemen-
tation of the benchmark methods of the MUSIC (for incoherent
signals case) [6] and spatial smoothing (SS)-based MUSIC [39]
(for the coherent signals case) with eigendecomposition involve
three major steps at each instant:

1) computation of the time-varying array covariance ma-
trix with rank-1 updating (and calculation of spatially
smoothed subarray covariance matrix for the SS-based
MUSIC);

2) estimation of noise subspace with EVD;
3) updating of the estimated directions with approximate

Newton iteration.
The computational complexity of each step in MATLAB flops
at each instant is roughly shown and compared with that of the
ABEST algorithm in Table I, where is the subarray size used
in the SS-based MUSIC with and
(see [39] for details), while or
when the LMS or NLMS is employed in the ABEST al-
gorithm. By defining the total numbers of MATLAB flops
required by the MUSIC, SS-based MUSIC, and the ABEST
algorithm at each instant as , , and ,
respectively, the relative efficiency ratios
and in terms of the number of sensors are

shown in Fig. 1 based on some examinations, where ,
is varied from to , the subarray size is

chosen as round [74], and round denotes
the round-off operation. Obviously, is smaller than

and , and these quantitative comparisons
show that the ABEST algorithm is computationally efficient
than the (SS-based) MUSIC method with EVD.

IV. STATISTICAL ANALYSIS

A. Mean Behavior and Mean Stability of LMS

First by defining the weight-error as ,
from (21), (23), and (25), we can rewrite the weight adaptation
in terms of the weight-error matrix

(42)
Under the assumption of independence between and

, by taking the expectation on both sides of (42) and using
the results shown in Appendix C, we easily get

(43)

where

(44)

(45)

with , ,
, and . The recursion

in (43) describes the mean behavior of the weight-error matrix
, and its first term is the natural component that governs

the convergence of in (25).
Theorem 1: The stability condition of the LMS algorithm

in the mean sense is that the step-size satisfies the double in-
equality

(46)

where denotes the largest eigenvalue of the bracketed
matrix.
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Proof: From (43), the LMS algorithm converges in the
mean sense if and only if the magnitudes of all eigenvalues of
the matrix are strictly less than one (e.g., [25]–[28]),
i.e., for all , where are the eigenvalues of

matrix , and because in (44) has full rank
[23]. Equivalently, the convergence condition in the mean sense
is given by

for (47)

Thus, the condition in (46) is established readily.
In addition, a sufficient condition in the mean sense is usually

given by , where [2].
Furthermore, from (43), the steady-state mean of the weight-
error is given by . In view of the
initialization of ABEST that (i.e.,

), we readily get when is
sufficiently small and , so the estimated linear operator

is asymptotically unbiased.
Remark 7: We could get a modified LMS (MLMS) algorithm

by setting

(48)

where . We can see that (48) is the LMS algorithm
with a time-varying step-size .

B. Mean-Square Analysis of LMS

Now, we examine the mean-square behavior of the LMS algo-
rithm in (25). Because the true weight and the estimated one

are independent of , the weight-error is
also independent of . By postmultiplying (42) by its Her-
mitian transpose and by taking expectation on both sides, we
get [51]

(49)

Because of the correlation between the matrices and
(i.e., ) and the structure of the matrices

and , which involves the instantaneous correlations
of array data (and additive noise), it is mathematically for-
midable to evaluate the expectation in
(49). From the results in Appendices D and E and by letting

for convenience, we obtain the recur-

sion of the mean-squared weight-error matrix

(50)

where are given in Appendix E. Clearly, this re-
cursion describes the transient behavior of the LMS algorithm
with (43). Although the highly nonlinear relation between
and in (50) makes the convergence condition in the
mean-square sense invisible, we can obtain the following the-
orem on the mean-square stability.

Theorem 2: The step-size convergence condition that guar-
antees the mean-square stability of the LMS algorithm in (25)
is given by (51), shown at the bottom of the page, where

(52)

(53)

(54)

(55)

(56)

in which ,
, ,

, , and
denotes the Kronecker product. Here, we assume that the real
and positive eigenvalues of the matrices in (54)
(i.e., and ) exist; if they do not, the
corresponding condition should be removed from (51).

Proof: See Appendix F.
Therefore, by combining the analyses of the exponential

convergences in the mean and mean-square senses, where the
former suffices for the mean weight-error to equal zero and the
latter ensures a steady-state error with finite variance, from (46)
and (51), we can obtain the step-size convergence condition

(51)
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that guarantees both the mean and mean-square stabilities of
the LMS algorithm as in (57), shown at the bottom of the page.

Remark 8: The ordinary differential equation (ODE) method
[67]–[69] is another approach for studying the performance of
adaptive filtering algorithm without making any assumptions
about the statistical independence of input data, where the dis-
crete-time difference equation of stochastic algorithm is reduced
to a continuous-time deterministic differential equation, and the
convergence and stability properties of the resulting continuous-
time system are often analyzed by using the well-studied Lya-
punov stability theory [28], [67]–[69]. Unfortunately, like the
averaging analysis [26], the ODE method is only applicable
to study the asymptotic convergence behavior of adaptive fil-
tering algorithm for a sufficiently small step-size (or a vanish-
ingly small one) case (so that some approximations become pos-
sible) and does not give information on the transient behavior
of the adaptive algorithm (e.g., [70]–[73]). In this paper, we do
not expand on this stability issue, since one of our objectives is
to derive the convergence condition of step-size that guarantees
the mean and mean-square stabilities. Furthermore, albeit in a
rather complex fashion, the derived exact expectation analyses
hold without any approximations or assumptions, except for the
assumption that the current weight matrix is statisti-
cally independent of the current correlation matrices and

, but this assumption is justified in the situation consid-
ered herein in light of (21) (cf. [27]).

C. Learning Curves of LMS

Here, we study the MSE and MSD learning curves of the
LMS algorithm, which provide the measures of the rate of con-
vergence, the steady-state error, and the effect of step-size.

First, from (21) and (23), the estimation error
matrix is rewritten as

(58)

Then, by using the independence assumption for and
, we get the MSE learning curve of the LMS algorithm

[27], [28]

(59)

In a fashion similar to the evaluation of expectation
in Appendix C, from (E3) and (E4), we

obtain from some manipulations

(60)

Then, by substituting (44), (45), and (60) into (59) and using the
identity for two matrices with compatible
dimensions, we get the MSE curve

(61)

where the first- and second-order weight statistics

and of the weight-error can
be determined numerically using the recursions (43) and (50).
From (61) and the result of Section IV-A, the steady-state MSE
(SSMSE) is given by

(62)

Furthermore, from the recursion of the mean-squared
weight-error matrix in (50), we easily get the MSD learning
curve of the LMS algorithm [27], [28]

(63)

D. Stability Analysis of NLMS

Because of the high nonlinearity of the NLMS algo-
rithm in (32) with the presence of normalization factor

and of the correlation between the matrices
and (i.e., ) with their structure, the mathe-

matical analysis of the NLMS algorithm is very complicated.
Here, we thus only examine the convergence condition for the
NLMS algorithm in the case of constant directions.

From (32), (21), and (23), after some simple manipulations,
we easily obtain

(64)
Then, the expectation of the NLMS weight-error matrix is given
by

(65)

where . Furthermore,
in a way similar to (49) in the LMS case, from (64), we can get
the recursion of mean-square weight-error of
the NLMS algorithm

(66)

(57)
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TABLE II
RESULTS OF EXPECTATION �F FOR i; k = 1,2,3,4, AND l; t = 1; 2; . . . ; p

TABLE III
RESULTS OF EXPECTATION F FOR i; k = 1,2,3,4, AND l; t = 1; 2; . . . ; p

where
. Although it is a thorny task to

evaluate the expectations in (65) and in (66), we readily
find that the stability region of step-size is independent of the
signal statistics.

Theorem 3: The convergence of the NLMS algorithm in the
mean and mean-square senses is guaranteed for the step-size
satisfying the condition .

Proof: From (65) and (66), apparently the NLMS algo-
rithm converges if and only if the step-size satisfies the in-
equality . Thus, the stability condition is
obtained straightforwardly, where the knowledge of signal sta-
tistics is not needed.

From (65), we also get the steady-state mean of the weight-
error as , and the NLMS algorithm in
(32) is asymptotically unbiased for the noiseless array data.

Remark 9: Under the noiseless scenario (i.e., ), we
can see that is the optimum step-size for the fastest con-
vergence of the NLMS algorithm.

E. An Analytical Study of LMS Stability

To gain insight into the convergence condition of the LMS
algorithm discussed in Sections IV-A and IV-B, here we focus
on the case of one signal with constant direction and study the
LMS stability in more details.

In this case (i.e., and ), we readily have

(67)

(68)

(69)

and , so the linear operator becomes a
1 vector quantity given by , and the
LMS algorithm can be rewritten as

(70)

where

(71)

(72)

with

and
, while . Fur-

thermore, the correlation vectors , , , and , and
matrices , , and are reduced to scalar quantities
given by

(73)

(74)

By some simple calculations, from (44), (C5), (73), and (74),
we obtain

(75)

Moreover, by substituting (73) and (74) into the expectations
shown in Tables II and III, we can get the expectations

and as

(76)

(77)

(78)

(79)
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Fig. 2. Stability bounds of LMS step-size versus the SNR for several signal
power in the case of one incident signal.

(80)

(81)

(82)

From (F3), (52), (55), (56), (F14), and (75)–(82) and some
straightforward calculations, we obtain

(83)

(84)

(85)

Therefore, from (43) and (47), the convergence of LMS is
governed by in the mean sense, and the
step-size stability region is determined by ,
where . From (50), (F3), and (F12), the mean-
square stability is controlled by , and
the convergence condition is given by , where

, while is the optimum step-size
for the fastest convergence in the noiseless case. It follows from
(85) that , so the step-size stability bound in both
the mean and mean-square senses is obtained as

.
Furthermore, by setting SNR , we get the stability

bound in terms of the SNR as shown in Fig. 2 for
0.01, 0.1, 1, 2, and 10. From (75) and (83)–(85), we easily get

when SNR 0 dB (i.e., ). Ob-
viously, for a given signal power , decreases mono-
tonically with the decreasing SNR when SNR 0 dB, while
it quickly nears the supremum when SNR 0 dB;
for a given SNR, decreases monotonically with an in-
creasing .

V. NUMERICAL EXAMPLES

We evaluate the performance of the proposed ABEST al-
gorithm and demonstrate the validity of the analytical results
through several numerical examples. The ULA with sensors

Fig. 3. MSE learning curves of LMS algorithm for null space estimation in the
case of one signal without additive noise (solid line: ensemble-averaged MSE;
dotted line: theoretical MSE for (a) � = 0:25, (b) � = 1=12, (c) � = 1=24,
and (d) � = 0:01) for Example 1 (M = 16, r = 1, and � = 10 ).

is separated by a half-wavelength, and the SNR is defined as
the ratio of the power of the source signals to that of the ad-
ditive noise at each sensor. In the simulations, the first

snapshots of the array data are accumulated for the offline
SUMWE [23] to provide the initial values of estimated direc-
tions for the Newton iteration in (38), the LMS and
NLMS algorithms in (25) and (35) are initialized by

, and the online algorithm starts at the instant
. The simulation results shown subsequently are obtained

by ensemble-averaging over 1000 independent trials.

A. Example 1—Verification of Stability Analysis

First, we examine the stability analysis of the LMS and
NLMS algorithms for null space estimation. The number of
sensors is , and one signal impinges the array along

10 with the signal power . The additive noise is
assumed to be absent. The step-size of the LMS algorithm is
set to , 1/12, 1/24, and 1, while that of the NLMS
algorithm is chosen as 2, 1.5, 1, and 0.1.

From the analyses described in Section IV, the stability
bounds of the LMS step-size in the mean and mean-
square senses are and

, respectively, and the optimum step-size is
. Figs. 3 and 4 show the ensemble-aver-

aged MSE learning curves of the LMS and NLMS algorithms,
respectively, which are computed by averaging the sample
curves of trials (here ) (cf. [35]). From Fig. 3,
we can see that there is an almost perfect agreement between
the LMS theoretical MSE learning curve given by (61) and
the simulation results for and , which are
smaller than the stability supremum . These simulation
results demonstrate that the convergence rate depends highly
on the step-size and that the fastest convergence is achieved
with the optimum step-size . However, there
are appreciable differences between the behaviors of the en-
semble-averaged curves and those of the theoretical ones for
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Fig. 4. Ensemble-averaged MSE learning curves of NLMS algorithm for null
space estimation in the case of one signal without additive noise ((i) �� = 2,
(ii) �� = 1:5, (iii) �� = 1, and (iv) �� = 0:1) for Example 1 (M = 16, r = 1,
and � = 10 ).

and , which are out
of the stability region , where the averaged
curve coincides well with the theoretical one during the initial
time instants and deviates from it thereafter, and the conver-
gence occurs even though the divergence is predicted by the
mean-square stability analysis. These phenomena essentially
conform with the learning mechanism clarified and studied
in [35], where a combination of the mean-square stability
and almost sure (a.s.) stability would be a more appropriate
performance measure, especially for larger step-sizes (see [35]
and [28] for more details).

In addition, Fig. 4 shows that the theoretical results for the
NLMS stability better match the simulation results, in which the
convergence of the NLMS ensemble-averaged MSE learning
curves is guaranteed for the step-size satisfying ,
and the learning curve converges fastest with . Further-
more, the simulation results show that the convergence condi-
tion for the NLMS algorithm is independent of the statistics
of the incident signal and that the NLMS algorithm converges
faster than the LMS one. The behaviors of the MSD learning
curves of the LMS and NLMS algorithms are similar to that of
the MSE curves and are omitted here.

B. Example 2—Adaptive Estimation of Constant Directions

We then assess the estimation performance of the proposed
ABEST algorithm when the directions of the incident signals
are constant. Two coherent signals with equal power come
from 10 and 20 , where , and the SNR is 20
dB. The number of sensors is , and the step-sizes of the
LMS and NLMS algorithms are set to and .

The bounds in (70) are evaluated and given by
, , and

, while the real and
positive eigenvalues of and do not exist. Hence, the
stability bound on the step-size is , where

. The ensemble-averaged MSE learning

Fig. 5. MSE learning curves of null space estimation in the case of two
coherent signals with constant directions (solid line: LMS ensemble-averaged
MSE; dotted line: LMS theoretical MSE; dashed line: LMS steady-state MSE;
and dashed–dotted line: NLMS ensemble-averaged MSE) for Example 2
(M = 16, SNR = 20 dB (r = 1), � = 10 , � = 20 , � = 10 , and
�� = 0:1).

Fig. 6. (a) MSD learning curves of null space estimation and (b) root-MSD
learning curves of direction estimation in the case of two coherent signals with
constant directions (solid line: LMS ensemble-averaged MSD/root-MSD;
dotted line: LMS theoretical MSD; and dashed–dotted line: NLMS
ensemble-averaged MSD/root-MSD) for Example 2 (M = 16, SNR = 20 dB
(r = 1), � = 10 , � = 20 , � = 10 , and �� = 0:1).

curves of the LMS and NLMS algorithms are shown in Fig. 5,
where the LMS theoretical MSE curve given by (61) and
the SSMSE given by (62) are also depicted, in which the
steady-state mean-squared weight-error matrix in (62)
is evaluated by ensemble-averaging. As shown in Fig. 5, the
theoretical results on the MSE curve and SSMSE of the LMS
algorithm are in better agreement with the simulation results,
while the ensemble-averaged MSE curve of the NLMS algo-
rithm has faster convergence than that of the LMS algorithm,
but it has a slightly larger steady-state MSE. Furthermore, the
MSD learning curves of the LMS and NLMS algorithms are
shown in Fig. 6(a). Obviously, the LMS ensemble-averaged
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Fig. 7. Averaged direction estimates for tracking time-varying directions of
two coherent signals (solid line: LMS; dashed–dotted line: NLMS; and dotted
line: actual values) for Example 3 (M = 16, SNR = 20 dB (r = 1), � (n) =
15 + 0:002 (n� 1), � (n) = 5 sin(2�(4� 10 n+ 2:25� 10 n )),
� = 2 � 10 , and �� = 1).

MSD curve is very close to the theoretical one, and the NLMS
ensemble-averaged MSD curve converges faster than that of
the LMS algorithm but with a larger steady-state MSD.

To measure the overall performance of estimating the direc-
tions, we define a root-MSD learning curve of estimated direc-
tions (RMSDD) as

(86)

where is the estimate obtained in the th trial at the in-
stant , and is the number of trials. The learning
curves of the LMS- and NLMS-based ABEST algorithms are
plotted in Fig. 6(b), where we can see that the NLMS-based
algorithm provides better direction estimation than the LMS-
based one with faster convergence and less fluctuation in this
empirical scenario.

C. Example 3—Direction Tracking of Coherent Signals

Next, we evaluate the performance of the proposed
ABEST algorithm for tracking time-varying directions of
two coherent signals. The simulation conditions are sim-
ilar to those of Example 2, except that the incident di-
rections are linearly and nonlinearly time-varying, respec-
tively, as 15 and
5 , and the step-sizes
are and .

The direction estimates and obtained by the
LMS- and NLMS-based ABEST algorithm are shown in Fig. 7,
and the root-MSD learning curves corresponding to the di-
rection estimates are plotted in Fig. 8. While it is difficult to
set an appropriate LMS step-size to track two time-varying
directions with different dynamics accurately and promptly,
the NLMS step-size can be easily set, enabling the incident
directions to be well tracked. The estimates obtained with the

Fig. 8. Root-MSD learning curves of direction estimation for tracking
time-varying directions of two coherent signals (solid line: LMS; and
dashed–dotted line: NLMS) for Example 3 (M = 16, SNR = 20 dB (r = 1),
� (n) = 15 + 0:002 (n � 1), � (n) = 5 sin(2�(4� 10 n + 2:25�
10 n )), � = 2� 10 , and �� = 1).

NLMS-based algorithm are almost indistinguishable from the
actual values of the incident directions as shown in Fig. 7.
Furthermore, careful examinations show that a small NLMS
step-size satisfying should be used to achieve
good tracking with a small steady-state MSE from the noisy
array data in stationary and nonstationary environments, though
the NLMS stability region is given by , and the
fastest convergence occurs at in the noiseless case, as
shown in Fig. 4.

D. Example 4—Direction Tracking of Signals With
Time-Varying Correlation Factor

Here, we verify the performance of the ABEST algorithm
when the incident signals have a time-varying correlation factor.
Two signals arrive from 12 (constant) and
5 (nonlinear and slowly time-varying), where

, and the signal is a superposition of
two uncorrelated signals and with equal power
given by [23]

(87)

where denotes the correlation factor. The other simulation
parameters are similar to those in Example 2.

First, we consider the situation where two incident signals
are uncorrelated (i.e., ) and then we test the direction
estimation when the magnitude of the correlation factor
between 0 and 1 is

for
for
for
for
for

(88)
where the phase of the correlation factor is assumed to be zero
for simplicity. The direction estimates and the corresponding
root-MSE learning curves are depicted in Figs. 9 and 10.
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Fig. 9. Averaged direction estimates for tracking time-varying directions of
(a) two uncorrelated signals and (b) two signals with time-varying correlation
factor (solid line: LMS; dashed–dotted line: NLMS; dashed line: SWEDE; and
dotted line: actual values) for Example 4 (M = 16, SNR = 20 dB (r = 1),
� = 12 , � (n) = 5 sin(2�n=3000), � = 10 , and �� = 0:1).

Fig. 10. Root-MSD learning curves of direction estimation for tracking
time-varying directions of (a) two uncorrelated signals and (b) two signals with
time-varying correlation factor (solid line: LMS; dashed–dotted line: NLMS;
and dashed line: SWEDE) for Example 4 (M = 16, SNR = 20 dB (r = 1),
� = 12 , � (n) = 5 sin(2�n=3000), � = 10 , and �� = 0:1).

To compare the estimation performance, the online SWEDE
without eigendecomposition [21] is also carried out, where the
forgetting factor for rank-1 updating of the subarray covariance
matrices is , the null space is obtained in a QR–LS
way, and the Newton step for direction updating is not reiterated
at each time instant (see [21] for more details). In addition, the
number of MATLAB flops required by the SWEDE is roughly

,
which is larger than that needed by the proposed ABEST
algorithm. Clearly, the coherency of the incident signals leads
to significantly degraded SWEDE performance during the time
instant , and the different dynamics of the
incident directions make it difficult to optimize the step-size

Fig. 11. (a) Ensemble-averaged MSE learning curves of null space estimation
and (b) root-MSD learning curves of direction estimation for adaptive estimation
of two constant directions (solid line: LMS; and dashed–dotted line: NLMS) for
Example 5 (M = 16, SNR = 20 dB, � = 10 , � = 20 , �p = 7, � = 10 ,
and �� = 0:05).

for the LMS-based ABEST algorithm. However, as shown in
Figs. 9 and 10, the tracking performance of the NLMS-based
ABEST algorithm appears to be (significantly) less sensitive to
the signal correlations and direction dynamics than that of the
SWEDE and the LMS-based ABEST algorithm.

E. Example 5—Insensitivity to Presumed Number of Signals

Finally, we study the insensitivity of the proposed ABEST al-
gorithm to an overdetermined number of signals in the scenarios
similar to Examples 2 and 3. Here, the number of signals is pre-
sumed as , and the parameter in
Steps shown in Section III-D is replaced with .

First, we consider the adaptive estimation of two constant di-
rections, where the simulation conditions are similar to that of
Example 2, except that the step-sizes of the LMS and NLMS al-
gorithms are set to and . The ensemble-av-
eraged MSE learning curves and of null space es-
timation are plotted in Fig. 11(a), while the root-MSD learning
curves of direction estimation for the LMS and NLMS algo-
rithms are shown in Fig. 11(b). Then, we test the tracking of
time-varying directions of two coherent signals with the other
simulation parameters being identical to those in Example 3,
except that the step-sizes are and . The
averaged direction estimates and the corresponding root-MSD
learning curves for the LMS and NLMS algorithms are shown
in Fig. 12(a) and (b), respectively. From Figs. 11 and 12, we
can see that the ABEST algorithm with a presumed number
of signals (i.e., ) exhibits comparable esti-
mation and tracking performance to that with the true number
of signals in the stationary and nonstationary environment, as
shown in Figs. 5, 6(b), 7, and Fig. 8 by choosing the step-size of
the LMS/NLMS algorithm properly to dampen the noise effect.
Furthermore, careful examinations indicate that the stability re-
gion of step-size becomes narrower than that shown in (57) and
Theorem 3.
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Fig. 12. (a) Averaged direction estimates and (b) root-MSD learning curves of
direction estimation for tracking of two time-varying directions (solid line: LMS;
dashed–dotted line: NLMS; and dotted line: actual value) for Example 5 (M =
16, SNR = 20 dB, � (n) = 15 + 0.002 (n � 1), � (n) = 5 sin(2�(4 �
10 n+ 2:25� 10 n )), �p = 7, � = 1:2� 10 , and �� = 0:6).

VI. CONCLUSION

In this paper, a computationally efficient subspace-based al-
gorithm was developed for adaptive direction estimation and
tracking of uncorrelated and correlated narrow-band signals im-
pinging on a ULA. In this ABEST algorithm, the null space is
estimated using the LMS or NLMS algorithm, and the direc-
tions are updated using the approximate Newton method. The
ABEST algorithm has a reduced computational load, a less re-
strictive model of additive noise, and a remarkable insensitivity
to the correlation of the incident signals. The transient analyses
of the LMS and NLMS algorithms were studied, and the conver-
gence conditions for the step-size that guarantee the mean and
mean-square stabilities were explicitly derived. The analytical
expressions of the MSE and MSD learning curves of the LMS
algorithm were also clarified. The estimation effectiveness of
the ABEST algorithm was verified, and the theoretical analyses
were substantiated through numerical examples, and the simu-
lation results showed that the ABEST algorithm is computation-
ally simple and has good adaptation and tracking abilities.

APPENDIX A
COMPUTATION OF QR DECOMPOSITION WITH

HOUSEHOLDER TRANSFORMATION

We assume that is a complex matrix and set for
; otherwise, . The algorithm for QR decompo-

sition via Householder transformation is given as follows (e.g.,
[48]):

Initialization: and
for :

, sign
,

end

This algorithm requires about MATLAB
flops for .

APPENDIX B
BACK-SUBSTITUTION FOR INVERSION OF UPPER

TRIANGULAR SQUARE MATRIX

For a upper triangular complex matrix with the th
element as for while for , after
some simple manipulations, we find that the inverse matrix
of is also an upper triangular matrix with its th nonzero
element given by

for

for
(B1)

for . Furthermore, it takes nearly
MATLAB flops.

APPENDIX C
EVALUATION OF EXPECTATIONS AND

First, the Hankel matrices given by (19) and (20)
can be rewritten as ,

,
, and
, where

, ,
, and

. Under the assumptions for
the data model, we can obtain [51]

(C1)

for . Similarly, we get

(C2)

(C3)

(C4)

Thus, from (C1)–(C4), the expectation is
given by

(C5)

Next, we reexpress the matrices ,
, , and given by (21) as
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, ,
and , where

and
. By letting

, ,
, and ,

in a way similar to that for (C1), we can obtain

(C6)

(C7)

(C8)

(C9)

for . Furthermore, we easily get

(C10)
for . Hence, from (C6)–(C10), the expecta-
tion is given by

(C11)

APPENDIX D
EXPECTATION COMPUTATION OF PRODUCT OF SIX COMPLEX

VECTOR/MATRIX-VALUED GAUSSIAN RANDOM VARIABLES

Let , , , and be four 1 complex Gaussian random
vectors while and be two complex Gaussian
random matrices with zero-mean, and assume that these ma-
trices are independent from these vectors. First, by expressing
the matrix in terms of its column vectors ,
the th element of the product can be
rewritten as

(D1)

where and denote the th and th element of the
bracketed matrix and vector. By invoking the independence as-
sumption for the matrices and vectors, we get [51]

(D2)

Thus, we can obtain the expectation in ma-
trix notation

(D3)

Remark: The expectation formulas for the produce of the six
Gaussian random vectors given in [29], [30], and [53] are special
cases of the general expression (D3).

APPENDIX E
EVALUATION OF EXPECTATIONS

,
, AND

The evaluation of these expectations is rather burdensome, so
we omit some trivial details and only highlight the main steps
and results.

First, we evaluate some correlations invoking the additive
noise . Under the assumption for the additive noise
given in (6), we can get the expectations
and as (E1) and (E2), shown at the bottom
of the page, where denotes an matrix with unity
elements along the th ( ) upper (for ) or lower

for

for
for
for

for
for

(E1)

(E2)
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(for ) diagonal off the major diagonal and zeros elsewhere,
and their elements are given by [23], [54]

for
others

for
others.

Similarly, we easily obtain [54]

for

for
for

(E3)

(E4)

Furthermore by defining and as el-
ement-reversed versions of and , i.e.,

and
, we obtain [54]

(E5)

Then, under the assumption for the additive noise, we get (E6)
and (E7), shown at the bottom of the page, where rep-
resents an matrix with unity elements along the th
( ) upper (for ) or lower (for ) diagonal
off the major cross-diagonal and zeros elsewhere, and their ele-
ments are given by [23], [54]

for
others

for
others

Next, under the independence assumption for and
, by using (C5) and (D3) and after some straightforward

manipulations, we obtain

(E8)

where

in which , and
. For 1, 2, 3, 4 and , the ex-

pectations and are summarized in Tables II and III,
where .

Then, in a way similar to (E8), by using (C11) and some cal-
culations, we get

(E9)

where

with , and
, and is used implicitly. Furthermore, the

expectations and are summarized in Tables IV and
V for 1, 2, 3, 4 and , where is an

1 unit vector with one as the th element whereas
zeros elsewhere, and the results in (E3), (E4), (E6), and (E7)
are used implicitly.

Finally, we can get the expectation

as

(E10)

for

for
for
for

for
for

(E6)

(E7)
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TABLE IV
RESULTS OF EXPECTATION ��� FOR i; k = 1,2,3,4, AND l; t = 1; 2; . . . ; p

TABLE V
RESULTS OF EXPECTATION ~��� FOR i; k = 1,2,3,4, AND l; t = 1; 2; . . . ; p

where

with , and the expectation are
summarized in Table VI for 1, 2, 3, 4 and

, where the results in (E1) and (E2) are used implicitly.

APPENDIX F
PROOF OF THEOREM 2

By using the algebraic identities for the matrices with com-
patible dimensions (e.g., [52] and [48])

(F1)

(F2)

where converts the matrix into a column vector by
stacking the matrix columns one beneath the other beginning

with the leftmost column, from (50), we obtain the following
vector relation after some manipulations:

(F3)

where

(F4)

(F5)
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TABLE VI
RESULTS OF EXPECTATION ���� FOR i; k = 1,2,3,4, AND l; t = 1; 2; . . . ; p

(F6)

(F7)

(F8)

(F9)

(F10)

(F11)

in which the matrices and , ma-
trices and , and matrix
are given in Tables II–VI of Appendix E. Since the ma-
trix is Hermitian and its diagonal elements involve the
mean-squared weight-errors of the matrix ,
to facilitate the analysis of mean-square stability, we write the
matrix and vectors and in terms of
their real and imaginary parts as ,

, and
. Then, the vector recursion (F3) can

be expressed in its real and imaginary parts

(F12)

(F13)

where

(F14)

Hence, we conclude that the convergence of recursion (F3) is
governed by the stability of the matrices and (i.e.,

all their eigenvalues and should lie inside the unit
circle) for the multiple signal case [36], [28], while the parabola

dominates the stability of (F3)
(i.e., should satisfy the inequality ) for
the single signal case (see Section IV-E for more details). From
(52), (55), (56), and (53), we easily see that the matrices

and are Hermitian. Because the eigenvalues of are all
the combinations of the eigenvalues of matrix

for , [28], we can find that the matrix is
positive definite and invertible in view of that for

. We can also see that the Hermitian matrices and
are nonnegative definite. Thus, we can find that the matrices
and in (F14) are stable if and only if satisfies (51) [36],

[28]. As a result, the stability condition of the LMS algorithm
in the mean-square sense in (51) is obtained immediately.
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