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MLR-SNet: Transferable LR Schedules for
Heterogeneous Tasks: Supplementary Material

Jun Shu, Yanwen Zhu, Qian Zhao, Deyu Meng, and Zongben Xu

Abstract—In this supplementary material, we present more related experiment details, and more necessary performance evaluations of
the proposed method as compared with other competing methods. We also provide the proof details for the convergence analysis of the
proposed MLR-SNet method. Besides, we demonstrate the pseudo-code of the MLR-SNet for Pytorch implementation. The source code
of our method is released at https://github.com/xjtushujun/MLR-SNet.

F

1 DETAILED COMPARISONS WITH META-SGD
The Meta-SGD algorithm [1] meta-learns the learning rates in
an end-to-end manner, which aims to learn possibly fast and
accurate meta-learners. Specifically, similar to our method,
the LR schedule learned by Meta-SGD can also be readily
transferred for new query tasks, and has been substantiated
to be effective in applications like few-shot learning tasks
[1]. Since this method is mostly related to our MLR-SNet, we
make a detailed comparison between the two methods in the
following for better illuminating the specific characteristics
of the proposed method:

• Optimized variables. Recall that the updating equa-
tions of the vanilla SGD algorithm for Meta-SGD and
MLR-SNet can be respectively written as:

wt+1 = wt − αt∇wfTr(Dt;wt), (Meta-SGD)

wt+1 = wt −A(ft, θt;φ)∇wfTr(Dt;wt), (MLR-SNet)

where ft = fTr(Dt;wt) and θt = (ht, ct)
T .

A(ft, θt;φ) outputs the LR (αt) at the t-th iteration,
φ is the parameter of MLR-SNet, ft is the loss
of the batch samples Dt at the t-th iteration, and
θt = {ht−1, ct−1}, where ht, ct ∈ Rd

′
denote the

output and state of the LSTM cell at the t-th iteration
(t = 0, · · · , T − 1), d′ represents the dimension of
the state vectors (i.e., the size of hidden nodes). It
can be evidently seen that MLR-SNet and Meta-SGD
aim to optimize different learning variables, which
are the weight parameters φ of meta-learner A, and a
sequence of LRs αt, t = 1, 2, ..., T , respectively.

• Scalability. Once the architecture of the MLR-SNet
is determined, the size of weight parameters φ to
learn is naturally fixed. Since φ does not depend on
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the the number of training steps T of the algorithm,
MLR-SNet can flexibly generate any length of LRs by
inputting training losses along iteration to the meta-
learner. This means that MLR-SNet can easily scale to
“long-horizons problems” [2], i.e., optimization with
large steps of training iterations. Comparatively, Meta-
SGD would learn a series of LRs αt, t = 1, 2, ..., T
with the iteration number of the algorithm. This
means that it has a varying number of variables to
learn when training steps increase. The computation
cost is thus proportional to the number of training
steps. This naturally conducts the issue that Meta-
SGD tends to have relatively less scalability to itera-
tion number of the algorithm as compared with MLR-
SNet, especially when we need a large number of
iterations but only with limited computation resource.

• Task-transferable ability. As aforementioned, the LR
schedules learned by both Meta-SGD and MLR-SNet
can be readily transferred for new query tasks. Meta-
SGD aims to learn fixed learning rates shared across
training tasks, and in the meta-test stage, Meta-SGD
would use this fixed LR sequence for different query
tasks. This tends to be with less adaptability to the
variance of heterogeneous query tasks. Comparatively,
LR schedules generated by the MLR-SNet depend
on the input losses of training dynamics, which is
allowed to be variant against different query tasks.
This implies that it is possible for our MLR-SNet
to generate different LR schedules, allowed with
different LR values and entire length, according to
the training dynamics of different query tasks, and
thus the MLR-SNet is likely to better adapt to various
query tasks. In a nutshell, MLR-SNet should have
more adaptability to heterogeneous query tasks than
Meta-SGD.

2 HYPER-PARAMETER FOR EXPERIMENTS

The hyper-parameters of hand-designed LR schedules fol-
lows the recommend setting in the popular deep learning
library (e.g., Pytorch) and the standard benckmarks [3],
[4], [5], [6]. We just run their standard setting, and obtain
the performance as reported in the original papers, e.g.,
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TABLE 1

The obtained hyperparamters for MultiStep LR schedule searched by Bayesian optimization methods.

Experimental setting BayesOptSearch TuneBOHB
α0 γ α0 γ

ResNet-18 on CIFAR10 0.0864373149647392 0.0864491338167939 0.0394282991363671 0.111438341277555
WideResNet-28-10 on CIFAR-100 0.0868576230292215 0.0891149564802997 0.0117155877231516 0.0322469754925965
2-layer LSTM on Penn Treebank 20 0.5 8.51966678824753 0.0813423635903117
3-layer LSTM on Penn Treebank 19.0147789851342 0.193524658235207 12.0425319117129 0.137699823402115
ShuffleNetv2 on CIFAR-10 0.0752356594496997 0.0494370877605217 0.0394193161569907 0.0315894665307492
MobileNetv2 on CIFAR-10 0.0123472564508115 0.281309533029029 0.0356461197616519 0.282565199949938
NASNet on CIFAR-10 0.0864373149647392 0.0864491338167939 0.0419026854160617 0.111194065190743
ResNet-18 on SVHN 0.0503162127310114 0.128996623089215 0.06198005310463 0.321604407001577
ResNet-18 on TinyImageNet 0.0864373149647392 0.0864491338167939 0.0191591264630583 0.0257302389909082
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(a) Image classification
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(b) Text classification

Fig. 1. Changing tendencies in terms of test accuracy (for image datasets) and perplexity (for text datasets) in iterations of MultiStep LR schedule with
hyperparameters tuned by Bayesian optimization search methods and MLR-SNet in the meta-training stage on (a) image and (b) text classification
datasets.
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(a) Different network architectures
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(b) Different datasets
Fig. 2. Changing tendencies in terms of test accuracy (for image datasets) and perplexity (for text datasets) in iterations of MultiStep LR schedule
with hyperparameters tuned by Bayesian optimization search methods and directly transferred from MLR-SNet in the meta-test stage on (a) different
network architectures and (b) different datasets.

CIFAR-10 and CIFAR-100. Actually, these hyperparameters
configurations are usually searched by grid search method,
as recommended by many current literatures (e.g., [7],
https://github.com/hysts/pytorch_image_classification). To
better compare the efficiency of conventional and proposed
method, we also attempted the Bayesian optimization
method to search the hyperparameters involved in hand-
designed LR schedules, which is generally superior to
random search and grid search [8].

Specifically, we have taken the MultiStep strategy, whose
learning rate setting scheme is:

αt = α0 × (γM )i, li−1 ≤ Ecur ≤ li, (1)

as the testing example. For image classification tasks, we
sample α0 in [10−2, 5 × 10−1] log-uniformly, and γM in

[10−2, 5×10−1] log-uniformly, and we fix the decay intervals
as 60 epoches. For text classification tasks, we sample α0 in
[10−2, 20] log-uniformly, and γM in [10−2, 5 × 10−1] log-
uniformly. The text classification tasks also use the Val strat-
egy to determine when to decay the LR. We choose BayesOpt-
Search and TuneBOHB libraries in Ray (https://docs.ray.
io/en/latest/tune/api_docs/suggestion.html#summary) to
implement these experiments. The obtained hyperparameters
for MultiStep LR schedule searched by Bayesian optimization
methods are presented in Table 1. And then we use MultiStep
LR schedule strategy equipped with these hyperparameters
to train DNNs. The achieved performances are shown in
Figs. 1 and 2 for the meta-training and meta-test experiments,
respectively.

From Fig 1, it can be easily observed that our method

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#summary
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#summary
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Fig. 3. Effect of the validation data size on the test performance of CIFAR-
10 with ResNet-18 for RTHO.

obtains a comparable or even better performance for finding
proper LR schedules in the meta-training stage compared
with Bayesian optimization strategies. Especially, the MLR-
SNet can achieve better performance on text classification
compared with hand-designed LR schedules.

In the meta-test stage with task transfer setting, the hand-
designed LR schedules need to search hyperparameters from
scratch for achieving better performance. Otherwise, it might
possibly cause performance degradation if we directly use
hand-designed LR schedules assembling hyperparameters
obtained from one task to train another new tasks (please
see more analysis in Setion 5). Comparatively, our learned
MLR-SNet can be directly used to set LR schedule to train
new tasks without need of additional LR schedule learning
from scratch. Specifically, we transfer the LR schedules
learned on CIFAR-10 to train other network architectures,
including ShuffleNetV2, MobileNetV2, NASNet, and other
datasets, including SVHN, TinyImageNet, Penn Treebank,
to implement comparison experiments in the meta-test
process. The results are shown in Fig. 2. As comparison,
we still use the Bayesian optimization method to search
proper hyperparameters for MultiStep LR schedules for the
training of all tasks. From the figure, we can see that the LR
schedules, directly transferred from the meta-training stage
by the proposed method, can achieve comparable or better
performance among these meta-test tasks. Considering its
largely saved computational cost for LR hyper-parameter
tuning, it should be rational to say that the proposed method
is efficient and useful in practice.

It should be emphasized that for the hyperparameters of
competing LR schedule adaptation methods, inlcude L4, HD,
RTHO, we have also employed the recommended settings in
their original papers. We have just reproduced these methods
based on their official implementation schemes released at:

• L4: https://github.com/martius-lab/l4-optimizer,
• HD: https://github.com/gbaydin/hypergradient- de-

scent,
• RTHO: https://github.com/lucfra/RFHO.

3 EFFECT OF DIFFERENT VALIDATION SET SIZE ON
RTHO
We attempt to increase the size of the validation set (for
CIFAR-10) for the RTHO method to test its performance with
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Fig. 4. The iterative performance of EfficientNet-B0 and EfficientNet-B7
on CIFAR-100 trained with the LR schedules produced by our MLR-SNet
and hand-designed methods.

respect to the validation scale. Specifically, we set the sizes
of validation set as 1000, 2000, 4000, 5000, respectively, and
show the corresponding test performance in Fig.3. It can be
clearly seen that the performance of the RTHO method is
not substantially improved with the increasing size of the
validation set. Especially, its performance, even using larger-
scale validation set, still do not surpass that of the MLR-SNet
using less validate samples as reported in the manuscript.

This can be rationally explained by the fact that current
LR adaptation methods, including RTHO, are more or less
absent of the past training history information to guide the
learning of LR, which makes them relatively more easily
fall into bad local minima especially at the early training
stage. For example, it is easily seen that the training loss of
RTHO drops more quickly than our MLR-SNet at the early
training stage (as seen in the 0-40 epoch shown in Fig.3, and
0-80 epoch depicted in Fig.4 in the main manuscript), but at
the later training stage, RTHO fails to further decrease the
training loss, reflecting that it might be possibly trapped into
unexpected local minima. Comparatively, the utilization of
the LSTM architecture makes our MLR-SNet capable of better
adapting a sound learning rate schedule at a global scale,
and thus naturally leads to its better generalization capability.
This can be easily observed by the relatively more abundant
variation details across its local areas along the meta-learned
learning rate schedule, which can also be clearly observed in
Fig. 3 and Fig. 4 of the main manuscript.

4 GENERALIZATION TO SOTA EFFICIENTNET

To further validate that our method can be applied to
SOTA network architectures, we attempt to transfer the
LR schedules meta-learned on ResNet-18 to EfficientNet
[9]. Specifically, we train CIFAR-100 with EfficientNet-B0
and EfficientNet-B7 using Nesterov momentum with a
momentum parameter of 0.9, weight decay 10−5 and a batch
size of 256 as suggested in [9], [10]. Note that EfficientNet
uses grid search method to set the LR schedules as it states [9],
[10]. The hand-set grid consisted of 7 logarithmically spaced
learning rates between 0.0001 and 0.1 and 7 logarithmically
spaced weight decay to learning rate ratios between 10−6

and 10−3. The computation cost of grid search method
can be roughly estimated as training EfficientNet-B0 or
EfficientNet-B7 with 200 epochs for 49 rounds (cost = 5.3M
× 49 = 259.7M for EfficientNet-B0 and cost = 66M × 49 =
3234M for EfficientNet-B7), where the sizes of EfficientNet-
B0 and EfficientNet-B7’s weight parameters are 5.3M and
66M, respectively. Thus the computation cost of grid search
method to set LR policy is about 259.7M for EfficientNet-B0
and 3234M for EfficientNet-B7, respectively. Recall that the

https://github.com/martius-lab/l4-optimizer
https://github.com/lucfra/RFHO
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(a) Different network architectures
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Fig. 5. Changing tendencies in terms of test accuracy (for image datasets) and perplexity (for text datasets) in the meta-test tasks, with (a) different
network architectures and (b) different datasets, calculated by our MLR-SNet and MultiStep LR schedules with hyperparameters obtained by Bayesian
optimization, random search, grid search methods obtained from the meta-training stage on CIFAR-10.

computation cost of our MLR-SNet for setting LR policy
is about the cost of meta-training MLR-SNet on CIFAR-10
with ResNet-18, which is about training ResNet-18 with 200
epochs for one round according to Fig.12 (b) in the main
paper. Thus the cost is around 11.2 M × 1, where the size
of ResNet-18’s weight parameters is 11.2 M. Therefore, the
computation cost of setting LR policy for grid search method
is about 49 and 289 times more than MLR-SNet on training
EfficientNet-B0 and EfficientNet-B7, respectively. We can
thus see that MLR-SNet is relatively more computationally
efficient than the grid search method.

To possibly reduce the computational resources of the
grid search to be the same as the proposed MLR-SNet and
make the comparison fair purely in sense of their costed
computation resource, just similar to the task-transferring
manner of MLR-SNet, we attempt to directly transfer the
hyperparameters of hand-designed LR schedules tuned on
CIFAR-10 by grid search method to both meta-test cases.
It should be indicated that in such meta-training stage,
the computational resource required by the grid search is
still evidently larger than MLR-SNet, but considering the
meta-test process, both need not to tune hyper-parameters
involved in the LR schedule, and thus should be fair in
computation cost in this stage.

Fig. 4 presents the test performance of two models
trained with LR schedules produced by our MLR-SNet
meta-learned on CIFAR-10 and hand-designd LR schedules
with hyperparameters tuned by grid search on CIFAR-10
(see more details in Section 4.1.1 of the main paper for the
hyperparameter setting). The advantage of the meta-trained
LR schedule by MLR-SNet is evident, showing the method
does be helpful to guide a sound learning tendency for
SGD training compared with the hand-designed LR schedule
directly tuned on CIFAR-10 by grid search. For the latter,
the performance degradation can be rationally explained by
its less adaptability to the new query tasks compared with

MLR-SNet.
Note that the final test accuracies obtained by our

transferred MLR-SNet on the dataset are 87.7% and 90.6%
for EfficientNet-B0 and EfficientNet-B7, respectively, as com-
pared with 88.1% and 91.7% as reported in the original
paper. Though we do not perform the results reported in
original paper, we use lower computation resources than
searching proper hyperparameters for hand-designed LR
schedules using grid search method. This makes the pro-
posed method more efficient and friendly for general users,
who might possibly lack sufficient computer resources and
understandings to the network architectures and datasets.

5 TASK-TRANSFERABLE ABILITY COMPARISON
WITH HAND-DESIGNED LR SCHEDULES

In Section 4.2 of the main paper, the hyperparameters of
the compared hand-designed LR schedules are tuned from
scratch as strong baselines to show the task-transferable
potential of our meta-learned MLR-SNet. To make a fair
comparison of the task-transferable LR setting policy, we
further evaluate the hand-designed LR schedules on new
query tasks equipped with hyperparameters tuned on CIFAR-
10 with ResNet-18 in the meta-training stage.

Specifically, we have firstly adopted the Bayesian op-
timization, grid search and random search methods to
search the optimal hyperparameters for MultiStep LR
schedule on CIFAR-10 with ResNet-18. For Bayesian
optimization and random search, we sample α0 in
[10−2, 5 × 10−1] log-uniformly, and γM in [10−2, 5 ×
10−1] log-uniformly. For grid search, we search the α0

and γM from the candidate set {0.1, 0.2, 0.3, 0.4, 0.5, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}. The Tune library
in the Ray libraries (https://github.com/ray-project/ray)
has been employed to implement these experiments. The
best search results of BayesOptSearch, TuneBOHB, random

https://github.com/ray-project/ray
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search and grid search are {α0 = 0.0864, γM = 0.0864},
{α0 = 0.0394, γM = 0.1114}, {α0 = 0.0154, γM = 0.0152}
and {α0 = 0.1, γM = 0.1}, respectively.

We then use the MultiStep LR schedule equipped with the
above obtained hyperparameters to train on other network ar-
chitectures, including ShuffleNetV2, MobileNetV2, NASNet,
and other datasets, including SVHN, TinyImageNet, Penn
Treebank, in such meta-test process. The achieved results,
as compared with those obtained under our meta-trained
MLR-SNet, are presented in Fig. 5 for easy observation.
As can be easily seen, when the query tasks are certainly
similar to CIFAR-10, all methods obtain approximately com-
parable fine performance under the transferred MultiStep
LR schedule. However, when being applied to the text
classification task evidently dissimilar to the meta-trained
CIPAR-10, the performances tend to be evidently degraded
for the transferred MultiStep LR schedule compared with
MultiStep LR schedules with hyperparameters searched from
scratch. While in such case, our method still obtains good
performance, as clearly shown in Fig. 5 . This demonstrates
that our method has a relatively stronger task-transferrable
ability beyond hand-designed LR schedules, with a wider
range of transferable testing tasks. Such superiority can be
rationally explained by the fact that the proposed MLR-SNet
is capable of adaptively adjusting its learned LR schedule
forms for DNN training against specific characteristics of
different meta-test tasks. Comparatively, the hand-designed
LR schedules have to use fixed LRs, albeit having been opti-
mized from the meta-training stage, in such task-transferable
process, making them less adaptable to the variations of new
query tasks.

In Section 4.2 of the main paper, we have directly
compared our transferable MLR-SNet with hand-designed
LR schedules with hyperparameters tuned from scratch,
aiming to search possibly optimal LR schedules for the
training task at hand. Even without specifically tuning
its LR schedule hyperparameters on the task, our directly
transferred MLR-SNet can achieve comparable or even better
performance, as shown in Figs. 9 and 10 of the main paper.
This shows the task-transferable potential of our MLR-
SNet, i.e., it can approximate the performance of the hand-
designed LR schedules with hyperparameters well tuned
by hyperparameter optimization techniques. Attributed to
its large saving of hyperparameter tuning cost, it should be
rational to say that the proposed method is efficient and
useful in practice.

We further implemented experiments on another data to
verify the advantage of our method through task-transferable
manner than directly using an LR schedule searched from
it. Specifically, we consider to transfer learned MLR-SNet
on a language modeling Wikitext-2 dataset [11], which is
sourced from curated Wikipedia articles and is approximately
twice the size of the PTB data set. The text is tokenized
and processed using the Moses tokenizer, frequently used
for machine translation, and features a vocabulary of over
33,000 words. The experimental setting is similar to the Penn
Treebank dataset, i.e., the learning schedule of the proposed
MLR-SNet is transferred from the model meta-trained on
the CIFAR10 dataset, and the comparison method uses SGD
with LR tuned using a additional validation set. In partic-
ular, we train the PyTorch word-level language model ex-
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Fig. 6. Changing tendencies in terms of test perplexity for Wikitext-2
datasets trained with SGD using MultiStep LR schedule with hyperpa-
rameters tuned using a additional validation set of the current datasets
and the LR schedule directly transferred from MLR-SNet obtained in the
meta-training stage on CIFAR10.

ample (https://github.com/pytorch/examples/blob/main/
word_language_model) on the Wikitext-2 dataset, and used
650-dimensional embeddings, 650 hidden units, tied weights,
and dropout 0.5, and gradient clipping with threshold 0.25.
The comparison results are shown in Fig.6. From the figure,
it can be seen that our learned MLR-SNet achieves better
performance than using the LR schedule directly searched
from current dataset. This further verifies the superiority of
the proposed method.

6 CONVERGENCE ANALYSIS OF THE MLR-SNET

6.1 Proof of Theorem 1

In the following we provide the proof details for the result
of Theorem 1 in the maintext.

Proof. Let f∗ be the infimum of f(w), and then under the
assumption A1, we have

f(wt+1) ≤ f(wt)− 〈∇f(wt), αtvt〉+
L

2
α2
t ‖vt‖2. (2)

Taking expectation on both sides, we have

Ef(wt+1)− Ef(wt) ≤− 〈E∇f(wt), αtEvt〉+
L

2
α2
tE‖vt‖2

=− αtE‖∇f(wt)‖+
L

2
α2
tE‖vt‖2.

According to the assumption A3, it produces that

E‖vt‖2 ≤ (κ+ 1)E‖∇f(wt)‖+ σ.

Therefore, we have

Ef(wt+1)− Ef(wt)

≤− αtE‖∇f(wt)‖+
L

2
α2
t [(κ+ 1)E‖∇f(wt)‖2 + σ]

=−
(
αt −

L(κ+ 1)

2
α2
t

)
E‖∇f(wt)‖2 +

L

2
α2
tσ

≤− 1

2
αtE‖∇f(wt)‖2 +

L

2
α2
tσ,

(3)

where the last inequality holds since αt ≤ 1
L(κ+1) . Let δt =

Ef(wt)− f∗, and then we get

δt+1 ≤ δt −
1

2
αtE‖∇f(wt)‖2 +

L

2
α2
tσ. (4)

https://github.com/pytorch/examples/blob/main/word_language_model
https://github.com/pytorch/examples/blob/main/word_language_model
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Based on the assumption A2, we can get − 1
2‖∇f(wt)‖

2 ≤
µδt. Now, Eq(4) can be written as

δT+1 ≤ (1− µαT )δT +
L

2
α2
Tσ

≤ (1− µαT )
[
(1− µαT−1)δT−1 +

L

2
α2
T−1b

]
+
L

2
α2
Tσ

= (1− µαT )(1− µαT−1)δT−1 +
Lσ

2

[
(1− µαT )α2

T−1 + α2
T

]
= · · ·

=
T∏
t=1

(1− µαt)δ1 +
Lσ

2

T∑
t=1

T∏
i=t+1

(1− µαi)α2
t .

Since 1− µαt ≤ exp(−µαt), t = 1, · · · , T , we have

δT+1≤
T∏
t=1

exp(−µαt)δ1+
Lσ

2

T∑
t=1

T∏
i=t+1

exp(−µαi)α2
t

=exp(−µ
T∑
t=1

αt)δ1 +
Lσ

2

T∑
t=1

exp(−µ
T∑

i=t+1

αi)α
2
t .

(5)

Since αt = αt−1βt, 1/K ≤ a ≤ βt, then αt ≥ α0a
t,

T∑
t=1

αt ≥ α0
a− aT+1

1− a
= α0

a(1− aT )
1− a

≥ α0

K

1− aT

1− a
=
α0

K

1−M/T

1− a

≥ α0

K

1−M/T

1/T ln(T/M)
=
α0(T −M)

K ln(T/M)
,

where we use the result that

1− x≤ ln(1/x),∀x

in the last inequallity. Thus we have

exp(−µ
T∑
t=1

αt) ≤ exp

(
−µα0

T −M
K ln(T/M)

)
= C(M) exp

(
− µT

KL(1 + κ) ln(T/M)

)
,

where C(M) = exp( µM
KL(1+κ) ln(T/M) ). Observing that

T∑
i=t+1

αi = α0
at+1 − aT+1

1− a
≥
α0T

(
at − aT

)
K ln(T/M)

,

we can deduce that

T∑
t=1

exp(−µ
T∑

i=t+1

αi)α
2
t ≤

T∑
t=1

exp

(
−µα0T

at − aT

K ln(T/M)

)
α2
t

=C(M)
T∑
t=1

exp

( −µα0Ta
t

K ln(T/M)

)
α2
t

≤C(M)
T∑
t=1

(
2K ln(T/M)

eµα0atT

)2

α2
t

≤C(M)
T∑
t=1

(
2K ln(T/M)

eµα0atT

)2

α2
0b

2t

=4K2C(M)
T∑
t=1

ln2(T/M)

e2µ2T 2
(N/M)2t/T

=
4K2C(M) ln2(T/M)

e2µ2T 2

(N/M)2/T − (N/M)2+2/T

1− (N/M)2/T
.

≤4K2C(M) ln2(T/M)

e2µ2T 2

(N/M)2+2/T

(N/M)2/T − 1

=
4K2C(M) ln2(T/M)

e2µ2T 2

(N/M)2

1− (M/N)2/T

≤4K2C(M) ln2(T/M)

e2µ2T 2

T (N/M)2

2− 2M/N

=
2K2C(M) ln2(T/M)(N/M)2

e2µ2(1−M/N)T
,

where the second inequality holds since exp(−x)≤(s/ex)s,
∀x > 0,∀s > 0, and the last inequality is based on the
Bernoulli inequality (M/N)2/T = (1 +M/N − 1)2/T ≤ 1+
2M/N−2

T . Putting all above results together, Eq.(5) can be
bounded by

δT+1 ≤C(M) exp

(
− µT

KL(1 + κ) ln(T/M)

)
δ1

+
2K2C(M) ln2(T/M)(N/M)2

e2µ2(1−M/N)T
.

Thus the conclusion holds.

6.2 Proof of Theorem 2

In the following we provide the proof details for the result
of Theorem 2 in the maintext.

Proof. According to the proof process of Theorem 1, under
the assumption A1,A2 and the setting that α0 = 1

L(1+κ) , it
can be deduced that Eq.(3) holds, i.e.,

Ef(wt+1)− Ef(wt) ≤ −
1

2
αtE‖∇f(wt)‖2 +

L

2
α2
tσ. (6)

Summing up above inequalities over t = 1, 2, · · · , T , and
rearranging the terms, we can obtain

1

2

T∑
t=1

αtE‖∇f(wt)‖2 ≤ Ef(w1)− Ef(wT ) +
Lσ

2

T∑
t=1

α2
t .

Thus, we can deduce that
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min
0≤t≤T

E‖∇f(wt)‖2 ≤
∑T
t=1 αtE‖∇f(wt)‖2∑T

t=1 αt

≤2Ef(w1)− 2Ef(wT ) + Lσ
∑T
t=1 α

2
t∑T

t=1 αt
.

Observing that

T∑
t=1

α2
t ≤

T∑
t=1

α2
0b

2t = α2
0

b2 − b2T+2

1− b2

≤α2
0

1− b2T

1− b2
= α2

0

1− (N/T )2

1− (N/T )2/T

=α2
0

1− (N/T )2

1− exp(2/T ln(N/T ))

≤α2
0

2 ln(T/N)

1− 1/(1− 2/T ln(N/T ))

=α2
0 (T + 2 ln(T/N)) =

T + 2 ln(T/N)

c2L2(1 + κ)2
,

(7)

where the last inequality holds since exp(x) ≤ 1/(1 −
x),∀x < 1. Recall the following intermediate result of the
proof in Theorem 1,

T∑
t=1

αt ≥
α0(T −M)

K ln(T/M)
=

T −M
cKL(1 + κ) ln(T/M)

,

we can then obtain

min
0≤t≤T

E‖∇f(wt)‖2 ≤
2cKL(1 + κ) ln(T/M))

T −M

[Ef(w1)− Ef(wT )] +O
(

σKT

c(1 + κ)(T −M)

)
.

Thus the conclusion holds.

6.3 Proof of Theorem 3

In the following we provide the proof details for the result of
Theorem 3 in the maintext. First we need prove a necessary
lemma as follows:

Lemma 1. Suppose that the loss function f is Lipschitz smooth
with respect to the model parameter w with constant L, and has
ρ-bounded gradients with respect to the training/validation data.
And the A(θ) is differential with a δ-bounded gradient and twice
differential with its Hessian bounded by B. Then it holds that the
gradient of MLR-SNet parameter θ with respect to the loss is also
Lipschitz smooth.

Proof. The gradient of MLR-SNet parameter θ with respect
to the loss at data point j can be written as

∇θfj(ŵt(θ))|θt =
∂fj(ŵt(θ))

∂ŵt(θ)

∂ŵt(θ)

∂A(θ)
∂A(θ)
∂θ

=
−αt
n

n∑
i=1

(
∂fj(ŵt(θ))

∂ŵt(θ)

∂`i(wt)

∂wt

)
∂A(θ)
∂θ

∣∣
θt
,

Let Gij =
∂`j(ŵt(θ))
∂ŵt(θ)

∂`i(wt)
∂wt

, and then take gradient of θ
in both sides of the above equality. We then have

∇2
θ2
fj(ŵt(θ))|θt =

−αt
n

n∑
i=1

[
∂Gij

∂θ

∂A(θ)
∂θ

+Gij
∂A2(θ)

∂θ2

]
. (8)

Algorithm 1 Adam Algorithm

Input: θ1 ∈ Rd
′
, learning rate {ηt}Tt=1, decay parameters 0 ≤

β1, β2 ≤ 1, ε > 0.
Output: MLR-SNet parameter θT

1: Set m0 = 0, v0 = 0.
2: for t = 0 to T − 1 do
3: Dn ← SampleMiniBatch(DV al, n).
4: Compute gt = ∇θfV al(Dn, θt).
5: mt = β1mt−1 + (1− β1)gt
6: vt = vt−1 − (1− β2)(vt−1 − g2t )
7: θt+1 = θt − ηtmt/(

√
vt + ε)

8: end for

For the first term in the right hand side, we have that
∥∥∥∥∥ ∂Gij∂θ

∂A(θ)

∂θ

∥∥∥∥∥ ≤ δ
∥∥∥∥∥ ∂fj(ŵt(θ))∂ŵt(θ)∂θ

∂fi(wt)

∂wt

∥∥∥∥∥
=δ

∥∥∥∥∥∥
∂

∂ŵt(θ)

−αt
n

n∑
i=1

(
∂fj(ŵt(θ))

∂ŵt(θ)

∂fi(wt)

∂wt

)
∂A(θ)

∂θ

∣∣
θt

 ∂fi(wt)

∂wt

∥∥∥∥∥∥
=δ

∥∥∥∥∥∥
−αt

n

n∑
i=1

 ∂2fj(ŵt(θ))
∂ŵ2
t (θ)

∂fi(wt)

∂wt

 ∂A(θ)

∂θ

∣∣
θt

 ∂fi(wt)

∂wt

∥∥∥∥∥∥ ≤ αtLρ2δ2.
(9)

For the second term in the right hand side, we have that∥∥∥∥Gij ∂A2(θ)

∂θ2

∥∥∥∥ ≤ Bρ2. (10)

Combining the above two inequalities Eq.(9) and (10), we
have

‖∇θfj(ŵt(θ))|θt‖ ≤ αρ2(αtLδ2 + B). (11)

Define LA = αρ2(αtLδ
2 + B), and based on the Lagrange

mean value theorem, we have:∥∥∥∇fV al(ŵt(θ1))− fV al(ŵt(θ2))
∥∥∥ ≤ LA ‖θ1 − θ2‖ . (12)

Thus the conclusion holds.

Now we present the proof of Theorem 3.

Proof. Suppose that we have a small validation set with B
samples {x1, x2, · · · , xM}, each associating with a validation
loss function `i(w(θ)), where w is the parameter of the
model, and θ is the parameter of the MLR-SNet. The overall
validation loss is then:

fV al(w) =
1

B

B∑
i=1

fV ali (w(θ)), (13)

where B is the minibatch size. According to the updating
Algorithm 1, we have:

EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt))

=
{
EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt+1))

}
︸ ︷︷ ︸

(a)

+
{
EfV al(ŵt(θt+1))− EfV al(ŵt(θt))

}
︸ ︷︷ ︸

(b)

.

(14)

For the above term (a), it holds that

EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt+1))

≤
〈
E∇wfV al(ŵt+1(θt+1)),Eŵt+1(θt+1)− Eŵt(θt+1)

〉
+
L

2
E ‖ŵt+1(θt+1)− ŵt(θt+1)‖22 .

(15)
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According to Eq (7) in the maintext, we have

ŵt+1(θt+1)− ŵt(θt+1) = −αt∇wfTr(ŵt(θt+1)).

Then Eq (15) can be written as

a ≤− 〈E∇wfV al(ŵt+1(θt+1)), αtEvt〉+
L

2
α2
tE‖vt‖2

≤− 〈E∇wfV al(ŵt+1), αtEvt〉+
L

2
α2
t [(κ+ 1)E‖∇f(wt)‖2 + σ]

≤αtρ2 +
L

2
α2
t [(1 + κ)ρ2 + σ].

For the term (b) in Eq. (14), according to Lemma 1, i.e.,
the validation loss is Lipschitz smooth with respect to the
MLR-SNet parameter θ with L, we have

EfV al(ŵt(θt+1))− EfV al(ŵt(θt))

≤
〈
E∇θfV al(ŵt(θt)),Eθt+1 − Eθt

〉
+
L

2
E ‖θt+1−θt‖22 .

(16)

Here we adopt Adam algorithm [12] (Algorithm 1) to update
the parameter of MLR-SNet, θt+1 − θt in Eq.(16) is updated
by

θt+1,i = θt,i − ηt
gt,i√
vt,i + ε

, i = 1, 2, · · · , d. (17)

Now, we have

b ≤− ηt
d∑
i=1

〈
E∇θLiV al(ŵt(θt)),E

gt,i√
vt,i + ε

〉

+
Lη2t
2

E
d∑
i=1

g2t,i
(
√
vt,i + ε)2

.

(18)

Based on the proof process in [13] (Eq. (4) in pp. 13), we can
deduce that

b ≤− ηt
2(
√
β2ρ+ ε)

E‖∇θfV al(ŵt(θt))‖22

+

(
ηρ
√
1− β2
ε2

+
Lη2

2ε2

)
σ2

B
.

(19)

Now Eq.(14) can be reformulated as:

EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt))

≤ αtρ2 +
L

2
α2
t [(1 + κ)ρ2 + σ]− ηt

2(
√
β2ρ+ ε)

E‖∇θfV al(ŵt(θt))‖22 +
(
ηρ
√
1− β2
ε2

+
Lη2

2ε2

)
σ2

B
,

(20)

By rearranging the inequality (20), we can then obtain:

E
[

ηt
2(
√
β2ρ+ ε)

‖∇θLV al(ŵt(θt))‖22
]

≤αtρ2 +
L

2
α2
t (ρ

2 + σ2)− EfV al(ŵt+1(θt+1))

+ EfV al(ŵt(θt)) +
(
ηρ
√
1− β2
ε2

+
Lη2

2ε2

)
σ2

B
.

Using telscoping sum, we obtain
T∑
t=1

ηt

2(
√
β2ρ+ ε)

E
∥∥∥∇θfV al(ŵt(θt))∥∥∥2

2

≤EfV al(ŵ1(θ1))− EfV al(ŵT+1(θT+1)) + ρ2
T∑
t=1

αt

+
L

2
(ρ2 + σ2)

T∑
t=1

α2
t +

(
ηρ
√
1− β2
ε2

+
Lη2

2ε2

)
σ2T

B

≤fV al(ŵ1(θ1)) + ρ2
T∑
t=1

αt +
L

2
(ρ2 + σ2)

T∑
t=1

α2
t

+

(
ηρ
√
1− β2
ε2

+
Lη2

2ε2

)
σ2T

B
.

(21)

Therefore,

min
t

E
[∥∥∥∇θfV al(ŵt(θt))∥∥∥2

2

]

≤

∑T
t=1

ηt
2(
√
β2ρ+ε)

E
∥∥∥∇θfV al(ŵt(θ(t)))∥∥∥2

2∑T
t=1

ηt
2(
√
β2ρ+ε)

≤f
V al(ŵ1(θ1))− fV al(ŵT+1(θT+1)) + S

1/2(
√
β2ρ+ ε)×

∑T
t=1 ηt

≤2(
√
β2ρ+ ε)

Tη
×
{
fV al(ŵ1(θ1)) + S

}
,

where S= L
2 (ρ

2 + σ2)
∑T
t=1 α

2
t ++

(
ηρ
√
1−β2

ε2 + Lη2

2ε2

)
σ2T
B +

ρ2
∑T
t=1 αt. Taking a similar process as in Eq.(7), we have

that
T∑
t=1

αt ≤
ln(T/N) + T

cL(1 + κ) ln(T/N)
,

T∑
t=1

α2
t ≤

2 ln(T/N) + T

c2L2(1 + κ)2 ln(T/N)
.

Therefore, we can obtain

min
t

E
∥∥∥∇θfV al(ŵt(θt))∥∥∥2

2
≤ O( 1

c2 ln(T )
+ σ2)

Thus the conclusion holds.
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7 PYTORCH IMPLEMENTATION OF MLR-SNET

Here we also demonstrate the pseudo-code of the MLR-SNet
for Pytorch implementation as follows, to make readers easily
reproduce our algorithm. The full source code of our method
is released at https://github.com/xjtushujun/MLR-SNet.

class LSTMCell(nn.Module):
def __init__(self, num_inputs, hidden_size):

super(LSTMCell, self).__init__()
self.hidden_size = hidden_size
self.fc_i2h = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 4 * hidden_size))

self.fc_h2h = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 4 * hidden_size))

def forward(self, inputs, state):
hx, cx = state
i2h = self.fc_i2h(inputs)
h2h = self.fc_h2h(hx)
x = i2h + h2h
gates = x.split(self.hidden_size, 1)
in_gate = torch.sigmoid(gates[0])
forget_gate = torch.sigmoid(gates[1])
out_gate = torch.sigmoid(gates[2])
in_transform = torch.tanh(gates[3])
cx = forget_gate * cx + in_gate * in_transform
hx = out_gate * torch.tanh(cx)
return hx, cx

class MLRNet(nn.Module):
def __init__(self, num_layers, hidden_size):

super(MLRNet, self).__init__()
self.hidden_size = hidden_size
self.layer1 = LSTMCell(1, hidden_size)
self.layer2 = nn.Linear(hidden_size, 1)

def forward(self, x, gamma):
self.hx, self.cx =
self.layer1(x, (self.hx, self.cx))

x = self.hx
x = self.layer2(x)
out = torch.sigmoid(x)
return gamma * out
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