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“Fourier Series Expansion Based Filter
Parametrization for Equivariant Convolutions”:

Supplementary Material
Qi Xie, Qian Zhao, Zongben Xu and Deyu Meng

Abstract—This supplementary material presents the proofs for Remark 1, Remark 2 and Theorem 1 in the main paper. More
implementation details of the proposed method and more experimental results are also provided for better reference of readers. The
code of our method is available at https://github.com/XieQi2015/F-Conv.

F

1 PROOF TO THEORETICAL RESULTS

1.1 Proof of Remark 1
Notations. Firstly, let us review the notations defined in the
main text. We denote the 2D Fourier bases as following:

φckl(x) = Ω(x) cos

(
2π

ph
[k, l] ·

[
x1

x2

])
,

φskl(x) = Ω(x) sin

(
2π

ph
[k, l] ·

[
x1

x2

])
,

(1)

where k, l = 0, 1, · · · , p − 1 and Ω(x) ≥ 0 is a radial mask
function that satisfies Ω(x) = 0 if ‖x‖ > (p+1/2)h (please
refer to Section 4 and Eq. (76) for more details of Ω(x)). We
denote the proposed bases in the following formulation:

ϕc
kl(x) = Ω(x) cos

(
2π

ph

[
k −

⌊p
2

⌋
, l −

⌊p
2

⌋]
·
[
x1

x2

])
,

ϕs
kl(x) = Ω(x) sin

(
2π

ph

[
k −

⌊p
2

⌋
, l −

⌊p
2

⌋]
·
[
x1

x2

])
,

(2)

where k, l = 0, 1, · · · , p− 1, and Ω(x) is the aforementioned
radial mask function. Then we can prove following conclu-
sion:

Remark 1. For any mesh size h ∈ R, filter size p ∈ N+, and
grid point x on the p× p mesh of [(1−p)h/2, (p−1)h/2]2, i.e., x1 =
(i− (p−1)/2)h, x2 = (j − (p−1)/2)h, ∀i, j = 0, 1, · · · , p − 1,
let k, l = 0, 1, · · · , p− 1, and then,

φckl(x) = s(k, l) · ϕc
I(k),I(l)(x),

φskl(x) = s(k, l) · ϕs
I(k),I(l)(x),

(3)

where ϕc
kl and ϕs

kl are defined in (2), φckl, φ
s
kl are defined in

(1), I(·) = ((·) + bp/2c) %p, and s(k, l) ∈ {−1, 1}, satisfying
s(k, l) = sign(k−p/2+ε)p−1 ·sign(l−p/2+ε)p−1, 0 < ε < 1/2.

Proof. 1) When p is an odd number, then we have

x1 =

(
i− (p− 1)

2

)
h = mh, ∀m,n ∈ N

x2 =

(
j − (p− 1)

2

)
h = nh, ∀m,n ∈ N.

(4)
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In this case, s(k, l) = 1 and we can obtain following
deductions.

a) If k < p/2 and l < p/2, we can obtain I(k) = k + bp/2c,
and I(l) = l + bp/2c. Then, we have

ϕc
I(k),I(l)(x)

= Ω(x) cos

(
2π

ph
(kx1 + lx2)

)
= φck,l(x),

(5)

which means that Eq. (3) is satisfied. In the similar way, we
can prove ϕs

kl(x) = φskl(x), which then follows the results
of Eq. (3).

b) If k < p/2 and l ≥ p/2, then Ip(k) = k + bp/2c − p, and
Ip(l) = l + bp/2c − p. We can then obtain

ϕc
I(k),I(l)(x)

= Ω(x) cos

(
2π

ph
(kx1 + (l − p)x2)

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− 2π

h
· x2

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− 2nπ

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)

)
= φckl(x).

(6)

In the similar way, we can also deduce that ϕs
kl(x) =

φskl(x), which follows the results of Eq. (3) in this case.
c) If k ≥ p/2 and l < p/2, the result of Eq. (3) can be

proved in the similar way as (b).
d) If k ≥ p/2 and l ≥ p/2, then I(k) = k + bp/2c − p, and

I(l) = l + bp/2c − p. We can then have

ϕc
I(k),I(l)(x)

= Ω(x) cos

(
2π

ph
((k − p)x1 + (l − p)x2)

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− 2π

h
(x1 + x2)

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− 2(m+ n)π

)
(7)
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= Ω(x) cos

(
2π

ph
(kx1 + lx2)

)
= φckl(x).

In the similar way, we can deduce ϕs
kl(x) = phiskl(x),

which follows the results of Eq. (3) in this case.
2) When p is an even number, then

x1 =

(
i− (p− 1)

2

)
h =

(
m+

1

2

)
h, ∀m,n ∈ N

x2 =

(
j − (p− 1)

2

)
h =

(
m+

1

2

)
h, ∀m,n ∈ N.

(8)

a) If k ≥ p/2 and l < p/2, I(k) = k+bp/2c, I(l) = l+bp/2c,
s(k, l) = 1. Similar as the deduction in (5), we can prove that
(3) is satisfied in this case.

b) If k ≥ p/2 and l > p/2, then I(k) = k + bp/2c, I(l) =
l + bp/2c − p, and s(k, l) = −1. We can deduce that

ϕc
I(k),I(l)(x)

= Ω(x) cos

(
2π

ph
(x1 + (l − p)x2)

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− 2π

h
x2

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− (2n+ 1)π

)
= −Ω(x) cos

(
2π

ph
(kx1 + lx2)

)
= −φckl(x).

(9)

In the similar way, we can deduce that ϕs
kl(x) =

−φskl(x), which follows the results of Eq. (3) in this case..
c) If k ≥ p/2 and l < p/2, then the result can be proved in

the similar way as (b).
d) If k ≥ p/2 and l ≥ p/2, then I(k) = k + bp/2c − p,

I(l) = l + bp/2c − p and s(k, l) = 1. We can then obtain

ϕc
I(k),I(l)(x)

= Ω(x) cos

(
2π

ph
((k − p)x1 + (l − p)x2)

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− 2π

h
(x1 + x2)

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)− 2(m+ n+ 1)π

)
= Ω(x) cos

(
2π

ph
(kx1 + lx2)

)
= φckl(x).

(10)

Similarly, we can also deduce that ϕs
kl(x) = φskl(x), which

follows the results of Eq. (3) in this case.

1.2 Proof of Remark 2
Notations. For an input r ∈ C∞(R2) and a transformation
Ã ∈ O(2), Ã acts on r by

πR
Ã

[r](x) = r(Ã−1x), ∀x ∈ R2. (11)

For a feature map e ∈ C∞(E(2)) and a transformation Ã ∈
O(2), Ã act on e by

πE
Ã

[e](x,A) = e(Ã−1x, Ã−1A),∀(x,A) ∈ E(2). (12)

Ψ denotes the convolution on the input layer, which maps
an input r ∈ C∞(R2) to a feature map defined on E(2):

Ψ[r](y,A) =

∫
R2

ϕin

(
A−1x

)
r(y − x)dσ(x), (13)

∀(y,A) ∈ E(2), where σ is a measure on R2 and ϕ is the
proposed parameterized filter. Φ denotes the convolution
on the intermediate layer, which maps a feature map e ∈
C∞(E(2)) to another feature map defined on E(2):

Φ[e](y,B)=

∫
O(2)

∫
R2

ϕA
(
B−1x

)
e(y−x,BA)dσ(x)dv(A), (14)

∀(y,B) ∈ E(2), where v is a measure on O(2), A,B ∈
O(2) denotes orthogonal transformations in the considered
group, and ϕÃ indicates the filter with respect to the channel
of feature map indexed by Ã, i.e., e(x,A)|A=Ã. Υ denotes
the convolution on final layer, which maps a feature map
e ∈ C∞(E(2)) to a function defined on R2:

Υ[e](y)=

∫
O(2)

∫
R2

ϕout

(
B−1x

)
e(y−x,B)dσ(x)dv(B), (15)

∀y ∈ R2. Then we can prove the following result:

Remark 2. For r ∈ C∞(R2), e ∈ C∞(E(2)) and Ã ∈ O(2),
the following results are satisfied:

Ψ
[
πR
Ã

[r]
]

= πE
Ã

[Ψ [r]] ,

Φ
[
πE
Ã

[e]
]

= πE
Ã

[Φ [e]] ,

Υ
[
πE
Ã

[e]
]

= πR
Ã

[Υ [e]] ,

(16)

where πR
Ã

, πE
Ã

, Ψ, Φ and Υ are defined by (11), (12), (13), (14)
and (15), respectively.

Proof. (1) For any y ∈ R2 and A ∈ O(2), we can obtain

Ψ
[
πR
Ã

[r]
]

(y,A)

=

∫
R2

ϕin

(
A−1x

)
πR
Ã

[r] (y − x)dσ(x)

=

∫
R2

ϕin

(
A−1x

)
r(Ã−1(y − x))dσ(x).

(17)

Let x̂ = Ã−1x, since |det(Ã)| = 1, and we have∫
R2

ϕin

(
A−1x

)
r(Ã−1(y − x))dσ(x),

=

∫
R2

ϕin

((
Ã−1A

)−1
x̂

)
r(Ã−1y − x̂))dσ(x̂)

=Ψ[r](Ã−1y, Ã−1A)

=πE
Ã

[Ψ[r]] (y,A).

(18)

This proves that Ψ
[
πR
Ã

[r]
]

= πE
Ã

[Ψ [r]].
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(2) Similar to the proof in (1), for any y ∈ R2 and B ∈
O(2), we can obtain

Φ
[
πE
Ã

[e]
]

(y,B)

=

∫
R2

∫
O(2)

ϕA

(
B−1x

)
πE
Ã

[e] (y − x,BA)dσ(x)v(A)

=

∫
R2

∫
O(2)

ϕA

(
B−1x

)
e(Ã−1(y − x), Ã−1BA)dσ(x)v(A)

=

∫
R2

∫
O(2)

ϕA

((
Ã−1B

)−1
x̂

)
e(Ã−1y − x̂, Ã−1BA)dσ(x)v(A)

=Φ [e] (Ã−1y, Ã−1B)

=πE
Ã

[Φ [e]] (y,B).

(19)

(3) For any y ∈ R2, we can deduce that

Υ
[
πE
Ã

[e]
]

(y)

=

∫
R2

∫
O(2)

ϕout

(
B−1x

)
πE
Ã

[e] (y − x,B)dσ(x)v(B)

=

∫
R2

∫
O(2)

ϕout

(
B−1x

)
e(Ã−1(y − x), Ã−1B)dσ(x)v(B)

=

∫
R2

∫
O(2)

ϕout

((
Ã−1B

)−1
x̂

)
e(Ã−1y − x̂, Ã−1B)dσ(x)v(B).

(20)

Let C = Ã−1B, and then we have∫
R2

∫
O(2)

ϕout

((
Ã−1B

)−1
x̂

)
e(Ã−1y − x̂, Ã−1B)dσ(x)v(B)

=

∫
R2

∫
O(2)

ϕout

(
C−1x̂

)
e(Ã−1y − x̂, C)dσ(x)v(C)

=Υ[e](Ã−1y)

=πR
Ã

[Υ[e]] (y).

(21)

This proves that Υ
[
πE
Ã

[r]
]

= πR
Ã

[Υ [r]].

1.3 Proof of Theorem 1
Notations. We assume that an image I ∈ Rn×n represents
a two-dimensional grid function obtained by discretizing a
smooth function, i.e., for i, j = 1, 2, · · · , n,

Iij = r(xij), (22)

where xij =
((
i− n+1

2

)
h,
(
j − n+1

2

)
h
)T

. We represent F
as a three-dimensional grid function sampled from a smooth
function e : R2 × S → R, i.e., for i, j = 1, 2, · · · , n,

FA
ij = e(xij , A), (23)

where xij =
((
i− n+1

2

)
h,
(
j − n+1

2

)
h
)T

and A ∈ S, S is a
subgroup of O(2). For i, j = 1, 2, · · · , p, and A,B ∈ S, we
have

Ψ̃A
ij = ϕin

(
A−1xij

)
,

Φ̃B,A
ij = ϕA

(
B−1xij

)
,

Υ̃A
ij = ϕout

(
A−1xij

)
,

(24)

where xij = ((i− (p+1)/2)h, (j − (p+1)/2)h)
T , and ϕ and

ϕA are parameterized filters. Let

xij =

((
i− p+ 1

2

)
h,

(
j − p+ 1

2

)
h

)T

,

yij =

((
i− n+ p+ 2

2

)
h,

(
j − n+ p+ 2

2

)
h

)T

.

(25)

For ∀A ∈ S and i, j = 1, 2, · · · , n, the convolution of Ψ̃ and
I is (

Ψ̃ ? I
)A
ij

=
∑

(̃i,j̃)∈Λ

ϕin

(
A−1xĩj̃

)
r
(
yij − xĩ,j̃

)
, (26)

where Λ is a set of indexes, denoted as Λ = {(i, j)|i, j =
1, 2, · · · , p}, and ∗ represents the common 2D convolution.
For any B ∈ S and i, j = 1, 2, · · · , n, the convolution of Φ̃
and F is(

Φ̃ ? F
)B
ij

=
∑

(̃i,j̃)∈Λ,A∈S

ϕA

(
B−1xĩj̃

)
e
(
yij − xĩ,j̃ , BA

)
,

(27)

where Λ = {(i, j)|i, j = 1, 2, · · · , p}. For i, j = 1, 2, · · · , n,
the convolution of Υ̃ and F is(

Υ̃ ? F
)
ij

=
∑

(̃i,j̃)∈Λ,B∈S

ϕout

(
B−1xĩj̃

)
e
(
yij − xĩ,j̃ , B

)
(28)

where Λ = {(i, j)|i, j = 1, 2, · · · , p}.
The transformations on I and F are defined by(
π̃R
Ã

(I)
)
ij

= πR
Ã

[r](xij),
(
π̃Ẽ
Ã

(F )
)A
ij

= πE
Ã

[e](xij , A),

∀i, j = 1, 2, · · · , n,∀A, Ã ∈ S.
(29)

Then we introduce following necessary lemmas.

Lemma 1. For smooth functions r : R2 → R and ϕ : R2 → R,
let f(x) = ϕ

(
Ã−1x

)
r(y − x). If ∀x ∈ R2, the follow results

are satisfied:

|r(x)| ≤ F1, |ϕ(x)| ≤ F2,

‖∇r(x)‖ ≤ G1, ‖∇ϕ(x)‖ ≤ G2,

‖∇2r(x)‖ ≤ H1, ‖∇2ϕ(x)‖ ≤ H2,

∀‖x‖ ≥ (p+1/2)h, ϕ(x) = 0,

(30)

where p, h > 0, ∇ and ∇2 denote the operators of gradient
and Hessian matrices, respectively. Then, ∀Ã ∈ S, y ∈ R the
following results are satisfied:

max

{∣∣∣∣∂2f(x)

∂x2
1

∣∣∣∣ , ∣∣∣∣∂2f(x)

∂x2
2

∣∣∣∣} ≤ C,
max

{∣∣∣∣ d2

dx2
2

∫
R
f(x)dx1

∣∣∣∣ , ∣∣∣∣ d2

dx2
1

∫
R
f(x)dx2

∣∣∣∣} ≤ C(p+1)h,

(31)

where C = F1H2 + F2H1 + 2G1G2.
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Proof. It is easy to deduce that:∣∣∣∣∣∂r(Ãy − x)

∂x1

∣∣∣∣∣ ≤ ‖∇r(x)‖ ≤ G1,∣∣∣∣∣∂ϕ(Ãx)

∂x1

∣∣∣∣∣ ≤ ‖∇ϕ(x)‖ ≤ G2∣∣∣∣∣∂2r(Ãy − x)

∂x2
1

∣∣∣∣∣ ≤ ‖∇2r(x)‖ ≤ H1,∣∣∣∣∣∂2ϕ(Ãx)

∂x2
1

∣∣∣∣∣ ≤ ‖∇2ϕ(x)‖ ≤ H2.

(32)

Then we can obtain that

∣∣∣∣∂2f(x)

∂x2
1

∣∣∣∣ =

∣∣∣∣∣∣
∂
(
ϕ(Ãx)∂r(y − x) + r(y − x)∂ϕ(Ãx)

)
∂x2

1

∣∣∣∣∣∣
=

∣∣∣∣ϕ(Ãx)∂2r(y − x) + r(y − x)∂2ϕ(Ãx) + 2∂ϕ(Ãx)∂r(y − x)

∂x2
1

∣∣∣∣
≤F1H2 + F2H1 + 2G1G2.

(33)

Since the same result can also be deduced for x2, the proof
of the first inequality is complete.

Besides, ∀‖x‖ ≥ (p+1/2)h, ϕ(x) = 0, and only in the
circular area with radius (p+1/2)h. We then have

∣∣∣∂2f(x)
∂x2

2

∣∣∣ > 0,
and thus ∣∣∣∣ d2

dx2
2

∫
R
f(x)dx1

∣∣∣∣ =

∣∣∣∣∫
R

∂2

∂x2
2

f(x)dx1

∣∣∣∣
≤
∫ p+1

2 h

− p+1
2 h

∣∣∣∣ ∂2

∂x2
2

f(x)

∣∣∣∣ dx1

≤C(p+ 1)h.

(34)

Since the same result can be deduced for x2, this completes
the proof of the first Inequality.

Lemma 2. For any f : R → R, denote l as the linear
interpolation function between points x = a and x = b, i.e.,

l(x) =
(x− a)f(b) + (b− x)f(a)

b− a
. (35)

If f ′′ is continuous in [a, b] and |f ′′(x)| ≤ C, then it holds that

|f(x)− l(x)| ≤ C

8
(a− b)2. (36)

Proof. Based on the Taylor’s theorem with Lagrange remain-
der, we can obtain

f(a) = f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(ξ)

f(b) = f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(ζ).

(37)

Besides, it is easy to deduce that

f(x) =
(x− a)f(x) + (b− x)f(x)

b− a
. (38)

Thus,
l(x)− f(x)

=
(x− a)(f(b)− f(x)) + (b− x)(f(a)− f(x))

b− a

=(x− a)

(
1

2
(b− x)2f ′′(ζ)

)
+

(b− x)

(
1

2
(a− x)2f ′′(ξ)

)
=

(x− a)(b− x)

2

(
b− x
b− a

f ′′(ζ) +
x− a
b− a

f ′′(ξ)

)
.

(39)

Since |(x− a)(b− x)| ≤ (b−a)2/4, we can obtain

|l(x)− f(x)|

=

∣∣∣∣ (x− a)(b− x)

2

(
b− x
b− a

f ′′(ζ) +
a− x
b− a

f ′′(ξ)

)∣∣∣∣
≤
∣∣∣∣ (b− a)2

2

(
b− x
b− a

C +
x− a
b− a

C

)∣∣∣∣
=
C

8
(b− a)2.

(40)

Lemma 3. For smooth functions r : R2 → R and ϕ : R2 → R,
if for x ∈ R2, the follow conditions are satisfied:

|r(x)| ≤ F1, |ϕ(x)| ≤ F2,

‖∇r(x)‖ ≤ G1, ‖∇ϕ(x)‖ ≤ G2,

‖∇2r(x)‖ ≤ H1, ‖∇2ϕ(x)‖ ≤ H2,

∀‖x‖ ≥ (p+1/2)h, ϕ(x) = 0

(41)

where p, h > 0, ∇ and ∇2 denotes the operators of gradient and
Hessian matrix, respectively, then, ∀Ã ∈ S, y ∈ R the following
results are satisfied:∣∣∣∣∫

R2

ϕ
(
Ã−1x

)
r (y − x) dσ(x) −

∑
i,j∈Λ

ϕ
(
Ã−1xij

)
r (y − xij)h2

∣∣∣∣∣∣ ≤ (p+ 1)2C

4
h4,

(42)

where A ∈ S and Λ = {(i, j)|i, j = 1, 2, · · · , p}, xij =

((i− (p+1)/2)h, (j − (p+1)/2)h)
T and C = F1H2 + F2H1 +

2G1G2.

Proof. 1) Denote f(x) = ϕ
(
Ã−1x

)
r(y − x), and we first

prove that for any n ∈ Z, it holds that∣∣∣∣∣
∫
R
f

([
x1

nh

])
dx1−

∑
m∈Z

f

([
mh
nh

])
h

∣∣∣∣∣ ≤ C(p+ 1)

8
h3. (43)

By Lemma 1, we can obtain that
∣∣∣∂2f(x)

∂x2
1

∣∣∣ ≤ C . Then by
Lemma 2, we can obtain that ∀m,n ∈ Z,mh ≤ x1 < (m +
1)h, it holds that,∣∣∣∣f ([x1

nh

])
− lmn

([
x1

nh

])∣∣∣∣ ≤ C

8
h2, (44)

where lmn is the linear interpolation function of f between

points x =

[
mh
nh

]
and x =

[
mh+ h
nh

]
, i.e.,

lmn(x) =

(x1 −mh)f

([
mh+ h
nh

])
+ (mh+ h− x1)f

([
mh
nh

])
h

.

(45)
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Thus,∣∣∣∣∫ mh+h

mh

(
f

([
x1

nh

]))
dx1 −

∫ mh+h

mh

(
lmn

([
x1

nh

]))
dx1

∣∣∣∣
=

∣∣∣∣∫ mh+h

mh

(
f

([
x1

nh

])
− lmn

([
x1

nh

]))
dx1

∣∣∣∣
≤
∫ mh+h

mh

∣∣∣∣f ([x1

nh

])
− lmn

([
x1

nh

])∣∣∣∣ dx1

≤
∫ mh+h

mh

C

8
h2dx1 =

C

8
h3.

(46)

Besides, we have∣∣∣∣∣
∫
R
f

([
x1

nh

])
dx1 −

∑
m∈Z

f

([
mh
nh

])
h

∣∣∣∣∣
=

∣∣∣∣∣
∫
R
f

([
x1

nh

])
dx1 −

∑
m∈Z

h

2

(
f

([
mh
nh

])
+ f

([
mh+ h
nh

]))∣∣∣∣∣
=

∣∣∣∣∣
∫
R
f

([
x1

nh

])
dx1 −

∑
m∈Z

∫ mh+h

mh

(
lmn

([
x1

nh

]))
dx1

∣∣∣∣∣
≤
∑
m∈Z

∣∣∣∣∫ mh+1

mh
f

([
x1

nh

])
dx1 −

∫ mh+h

mh

(
lmn

([
x1

nh

]))
dx1

∣∣∣∣ .
(47)

Since ∀‖x‖ ≥ (p+1/2)h, ϕ(x) = 0, there are at most p + 1
values of m, s.t.,∣∣∣∣∣
∫ mh+h

mh

(
f

([
x1

nh

]))
dx1−∫ mh+h

mh

(
lmn

([
x1

nh

]))
dx1

∣∣∣∣∣ 6= 0,

(48)

while all of them satisfy (46). Then, by (46), (47) and (48), we
can easily achieve (43).

2) We then prove∣∣∣∣∣
∫
R2

f (x) dσ(x)−
∑
n∈Z

∫
R
f

([
x1

nh

])
dx1h

∣∣∣∣∣
≤ (p+ 1)2C

8
h4.

(49)

Let F (x2) =
∫
R f

([
x1

x2

])
dx1, and then∫

R2

f (x) dσ(x) =

∫
R
F (x2) dx2. (50)

By Lemma 1, we can obtain that |F ′′(x2)| ≤ (p + 1)hC.
Let Ln(x2) be the linear interpolation function of F (x2),
between points x2 = nh and x2 = nh, and then for any
x2 ∈ [nh, nh+ h], by Lemma 2, we have

|F (x2)− Ln(x2)| ≤ (p+ 1)C

8
h3. (51)

Thus, similar to (46), we can deduce that∣∣∣∣∣
∫ nh

nh+h
F (x2)dx2 −

∫ nh

nh+h
Ln(x2)dx2

∣∣∣∣∣
≤
∫ nh

nh+h
|F (x2)− Ln(x2)| dx2

≤ (p+ 1)C

8
h4.

(52)

Then, similar to (47), we can deduce that∣∣∣∣∣
∫
R2

f (x) dσ(x) −
∑
n∈Z

∫
R
f

([
x1

nh

])
dx1h

∣∣∣∣∣
=

∣∣∣∣∣
∫
R
F (x2)dx2 −

∑
n∈Z

F (nh)h

∣∣∣∣∣
=

∣∣∣∣∣
∫
R
F (x2)dx2 −

∑
n∈Z

1

2
(F (nh) + F (nh+ h))h

∣∣∣∣∣
≤
∑
n∈Z

∣∣∣∣∫ nh+h

nh

F (x2)dx2 − 1

2
(F (nh) + F (nh+ h))h

∣∣∣∣ .

(53)

Since ∀‖x‖ ≥ (p+1/2)h, ϕ(x) = 0, there are at most p + 1
values of m, s.t.,∣∣∣∣∣
∫ nh+h

nh
F (x2)dx2 −

1

2
(F (nh) + F (nh+ h))h

∣∣∣∣∣ 6= 0, (54)

while all of them satisfy (52). Then, by (52), (53) and (54), we
can easily achieve (49).

3) By (43) and 49, we can obtain∣∣∣∣∣
∫
R2

ϕ(Ã−1x)r(y−x)dσ(x)−
∑
i,j∈Λ

ϕ(Ã−1xij)r(y−xij)h2

∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R
f(x)dx−

∑
m,n∈Z

f

([
mh
nh

])
h2

∣∣∣∣∣∣
≤

∣∣∣∣∣
∫
R
f(x)dx−

∑
n∈Z

∫
R
f

([
x1

nh

])
dx1h

∣∣∣∣∣+∑
n∈Z

∣∣∣∣∣
∫
R
f

([
x1

nh

])
dx1 −

∑
m∈Z

f

([
x1

nh

])
h

∣∣∣∣∣h,

(55)

where, by (49),∣∣∣∣∣
∫
R
f(x)dx−

∑
n∈Z

∫
R
f

([
x1

nh

])
dx1h

∣∣∣∣∣
≤ (p+ 1)2C

8
h4.

(56)

Besides, Since ∀‖x‖ ≥ (p+1/2)h, ϕ(x) = 0, we only have
p+ 1 values of m, s.t.,∣∣∣∣∣

∫
R
f

([
x1

nh

])
dx1 −

∑
m∈Z

f

([
x1

nh

])
h

∣∣∣∣∣ 6= 0. (57)

Thus, by (43), we have

∑
n∈Z

∣∣∣∣∣
∫
R
f

([
x1

nh

])
dx1 −

∑
m∈Z

f

([
x1

nh

])
h

∣∣∣∣∣h
≤ (p+ 1)2C

8
h4.

(58)

Combining (55), (56), (58), we can deduce (42), which com-
pletes the proof.

Finally, let us finally prove Theorem 1.

Theorem 1. Assume that an image I ∈ Rn×n is discretized
from the smooth function r : R2 → R by (22), a feature map F ∈
Rn×n×t is discretized from the smooth function e : R2 × S → R
by (23), |S| = t, and filters Ψ̃, Φ̃ and Υ̃ are generated from
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ϕin, ϕout and ϕA,∀A ∈ S, by (24), respectively. If for any
A ∈ S, x ∈ R2, the following conditions are satisfied:

|r(x)|, |e(x,A)| ≤ F1,

‖∇r(x)‖, ‖∇e(x,A)‖ ≤ G1,

‖∇2r(x)‖, ‖∇2e(x,A)‖ ≤ H1,

|ϕin(x)|, |ϕA(x)|, |ϕout(x)| ≤ F2,

‖∇ϕin(x)‖, ‖∇ϕA(x)‖, ‖∇ϕout(x)‖ ≤ G2,

‖∇2ϕin(x)‖, ‖∇2ϕA(x)‖, ‖∇2ϕout(x)‖ ≤ H2,

∀‖x‖ ≥ (p+1)h/2, ϕin(x), ϕA(x), ϕout(x) = 0,

(59)

where p is the filter size, h is the mesh size, and ∇ and ∇2 denote
the operators of gradient and Hessian matrix, respectively, then
for any Ã ∈ S, the following results are satisfied:∥∥∥Ψ̃ ? π̃R

Ã
(I)− π̃Ẽ

Ã

(
Ψ̃ ? I

)∥∥∥
∞
≤ C

2
(p+ 1)2h2,∥∥∥Φ̃ ? π̃Ẽ

Ã
(F )− πẼ

Ã

(
Φ̃ ? F

)∥∥∥
∞
≤ C

2
(p+ 1)2h2t,∥∥∥Υ̃ ? π̃Ẽ

Ã
(F )− π̃R

Ã

(
Υ̃ ? F

)∥∥∥
∞
≤ C

2
(p+ 1)2h2t,

(60)

where C = F1H2 + F2H1 + 2G1G2, π̃R
Ã

, π̃Ẽ
Ã

, Ψ̃, Φ̃ and Υ̃ are
defined by (24) and (29), respectively, the operators ? involved in
Eq. (60) are defined in (26), (27) and (28, respectively, and ‖ · ‖∞
represents the infinity norm.

Proof. For any y ∈ R, A,B ∈ S, let

Ψ̂[r](y,A) =
∑

(̃i,j̃)∈Λ

ϕin
(
A−1xĩj̃

)
r
(
y − xĩ,j̃

)
, (61)

where Λ = {(̃i, j̃)|̃i, j̃ = 1, 2, · · · , p}. Then, for any A ∈ S,
we can obtain

Ψ̂[r](yij , A) =
(

Ψ̃ ? I
)A
ij
. (62)

1) By Remark 2, we know that Ψ
[
πR
Ã

[r]
]

= πE
Ã

[Ψ [r]].
Thus for any A ∈ S, we have∣∣∣∣(Ψ̃ ? π̃R

Ã
(I)− π̃Ẽ

Ã

(
Ψ̃ ? I

))A
ij

∣∣∣∣
=
∣∣∣Ψ̂ [πR

Ã
[r]
]

(yij , A)− πE
Ã

[
Ψ̂[r]

]
(yij , A)

∣∣∣
≤
∣∣∣∣Ψ̂ [πR

Ã
[r]
]

(yij , A)− 1

h2
Ψ
[
πR
Ã

[r]
]

(yij , A)

∣∣∣∣
+

∣∣∣∣πE
Ã

[
Ψ̂[r]

]
(yij , A)− 1

h2
πE
Ã

[Ψ[r]] (yij , A)

∣∣∣∣ .
(63)

Let r̂ = πR
Ã

[r], and then it is easy to deduce that r̂ satisfies
the conditions in Lemma 3. Then, by Lemma 3,∣∣∣∣Ψ̂ [πR

Ã
[r]
]

(yij , A)− 1

h2
Ψ
[
πR
Ã

[r]
]

(yij , A)

∣∣∣∣
=

1

h2

∣∣∣Ψ̂ [πR
Ã

[r]
]

(yij , A)h2 −Ψ
[
πR
Ã

[r]
]

(yij , A)
∣∣∣

=
1

h2

∣∣∣∣∣∣
∑

(i,j)∈Λ

ϕin

(
A−1xij

)
r̂ (yij − xi,j)h2−

∫
R2

ϕin

(
A−1x

)
r̂(yij − x)dσ(x)

∣∣∣∣
≤ (p+ 1)2C

4
h2.

(64)

Besides, let Â = Ã−1A and ŷij = Ã−1yij , and by Lemma
3, we can also achieve,∣∣∣∣πE

Ã

[
Ψ̂[r]

]
(yij , A)− 1

h2
πE
Ã

[Ψ[r]] (yij , A)

∣∣∣∣
=

1

h2

∣∣∣πE
Ã

[
Ψ̂[r]

]
(yij , A)h2 − πE

Ã
[Ψ[r]] (yij , A)

∣∣∣
=

1

h2

∣∣∣∣∣∣
∑

(i,j)∈Λ

ϕin

(
Â−1xij

)
r (ŷij − xi,j)h2−

∫
R2

ϕin

(
Â−1x

)
r(ŷij − x)dσ(x)

∣∣∣∣
≤ (p+ 1)2C

4
h2.

(65)

Thus, combining (63), (64) and (65), we can achieve∣∣∣Ψ̂[πR
Ã

[r]
]
(yij , A)−πE

Ã

[
Ψ̂[r]

]
(yij , A)

∣∣∣≤ C
2

(p+ 1)2h2. (66)

In other word,∣∣∣∣(Ψ̃ ? π̃R
Ã

(I)− π̃Ẽ
Ã

(
Ψ̃ ? I

))A
ij

∣∣∣∣ ≤ C

2
(p+ 1)2h2. (67)

This proves the first inequality in (60).
2) For any A,B ∈ S, let B̂ = Ã−1B, rA = e(x,A), and

Ψ̂A be a operator defined in the formulation of (61), while
correlated to ϕA. Then, for any i, j = 1, 2, · · · , n, B ∈ S,∣∣∣∣(Φ̃ ? π̃Ẽ

Ã
(F )− πẼ

Ã

(
Φ̃ ? F

))B
ij

∣∣∣∣
=

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ,A∈S

ϕA

(
B−1xĩj̃

)
e
(
Ã−1

(
yij−xĩ,j̃

)
, Ã−1BA

)
−

∑
(̃i,j̃)∈Λ,A∈S

ϕA

(
B−1Ãxĩj̃

)
e
(
Ã−1yij−xĩ,j̃ , Ã

−1BA
)∣∣∣∣∣∣

≤
∑
A∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

ϕA

(
B−1xĩj̃

)
rB̂A

(
Ã−1yij−Ã−1xĩ,j̃

)
−

∑
(̃i,j̃)∈Λ

ϕA

(
B−1Ãxĩj̃

)
rB̂A

(
Ã−1yij−xĩ,j̃

)∣∣∣∣∣∣
=
∑
A∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

ϕA

(
B−1xĩj̃

)
πR
Ã

[rB̂A]
(
yij−xĩ,j̃

)
−

∑
(̃i,j̃)∈Λ

ϕA

(
B−1Ãxĩj̃

)
rB̂A

(
Ã−1yij−xĩ,j̃

)∣∣∣∣∣∣
=
∑
A∈S

∣∣∣Ψ̂A

[
πR
Ã

[rB̂A]
]
(yij , B)−πE

Ã

[
Ψ̂A[rB̂A]

]
(yij , B)

∣∣∣ .
Then by (66), we can achieve that ∀i, j = 1, 2, · · · , n, B ∈ S,∣∣∣∣(Φ̃ ? π̃Ẽ

Ã
(F )− πẼ

Ã

(
Φ̃ ? F

))B
ij

∣∣∣∣ ≤ C

2
(p+ 1)2h2t. (68)

This proves the second inequality in (60).
3) For any A,B ∈ S, let B̂ = Ã−1B, rA = e(x,A), and

Ψ̂out be a operator defined in the formulation of (61), while
correlated to ϕout.
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Then, we have that ∀i, j = 1, 2, · · · , n,∣∣∣∣(Υ̃ ? π̃Ẽ
Ã

(F )− πẼ
Ã

(
Υ̃ ? F

))
ij

∣∣∣∣
=

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ,B∈S

ϕout

(
B−1xĩj̃

)
e
(
Ã−1

(
yij−xĩ,j̃

)
, Ã−1B

)
−

∑
(̃i,j̃)∈Λ,B∈S

ϕout

(
B−1Ãxĩj̃

)
e
(
Ã−1yij−xĩ,j̃ , Ã

−1B
)∣∣∣∣∣∣

≤
∑
B∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

ϕout

(
B−1xĩj̃

)
rB̂

(
Ã−1yij−Ã−1xĩ,j̃

)
−

∑
(̃i,j̃)∈Λ

ϕout

(
B−1Ãxĩj̃

)
rB̂

(
Ã−1yij−xĩ,j̃

)∣∣∣∣∣∣
=
∑
B∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

ϕout

(
B−1xĩj̃

)
πR
Ã

[rB̂ ]
(
yij−xĩ,j̃

)
−

∑
(̃i,j̃)∈Λ

ϕout

(
B−1Ãxĩj̃

)
rB̂

(
Ã−1yij−xĩ,j̃

)∣∣∣∣∣∣
=
∑
B∈S

∣∣∣Ψ̂out

[
πR
Ã

[rB̂ ]
]
(yij , B)−πE

Ã

[
Ψ̂out[rB̂ ]

]
(yij , B)

∣∣∣ .
Then by (66), we can achieve that ∀i, j = 1, 2, · · · , n,∣∣∣∣(Υ̃ ? π̃Ẽ

Ã
(F )− πẼ

Ã

(
Υ̃ ? F

))
ij

∣∣∣∣ ≤ C

2
(p+ 1)2h2t. (69)

This proves the third inequality in (60).

2 MORE EXPLORATIONS ON FOURIER BASES

2.1 Aliasing Effect of Fourier Bases

Here we shortly introduce the aliasing effect of Fourier
Bases.

Let us have a look at the 1D example depicted in Fig. 1
for easily understanding the aliasing effect. From the figure,
we can see that the discretizations of a high frequency and
a low frequency cosine function can be exactly the same.
However, the discretization of the transformation results of
the high frequency one tend to be highly unpredictable.

Such aliasing effect also easily occurs in the commonly
used 2D Fourier series expansion. As depicted by the basis
in Fig. 1 (c), 2D Fourier bases with high frequency look
similar to that with low frequency shown in Fig. 1 (b) when
there are no rotations. However, the high frequency basis
will be badly destructed after rotation.

2.2 Other Explorations

Firstly, we can deduce the following conclusion.

Remark 3. When p is an odd number, the basis set defined in
Eq. (2) can be equivalently reduced to p2 elements. When p is an
even number, the basis set defined in Eq. (2) can be equivalently
reduced to (p+ 1)2 − 2 elements.

(b) (c)
-4 -3 -2 -1 0 1 2 3 4

-1

-0.5

0

0.5

1

(a) The aliasing effect

Fig. 1. (a) An 1D example showing the insight under this aliasing effect:
∀x ∈ N, f1(x) = f2(x), where f1(x) = cos(2π/p · 2x), f2(x) =
cos(2π/p · 9x). Although the discretization of the two functions are
the same, interpolation of the high frequency one tends to be highly
unpredictable. (b)-(c) illustration of rotating φc1,1 and φc10,10 by 45◦. Note
that φc1,1 is the same as φc10,10, but their rotation results are different to
each other, which is due to the heavy aliasing effect in φc10,10.

Proof. 1) When p is an odd number, we can deduce that
∀k, l = 0, 1, · · · , p− 1,

ϕc
kl(x)

= Ω(x) cos

(
2π

ph

((
k −

⌊p
2

⌋)
x1 +

(
l −

⌊p
2

⌋)
x2

))
= Ω(x) cos

(
2π

ph

((⌊p
2

⌋
− k

)
x1 +

(⌊p
2

⌋
− l
)
x2

))
= Ω(x) cos

(
2π

ph

((
p−1−k−

⌊p
2

⌋)
x1+

(
p−1−l−

⌊p
2

⌋)
x2

))
= ϕc

(p−1−k)(p−1−l)(x).

(70)

Similarly, we also can deduce

ϕs
kl(x) = −ϕs

(p−1−k),(p−1−l)(x). (71)

Besides, it is easy to deduce that 0 ≤ (p−1−k) ≤ p−1, 0 ≤
(p−1− l) ≤ p−1. We also have (k, l) = (p−1−k, p−1−k)
if and only if (k, l) = (bp/2c , bp/2c). This means that we can
reduce half of bases in the case (k, l) 6= (bp/2c , bp/2c), i.e.,
p2 − 1 bases are enough.

Moreover in the case (k, l) = (bp/2c , bp/2c), there are
only two bases, ϕc

kl(x) = cos(0) = 1 and ϕs
kl(x) =

sin(0) = 0, where we only need ϕc
kl(x) when performing

filter parametrization.
In summary, the proposed basis set actually can be

reduced to p2 elements.
2) When p is an even number, we can deduce that

ϕc
kl(x)

= Ω(x) cos

(
2π

ph

((
k −

⌊p
2

⌋)
x1 +

(
l −

⌊p
2

⌋)
x2

))
= Ω(x) cos

(
2π

ph

((⌊p
2

⌋
− k

)
x1 +

(⌊p
2

⌋
− l
)
x2

))
= Ω(x) cos

(
2π

ph

((
p−k−

⌊p
2

⌋)
x1+

(
p−l−

⌊p
2

⌋)
x2

))
= ϕc

(p−k)(p−l)(x).

(72)

Similarly, we also can deduce

ϕs
kl(x) = −ϕs

(p−k),(p−l)(x). (73)

It is easy to obtain that for the case when k, l = 1, 2, · · · , p−1
and (k, l) 6= (bp/2c , bp/2c), we have ((p− k), (p− l)) 6= (k, l)
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(b) Fourier-1D bases(a) Proposed bases

Fig. 2. Illustrations of (a) the proposed bases defined in Eq. (74) and (b)
1D Fourier bases defined in Eq. (75), where p = 11. We have removed
the duplicates in the proposed basis set and only left p2 elements for
better visualization.

and 1 ≤ (p−k) ≤ p−1, 1 ≤ (p− l) ≤ p−1. This means that
we can reduce half of the bases in this case, where the total
number of bases is 2(p− 1)2− 2. In other word, (p− 1)2− 1
bases are enough in this case.

Besides, in the case (k, l) = (bp/2c , bp/2c), there are
only two bases, ϕc

kl(x) = cos(0) = 1 and ϕs
kl(x) =

sin(0) = 0, where we only need ϕc
kl(x) when performing

filter parametrization.
In the case otherwise the above two cases (i.e., k = 0

cases and l = 0 cases), the total basis number is 4p − 2.
Therefore, the number of bases we need is (p−1)2−1+1+
4p− 2 = (p+ 1)2 − 2.

From Remark 3, we know that about half number of the
elements in the proposed basis set is enough for our filter
parametrization. More specifically, when p is a odd number,
the proposed basis set defined in Eq. (2) is equivariant to,

ϕc
kl(x) = Ω(x) cos

(
2π

ph

[
k −

⌊p
2

⌋
, l −

⌊p
2

⌋]
·
[
x1

x2

])
,

∀k, l ∈ {0 ≤ k ≤ bp/2c , 0 ≤ l ≤ bp/2c} and
∀k, l ∈ {0 ≤ k < bp/2c , bp/2c < l ≤ p− 1};

ϕs
kl(x) = Ω(x) sin

(
2π

ph

[
k −

⌊p
2

⌋
, l −

⌊p
2

⌋]
·
[
x1

x2

])
,

∀k, l ∈ {0 ≤ k < bp/2c , 0 ≤ l ≤ bp/2c} and
∀k, l ∈ {0 ≤ k < bp/2c , bp/2c ≤ l ≤ p− 1}.

(74)

One can refer to Fig. 2 for an intuitive understanding of this
basis set.

Since cos(α + β) = cos(α) cos(β) − sin(α) sin(β) and
sin(α+ β) = cos(α) sin(β) + sin(α) cos(β), it is naturally to
conduct another basis set expressed as follows:

ϕcc
kl(x)=cos

(
2π

ph
kx

)
cos

(
2π

ph
lx

)
, k, l=0, 1,· · ·, bp/2c;

ϕcs
kl(x)=cos

(
2π

ph
kx

)
sin

(
2π

ph
lx

)
, k=0, 1,· · ·, bp/2c,

l = 1, 2,· · ·, bp/2c;

(75)

ϕsc
kl(x)=sin

(
2π

ph
kx

)
cos

(
2π

ph
lx

)
, k=1, 2,· · ·, bp/2c,

l=0, 1,· · ·, bp/2c;

ϕss
kl(x)=sin

(
2π

ph
kx

)
sin

(
2π

ph
lx

)
, k, l=1, 2,· · ·, bp/2c.

We call this basis set as Fourier-1D basis in this paper, and It
is easy to deduce that when p is a odd number, this basis set
contains p2 elements, and can represent all elements in the
proposed basis set, vice versa. When p is an even number,
this basis set contains (p+1)2 elements and can represent all
elements in the proposed bases, where the proposed basis
set can represent almost all the elements in this basis set.
Therefore, the bases in Eq. (75) are actually with similar
expression ability as the proposed bases, while its highest
frequency is also bp/2c. It is thus also a good choice for
constructing filter parametrization.

As shown in the following experimental results, Fourier-
1D bases can achieve comparable performance with the pro-
posed ones in low-level tasks like image super resolution,
while its performance would be a little lower than the pro-
posed bases in the MNIST-rot classification tasks. Besides,
from Fig. 2, we can observe that the proposed basis set is
closer to the texture natural image than Fourier-1D one, in
the sense of human intuition. Therefore we still prefer to
adopt the proposed basis set for filter parametrization in the
main paper.

2.3 More Bandlimit Analysis

We have carefully tuned the band-limiting (by removing
bases with high frequency) for the Fourier bases, and it turns
out that the bandlimited bases we used (case 3 in Fig. 3) can
help achieve the best performance. In Table 2.3, we show
filer parametrization results of the full-band Fourier bases,
3 different band-limited versions of Fourier bases, and the
proposed bases, where the bases of the 3 band-limited
versions are shown in Fig. 3 (b)(c) and (d), respectively. It
can be observed that the full band Fourier bases and the
proposed ones can achieve the same representation accuracy
for a filter, while band-limitation hampers the representation
accuracy. However, when rotating the filter parametrization
results for 45◦, the rotation results of case 3 can achieve
better result than case 1, case2 and the full-band cases.
Besides, when expressing 0◦ and 45◦ filters simultaneously,
the band-limited Fourier bases case achieves the same rep-
resentation accuracy as full band cases, and outperforms
case 1 and case 2 with less band-limitation. This can be
rationally explained by the fact that the discretizations of
high frequency bases incline to be very different in 0◦ and
45◦ , which tends to make the high frequency bases hardly
be essentially used in representing the object in 0◦ and
45◦ simultaneously. Comparatively, band-limiting of case 3
will have less effect on the representation accuracy when
expressing under different orientations.

It is indeed a limitation of the original Fourier bases that
its band limitation would cause the losing of orientations.
However, the band-limiting of the proposed bases would
alleviate this problem as shown in Fig. 4.

3 MORE IMPLEMENTATION DETAILS

In the definition of the proposed bases (2), we exploit a
circular radial mask function Ω(x) to limit the range of
bases, and make them more suitable for rotation. The mask
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TABLE 1
The RMSE (mean±standard deviation over 1000 random generated samples) of filer parametrization on continuous functions, obtained by all

competing methods under different filter sizes.

Method parameterization before rotation simultaneously

original 45◦ rotation 0◦&45◦

Fourier (Full bands) 9.7e-13±3.8e-14 9.0e-01±2.4e-01 3.6e-01±2.1e-01
Fourier (case 1) 1.5e-12±4.3e-13 8.5e-01±3.7e-01 3.9e-01±2.5e-01
Fourier (case 2) 2.4e-01±3.0e-01 6.1e+00±8.8e+00 4.0e-01±4.0e-01
Fourier (case 3) 4.2e-01±4.2e-01 4.4e-01±4.2e-01 3.6e-01±3.5e-01
Proposed 9.7e-13±3.8e-14 4.1e-02±9.2e-03 2.0e-02±2.4e-03

(a) Cosine bases

(d) Bandlimited 
cosine bases (case 3)

(b)  Bandlimited cosine 
bases (case 1)

(c)  Bandlimited
cosine bases (case 2)

(b)  Bandlimited cosine bases (case 1)

Fig. 3. (a) illustrations of the Fourier bases, where we take cosine bases as examples. (b) (c) and (d) are illustrations of 3 band-limited version of
Fourier bases.

(a) Cosine bases (b) Sine bases

(c) Bandlimited 
cosine bases

(d) Bandlimited 
Sine bases

Fig. 4. (a) and (b) are illustrations of the proposed bases. (c) and (d) are illustrations of the band-limitation of the proposed bases.

satisfies that Ω(x) = 0 if ‖x‖ ≥ (p+1/2)h. Specifically, we set
it as:

Ω(x) =

 0 if ‖x‖ ≥ (r + h)

e
−5·max

{
‖x‖2

r2
−1,0

}
if ‖x‖ < (r + h)

, (76)

where r = (p−1/2)h. It is easy to deduce that when ‖x‖ < r,
Ω(x) = 1, and Ω(x) is in a circular shape with soft edge.
Fig. 5 is an illustration of the exploited Ω(x), where one can
intuitively observe that when the larger the filter size p is,
the more circular the mask is.

4 MORE EXPERIMENTAL RESULTS

In this section, we show more experimental results about
the utilized bases, the proposed filter parametrization, and
the proposed equivariant convolutions, respectively.

Fig. 5. Illustration of the circular radial mask function Ω(x). From left to
right: illustrations of Ω(x) discretized with filter size p = 5, p = 11 and
p = 17, respectively.

4.1 Rotation of Bases

Alleviating the aliasing effect when rotating to an arbitrary
angle is the most important advantage of the proposed filter
parametrization method, as compared to the original 2D
Fourier series expansion. In Fig. 3 of the main text, we have
shown the superiority of the proposed bases as compared to
traditional 2D Fourier bases. Here we provide more related
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(a) 2D Fourier Bases (b) Proposed Bases

Fig. 6. (a) Illustrations of the 2D Fouries bases, φckl and φskl, and their 45◦ rotations (rotated by π45◦ (·)), where k, l = 0, 1, · · · , p − 1 and p = 11.
The aliasing effects can be observed in most of the bases, which also result in a unexpected vortex-like patten in the maps of all these bases. (b)
Illustrations of the proposed bases, ϕckl and ϕskl, and their 45◦ rotations, where k, l = 0, 1, · · · , p − 1 and p = 11. The aliasing effect is obviously
alleviated to a large extent.

(a) Real (i) Proposed(b) Harmonic  (c) Fourier (d) Proposed (e) Real (h) Fourier(f) PDO (g) Harmonic

Rot Rot

Fig. 7. (a) A discrete random filter generated by (30) of the main text, and its π/4 rotation in visualization, with filter size p = 11. (b)-(d) The
representations and correlated π/4 rotations of a given 2D filter, where the harmonics bases [1], 2D Fourier bases [2] and the proposed bases in
this study are adopted as basis functions, respectively. (e) A discrete random filter generated by (30) of the main text and its π/4 rotation in visual,
with filter size p = 5. (f)-(i) The representations and correlated π/4 rotations of a given 2D filter, by adopting PDO bases [3], harmonics bases [1],
2D Fourier bases [2] and the proposed bases in this study as basis functions, respectively.

demonstrations on this point.

In Fig. 6, we show the rotation of all the proposed
bases (ϕc

kl and ϕs
kl, k, l = 1, 2, · · · , p − 1, defined in (2))

as compared to the traditional 2D Fourier bases (φckl and
φskl, k, l = 1, 2, · · · , p − 1, defined in (1)), where the patch
size p = 11. From Fig. 6(a), we can see that, when being
clockwisely rotated with 45◦, the high frequency ones of 2D
Fourier bases suffer evident aliasing effect issue, i.e., many
of bases are completely distorted into other shapes, which
even results in an unexpected vortex-like patten in the map
consisted by all bases. Comparatively, the proposed bases
tends to largely alleviate such aliasing phenomenon in most

of the bases, i.e., most of the bases are able to keep their
shapes after rotation, and the vortex-like patten rarely arises.

4.2 More Filter Parametrization Verifications
Visual results on random initialization. In the main text
we have shown the illustration of filter Parametrization re-
sult on a continuous function. Here, we further provide the
visual results about Parametrization of random initializa-
tion. Fig. 7 shows an example of the representation results
of Eq. (30) in the main text for the cases p = 11 and p = 5,
respectively, where PDO based method is only tested on the
case p = 5. In this experiment, although there is no ground
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TABLE 2
The RMSE (mean±standard deviation over 1000 random generated samples) of filer parametrization on continuous functions, obtained by all

competing methods under different filter sizes.

11× 11 5× 5

Method parameterization before rotation simultaneously parameterization before rotation simultaneously

original 45◦ rotation 0◦&45◦ original 45◦ rotation 0◦&45◦

PDO - - - 4.3e-01±6.5e-02 1.1e-01±1.1e-01 2.6e-01±3.3e-02
Harmonic 3.5e-01±4.3e-02 3.7e-01±4.5e-02 2.7e-01±3.4e-02 4.6e-01±6.5e-02 1.3e-01±1.3e-01 2.7e-01±3.4e-02
Harmonic+ 1.3e-01±3.3e-02 1.6e-01±2.4e-02 1.2e-01±2.5e-02 6.2e-02±1.5e-02 6.5e-02±6.5e-02 1.2e-01±2.5e-02
Fourier 9.7e-13±4.1e-14 9.1e-01±2.4e-01 3.7e-01±2.2e-01 1.7e-10±3.0e-11 2.1e-01±2.1e-01 3.7e-01±2.2e-01
Fourier+ 4.2e-01±4.1e-01 4.4e-01±4.2e-01 3.6e-01±3.5e-01 1.5e-01±1.2e-01 4.3e-01±4.3e-01 3.6e-01±3.5e-01
Fourier-1D 9.7e-13±4.2e-14 4.1e-02±9.7e-03 2.0e-02±2.6e-03 1.7e-10±3.0e-11 2.4e-02±2.4e-02 6.6e-02±2.6e-03
Proposed 9.7e-13±4.2e-14 4.1e-02±9.7e-03 2.0e-02±2.6e-03 1.7e-10±3.0e-11 2.4e-02±2.4e-02 6.6e-02±2.6e-03

TABLE 3
The RMSE (mean±standard deviation over 1000 random generated

samples) of filer parametrization on random initialization filters,
obtained by all competing methods under different filter sizes.

Method 11× 11 5× 5

PDO - 4.9e-01±1.3e-01
Harmonic 4.2e-01±5.9e-02 5.7e-01±1.2e-01
Harmonic+ 2.0e-01±3.8e-02 1.8e-01±5.9e-02
Fourier 9.5e-13±3.8e-14 6.2e-11±2.3e-11
Fourier+ 5.0e-01±7.1e-02 2.0e-01±7.7e-02
Fourier-1D 9.5e-13±5.8e-14 8.6e-11±2.9e-11
Proposed 9.5e-13±3.8e-14 6.2e-11±2.3e-11

truth for the rotation of the object filter, the performance of
rotation can still be visually assessed through observation.
For the case p = 11, it is easy to see that the filter repre-
sentation result of harmonics bases is worse than other two
comparison methods, where some sharp dark and bright
pixels are evidently lost, also leading to a blurry effect of the
rotation result. Meanwhile, the rotation result achieved by
classical Fourier bases is obviously harmed by the aliasing
effect, although its representation of the original input is
exact. As comparison, the proposed method can achieve
relatively better representation and rotation for a random
filter. For the case of p = 5, one can also easily observe
that the proposed method outperforms other competing
methods. In particular, the filter representations of PDO
and harmonics based method are more degenerated among
all comparison methods, and the proposed method more
faithfully preserves the local configurations (e.g., the black
in the upper left and the deep gray in the upper right) after
filter rotation.

Comparison with more filter parametrization methods.
In the main text, we have provided experimental results on
the proposed filter parametrization method, with compari-
son to traditional 2D-Fourier-bases-based filter parametriza-
tion (Fourier), the harmonics-based filter parametrization
(harmonic, [1], [4]) and partial-differential-operator-based
filter parametrization (PDO, [3]). In this section, We provide
more experimental result for verifying the proposed filter
parametrization method.

Since the heavy aliasing effect in the Fourier basis set
is conducted due to the high frequency bases, it is natural
to wonder whether the proposed basis set is better than
a properly bandlimited Fourier bases in the sense of filter
parametrization. Therefore, we build the Fourier+ method,

which is the filer parametrization method based on Fourier
bases with carefully tuned bandlimiting.

Besides, the harmonics used in [1] and [4] are heavily
bandlimited for more stability during rotations, which tend
to hamper the expression ability. In this section, we conduct
a Harmonic+ filter parametrization method, which is based
on the harmonic bases with less bandlimiting, where we
carefully tune the parameters of harmonic bases (τ and Kj

for j = 1, · · · , J in [1]) for more fair comparison.
Finally, for the bases in Eq.(75), we also construct a

filter method based on it. The method is called Fourier-1D
method, which shows the relationship of Eq.(75) and the
proposed method.

Tables 2 and 3 show the comparison results. From the
tables, we can observe that, in the rotation free cases, the
RMSE of the Fourier+ method is much larger than the
Fourier and the proposed methods, which implies that ban-
dlimiting does hamper the expressive ability of the bases.
Besides, we can see that the RMSE of Fourier+ is better
than Fourier when the parametrization result is rotated with
45 degree, which implies that bandlimiting helps alleviate
the aliasing effect. However, the results of Fourier+ are
still worse than the proposed method in this case. More
importantly, the RMSE of the Fourier+ and Fourier are
almost the same, when representing the object function in
0◦ and 45◦ simultaneously. This can be rationally explained
by the fact that the discretizations of high frequency bases
can be very different in 0◦ and 45◦, which tends to make
the high frequency basis hardly be used in representing the
object in 0◦ and 45◦ simultaneously, and band limiting on
Eq. (6) will affect very little. In practice, when we adopt filter
parametrization to equivariant convolutions, we actually
need to represent a filter under different orientations, and
the Fourier+ would not be a good choice in such applica-
tions.

Besides, we can observe that the proposed basis set per-
forms better than both Harmonic and Harmonic+ whether
rotated or not, which reveals the advantage of the proposed
bases over harmonics on this filter parametrization tasks.

4.3 More Equivariance Verifications
We have compared the equivariance errors of CNN, E2-
CNN [4] and the proposed F-Conv in the main text. Here,
we show more visual results.

The three utilized networks are all with 5 convolutional
layers, and each convolutional layer consistently contains
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Fig. 8. Performance illustration of CNN, E2-CNN and F-Conv on a
sample from the DIV2K dataset. The first column is the results of the
rotated free image, the second column is the results the 96◦ rotated
images, and the final column is the error maps of the first column and
the −96◦ rotated results of the second column.

a convolution, a batch normalization and a ReLU operator.
We consider the p24 group for E2CNN and F-Conv methods
and set the channel number of all convolution layers in their
utilized equivariant networks to be 9 (each channel contains
24 sub-channels correlating to 24 orientations). Besides, we
set the channel number of all convolution layers in the
utilized CNN to be 9 × 24 so that the three networks
take similar computing memory. All three networks are
randomly initialized and utilized without training.

Fig. 8 shows the visual results of CNN, E2CNN [4] and
F-Conv on an image from Urban100 data set. It is easy to
observe that the local features of the outputs of E2-CNN
and F-Conv are more stable during rotation, as compared
to that of CNN. Besides, their obtained error maps of are
clearer than that of CNN.

4.4 Verification on The Function of Output Layer Con-
volution
In this section, we compare the performance of the proposed
output layer convolution and the group pooling operator in
low-level version. Note that group pooling is the most com-
monly used output layer in previous rotation equivariant
methods [1], [4], [5].

Numerical results. We test the performance of two
kinds of rotation equivariant output layers on E2-CNN and
the proposed F-Conv method. Specifically, we construct a

(a) Input image

(d) F-Conv & OL-Conv output 

(b) CNN output

(c) F-Conv & G-pool output

Fig. 9. (a) A typical input cartoon image. (b) Output of randomly initial-
ized CNN and two versions of F-Conv, respectively, where the demar-
cated areas are zoomed in 5 times for easy observation.

TABLE 4
The average denoising results of competing networks on 4 image
datasets, including Urban100 [6], B100 [7], Set14 [8] and Set5 [9].

E2-CNN F-Conv

Dataset G-pool OL-Conv G-pool OL-Conv

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Urban100 29.13 0.854 29.25 0.857 29.58 0.864 29.63 0.867
B100 29.06 0.796 29.12 0.798 29.23 0.802 29.28 0.806
Set14 29.06 0.790 29.18 0.792 29.27 0.794 29.36 0.799
Set5 31.20 0.864 31.35 0.867 31.52 0.872 31.56 0.873

lightweight ResNet [10] for our experiments. The network
consists of 8 standard residual blocks with kernel size 5,
where we consider the p8 group and set 16 multi-channel
feature maps for all the correlated intermediate convolution
layers (i.e., the total channel number is 16 × 8 = 128).
For the output layer of the competing methods, we use the
following two settings:

• Group pooling (G-pool). The group pooling opera-
tor is not able to change the channel number. We thus
first additionally adopt an intermediate convolution
layer group pooling to change the channel number
form 16 to 3 (the channel number of RGB image),
and then we adopt the group max-pooling operator.

• Output layer convolution (OL-Conv). We directly
adopt the output layer convolution in this setting,
changing channel number form 16 to 3.

For each of the two setting, the rotation equivariance is
presented through the entire network.

We adopt the competing networks to a simulated image
denoising task. We use 800 training images from the DIV2K
dataset [11] to generate the training set. The noisy image
is generated by adding Gaussian noise (whose standard
deviation is 50) to the clean image. All the networks are
trained for 40 epoches with Adam optimizer, with batch
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Fig. 10. The Bars of average SR results of all competing methods on the 4 exploited image datasets, including Urban100, B100, Set14 and Set5.

TABLE 5
Results of all competing methods with similar simple network

architecture on MNIST-rot-12k.

Method Test Error (%) Params

G-CNN [5] 2.00±0.106 201.7k
E2-CNN [4] 1.23±0.068 44.6k
PDO-eConv [3] 1.79±0.138 60.6k
F-Conv-reduce 1.23±0.091 44.6k
F-Conv-1D 1.27±0.082 100.9k
F-Conv 1.13±0.059 100.9k

size set as 32 and patch size set as 96, respectively. Note
that all models are trained without data argumentation. For
testing, we use four standard benchmark datasets, including
Urban100 [6], B100 [7], Set14 [8] and Set5 [9], which contain
100, 100, 14 and 5 natural images, respectively.

The experimental result are listed in Table 4. From the
table, it is easy to observe that the output layer convolu-
tion indeed helps consistently improve the performance, as
compared with group pooling based output layer.

Visual results. Fig. 9 further shows the output of CNN
and F-Conv with an cartoon input image, where The net-
work setting is the same as that in Section 5.2 of the
main text. For F-Conv, we show its results with setting
its output layer as G-pool and OL-Conv, respectively. It is
easy to observe that the output of F-Conv with OL-Conv is
much shows clearer structure details than F-Conv with G-
pool, implying that OL-Conv is much suitable for low-level
version tasks.

4.5 More Image Classification Results
Comparison in simple architectures. In the main text, we
have evaluated the performance of F-Conv with comparison
to current equivariant convolutions, under similar networks
structure. In this section, we further conduct two more
methods for more comprehensive experimental exploration.

Since the proposed method contains more parameters
than the state-of-the-art baselines under similar network
structure, we conduct a method called F-Conv-reduce,
which only utilizes the first 11 principal components of the
proposed basis set for filter parametrization and contains
exactly the same number of channels and parameters as E2-
CNN method. Besides, we have also constructed a version

TABLE 6
Results of leading board methods and ours on MNIST-rot-12k.

Method Test Error (%) Params

H-Net [12] 1.69 0.03M
OR-TIPooling [13] 1.54 ≈1M
RotEqNet [14] 1.01 0.10M
PTN-CNN [15] 0.89 0.25M
SFCNN [1] 0.714±0.022 ≈3M
E2-CNN [4] 0.682±0.022 ≈5M
PDO-eConv [3] 0.709 0.65M
F-Conv-1D 0.684±0.028 3.05M
F-Conv 0.671±0.020 3.05M

of equivariant convolution for the bases in Eq.(75), which is
named as F-Conv-1D.

Table 5 shows the results of all competing methods on
MNIST-rot-12k. We can see that the F-Conv-reduce achieves
comparable performance as E2-CNN in this task. It should
be noted that the utilized networks of different methods
contains the same channel number, and the difference of
these methods in parameter number is mainly attributed
to their different basis numbers for representing a filter
(E2CNN contains 11 bases, PDO-eConv contains 15 bases,
F-Conv contains 25 bases, respectively), which not substan-
tially affect the computing memory and inference efficiency.
Therefore, F-Conv actually has achieved better performance
than F-Conv-reduce and E-2CNN with only unessentially
more computation cost. This verifies that the proposed F-
Conv is comparable to the state of art methods on this
classification task.

Besides, from the table we can also observe that the per-
formance of F-Conv-1D method is relatively lower than E2-
CNN and F-Conv, which implies that the proposed method
is a better basis set than that defined in Eq.(75) in this image
classification task.

Comparison with the leading board methods. We
conduct experiments for F-Conv-1D method on a larger
network, and compare the performance with leading board
methods (the detail experimental setting can refer to Table
5 of the main text). The results are shown in Table 6. It
can be observed that the performance of Fourier-1D seems
comparable to the E2-CNN method, while is still lower than
the proposed F-Conv method.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021 14

(a) Ground Truth (b) CNN (c) G-CNN (d) E2-CNN (e) PDO-eConv (f) F-Conv

ED
SR

R
D

N
R

C
A

N

Fig. 11. (a) A sample of high-resolution image from the Urban100 [6] dataset. (b) From upper to lower: the 2 times super-resolution images restored
by the EDSR, RDN and RCAN methods, respectively, where the convolution operators are set as commonly used convolutions, i.e., CNN. (c)-(f)
From upper to lower: the super-resolution images restored by the EDSR, RDN and RCAN methods, respectively, where the convolution operators
are set as G-CNN, E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained with data argumentation.
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Fig. 12. ((a) A sample of high-resolution image from the Urban100 [6] dataset. (b) From upper to lower: the 4 times super-resolution images restored
by the EDSR, RDN and RCAN methods, respectively, where the convolution operators are set as commonly used convolutions, i.e., CNN. (c)-(f)
From upper to lower: the super-resolution images restored by the EDSR, RDN and RCAN methods, respectively, where the convolution operators
are set as G-CNN, E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained without data argumentation.

4.6 Super-resolution Experimental Results

More results to Section 5.4 of the main text. In the main
text, we have adopted the filter parameterized equivariant
convolutions to image super-resolution(SR) in Section 5.4 of
the main text. Here, we further show more experimental
results.

We have shown the averaging numerical results in Table
7 of the main text. Here we further plot the bars to more
intuitively compare the significance of those results in Fig.
10. From the figure, the advantage of the proposed method
can be easily observed.

We have shown the visual results on two samples in
the Unban100 dataset in the main text, here, we show
more visual results on Unban100, B100 and Set 14 datasets.
Specifically, Fig. 11 and Fig. 12 show the SR results of the
15 competing methods on 2 samples from the Unban100
dataset, with SR scale set as 2 and 4, trained with and
without data augmentation, respectively. Fig. 13 and Fig.
14 show the SR results of the 15 competing methods on 2
samples from the B100 dataset, with SR scale respectively
set as 2 and 4, trained with data augmentation. Fig. 15 and

Fig. 16 visually show the SR results of the 15 competing
methods on 2 samples from the Set14 dataset, with SR scale
respectively set as 2 and 4, trained with data augmentation.
From these figures, it is easy to observe that the SR results
of filter parametrization based methods like E2-CNN and
PDO-eConv are usually over smooth and lack of detail
textures. Comparatively, F-Conv based methods performs
better in achieving clearer SR image and better avoiding
mistakenly restored texture, which are superior to the meth-
ods built based on other 4 convolutions.

These results imply that the proposed filter parametriza-
tion method should be more suitable for low level computer
vision tasks, as compared with the previous Harmonic and
PDO based filter parametrization.

More experiments on image super-resolution. Finally,
we provide more experiments on image super-resolution
tasks. The experiment setting is the same as Section 5.4 of the
main text. We exploit 3 state-of-the-art networks designed
for SR tasks, including EDSR [16], RDN [17] and RCAN
[18], for our experiments. The competing equivariant con-
volution methods include G-CNN [5], E2-CNN [4], PDO-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021 15

(a) Ground Truth (b) CNN (c) G-CNN (d) E2-CNN (e) PDO-eConv (f) F-Conv

ED
SR

R
D

N
R

C
A

N

Fig. 13. ((a) A sample of high resolution image from the B100 [7] dataset. (b) From top to bottom are the 4 times super resolution images restored
by the EDSR, RDN and RCAN methods, respectively, where the convolution operators are all set as commonly used convolution, i.e., CNN. (c)-(f)
From top to bottom are the super resolution images restored by the EDSR, RDN and RCAN methods, respectively, where the convolution operators
are set as G-CNN, E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained with data argumentation.
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Fig. 14. (a) A typical high resolution image from the B100 [7] dataset. (b) From top to bottom are the 4 times super resolution images restored by
the EDSR, RDN and RCAN methods, respectively, where the convolution operators are set as commonly used convolution, i.e., CNN. (c)-(f) From
top to bottom are the super resolution images restored by the EDSR, RDN and RCAN methods, where the convolution operators are set as G-CNN,
E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained with data argumentation.
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Fig. 15. (a) A typical high resolution image from the Set14 [8] dataset. (b) From top to bottom are the 4 times super resolution images restored by
the EDSR, RDN and RCAN methods, respectively, where the convolution operators are set as commonly used convolution, i.e., CNN. (c)-(f) From
top to bottom are the super resolution images restored by the EDSR, RDN and RCAN methods, where the convolution operators are set as G-CNN,
E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained with data argumentation.
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Fig. 16. (a) A typical high resolution image from the Set14 [8] dataset. (b) From top to bottom are the 4 times super resolution images restored by
the EDSR, RDN and RCAN methods, respectively, where the convolution operators are set as commonly used convolution, i.e., CNN. (c)-(f) From
top to bottom are the super resolution images restored by the EDSR, RDN and RCAN methods, where the convolution operators are set as G-CNN,
E2-CNN, PDO-eConv and the proposed F-Conv, respectively. All the involved methods are trained with data argumentation.

TABLE 7
The average testing results of all competing method on 4 typical image datasets, including Urban100 [6], B100 [7], Set14 [8] and Set5 [9], where

all models are trained without data argumentation.

×2 ×4

Method EDSR [16] RDN [17] RCAN [18] EDSR [16] RDN [17] RCAN [18]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Testing data: Urban100

CNN 32.130 0.9296 32.135 0.9296 32.317 0.9315 25.927 0.7851 26.065 0.7891 26.042 0.7882
G-CNN [5] 32.222 0.9304 32.237 0.9303 32.457 0.9321 26.014 0.7867 26.087 0.7905 26.203 0.7937
E2-CNN [4] 31.867 0.9275 32.051 0.9289 31.516 0.9236 25.901 0.7831 26.023 0.7867 25.544 0.7719
E2-CNN+ 31.967 0.9280 32.435 0.9325 32.539 0.9328 26.044 0.7870 26.249 0.7939 26.224 0.7928
PDO-eConv [3] 30.884 0.9156 30.544 0.9118 31.157 0.9189 25.327 0.7598 24.287 0.7196 25.321 0.7615
F-Conv-1D 32.304 0.9309 32.558 0.9336 32.705 0.9340 26.172 0.7908 26.354 0.7977 26.326 0.7964
F-Conv 32.345 0.9312 32.534 0.9332 32.729 0.9345 26.243 0.7948 26.324 0.7968 26.310 0.7952

Testing data: B100

CNN 32.191 0.9028 32.178 0.9027 32.212 0.9031 27.501 0.7432 27.564 0.7444 27.533 0.7438
G-CNN [5] 32.212 0.9031 32.213 0.9032 32.240 0.9034 27.561 0.7435 27.594 0.7453 27.600 0.7454
E2-CNN [4] 32.129 0.9023 32.158 0.9024 32.027 0.9010 27.529 0.7430 27.576 0.7435 27.415 0.7391
E2-CNN+ 32.160 0.9025 32.247 0.9036 32.266 0.9037 27.575 0.7441 27.617 0.7460 27.619 0.7456
PDO-eConv [3] 31.848 0.8983 31.744 0.8972 31.921 0.8993 27.297 0.7344 26.815 0.7202 27.302 0.7352
F-Conv-1D 32.215 0.9031 32.285 0.9039 32.296 0.9040 27.602 0.7448 27.640 0.7466 27.630 0.7464
F-Conv 32.221 0.9031 32.261 0.9037 32.303 0.9041 27.592 0.7454 27.631 0.7462 27.639 0.7458

Testing data: Set14

CNN 33.637 0.9195 33.593 0.9196 33.585 0.9202 28.452 0.7853 28.546 0.7875 28.539 0.7864
G-CNN [5] 33.630 0.9203 33.660 0.9203 33.688 0.9205 28.576 0.7867 28.648 0.7897 28.621 0.7890
E2-CNN [4] 33.545 0.9198 33.550 0.9190 33.334 0.9179 28.491 0.7857 28.576 0.7866 28.340 0.7809
E2-CNN+ 33.572 0.9196 33.708 0.9212 33.843 0.9219 28.578 0.7871 28.642 0.7893 28.628 0.7876
PDO-eConv [3] 33.158 0.9161 32.998 0.9149 33.262 0.9169 28.235 0.7779 27.350 0.7575 28.200 0.7778
F-Conv-1D 33.723 0.9209 33.862 0.9220 33.823 0.9214 28.634 0.7879 28.642 0.7894 28.622 0.7891
F-Conv 33.746 0.9207 33.890 0.9225 33.851 0.9213 28.579 0.7882 28.666 0.7898 28.637 0.7887

Testing data: Set5

CNN 38.011 0.9621 38.046 0.9621 38.050 0.9622 32.135 0.8972 32.201 0.8981 32.196 0.8981
G-CNN [5] 37.998 0.9619 38.050 0.9622 38.087 0.9624 32.006 0.8961 32.165 0.8982 32.239 0.8985
E2-CNN [4] 37.921 0.9618 37.961 0.9619 37.780 0.9613 32.039 0.8957 32.106 0.8964 31.736 0.8917
E2-CNN+ 37.977 0.9620 38.077 0.9624 38.105 0.9623 32.144 0.8971 32.214 0.8982 32.201 0.8975
PDO-eConv [3] 37.581 0.9605 37.443 0.9599 37.675 0.9608 31.589 0.8895 30.292 0.8617 31.584 0.8889
F-Conv-1D 38.041 0.9623 38.124 0.9624 38.151 0.9624 32.189 0.8976 32.346 0.8997 32.280 0.8989
F-Conv 38.061 0.9623 38.122 0.9625 38.149 0.9625 32.259 0.8986 32.317 0.8995 32.265 0.8983
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TABLE 8
The average testing results of all competing method on 4 typical image datasets, including Urban100 [6], B100 [7], Set14 [8] and Set5 [9], where

all models are trained with data argumentation.

×2 ×4

Method EDSR [16] RDN [17] RCAN [18] EDSR [16] RDN [17] RCAN [18]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Testing data: Urban100

CNN 32.170 0.9297 32.230 0.9303 32.359 0.9316 26.250 0.7935 26.303 0.7956 26.395 0.7979
G-CNN [5] 32.269 0.9306 32.237 0.9304 32.396 0.9324 26.264 0.7951 26.147 0.7921 26.316 0.7955
E2-CNN [4] 31.992 0.9283 32.095 0.9294 31.550 0.9238 25.898 0.7829 26.060 0.7885 25.626 0.7737
E2-CNN+ 31.986 0.9281 32.492 0.9333 32.572 0.9330 26.055 0.7877 26.337 0.7967 26.354 0.7964
PDO-eConv [3] 30.912 0.9159 29.550 0.8994 31.082 0.9181 25.377 0.7617 24.370 0.7229 25.268 0.7597
F-Conv-1D 32.380 0.9316 32.514 0.9337 32.761 0.9352 26.395 0.7987 26.410 0.7992 26.495 0.8003
F-Conv 32.357 0.9313 32.587 0.9340 32.747 0.9350 26.398 0.7982 26.416 0.7990 26.497 0.8010

Testing data: B100

CNN 32.201 0.9029 32.215 0.9031 32.240 0.9034 27.641 0.7461 27.638 0.7461 27.667 0.7467
G-CNN [5] 32.209 0.9027 32.217 0.9032 32.243 0.9036 27.629 0.7460 27.629 0.7461 27.638 0.7461
E2-CNN [4] 32.148 0.9024 32.178 0.9028 32.035 0.9009 27.541 0.7429 27.585 0.7442 27.436 0.7396
E2-CNN+ 32.161 0.9025 32.260 0.9038 32.281 0.9039 27.585 0.7443 27.648 0.7463 27.642 0.7459
PDO-eConv [3] 31.871 0.8985 31.429 0.8933 31.916 0.8994 27.322 0.7352 26.847 0.7214 27.273 0.7346
F-Conv-1D 32.234 0.9033 32.278 0.9040 32.287 0.9043 27.653 0.7470 27.670 0.7468 27.686 0.7476
F-Conv 32.239 0.9034 32.290 0.9041 32.299 0.9042 27.650 0.7466 27.659 0.7469 27.690 0.7480

Testing data: Set14

CNN 33.617 0.9198 33.630 0.9204 33.703 0.9202 28.673 0.7894 28.681 0.7904 28.722 0.7904
G-CNN [5] 33.606 0.9197 33.678 0.9204 33.726 0.9210 28.694 0.7901 28.659 0.7892 28.661 0.7893
E2-CNN [4] 33.513 0.9191 33.565 0.9200 33.361 0.9179 28.490 0.7853 28.610 0.7874 28.368 0.7811
E2-CNN+ 33.534 0.9192 33.763 0.9218 33.766 0.9215 28.594 0.7874 28.715 0.7905 28.683 0.7895
PDO-eConv [3] 33.169 0.9161 32.511 0.9103 33.178 0.9163 28.241 0.7783 27.422 0.7590 28.171 0.7772
F-Conv-1D 33.656 0.9204 33.766 0.9218 33.825 0.9224 28.700 0.7907 28.747 0.7915 28.717 0.7908
F-Conv 33.698 0.9205 33.832 0.9222 33.762 0.9213 28.715 0.7903 28.706 0.7904 28.743 0.7910

Testing data: Set5

CNN 38.063 0.9621 38.066 0.9623 38.088 0.9624 32.314 0.8993 32.235 0.8989 32.331 0.8998
G-CNN [5] 38.041 0.9621 38.050 0.9623 38.053 0.9623 32.271 0.8991 32.258 0.8990 32.279 0.8991
E2-CNN [4] 37.912 0.9618 37.964 0.9620 37.789 0.9613 31.999 0.8953 32.085 0.8965 31.761 0.8920
E2-CNN+ 37.917 0.9619 38.089 0.9624 38.104 0.9624 32.100 0.8972 32.316 0.8993 32.301 0.8986
PDO-eConv [3] 37.631 0.9606 36.824 0.9566 37.680 0.9608 31.606 0.8899 30.417 0.8641 31.460 0.8874
F-Conv-1D 38.057 0.9622 38.109 0.9624 38.115 0.9625 32.325 0.8996 32.328 0.8997 32.385 0.9000
F-Conv 38.061 0.9622 38.136 0.9625 38.141 0.9624 32.316 0.8993 32.315 0.8997 32.386 0.9001

eConv [3] and the proposed F-Conv. We replace the original
convolutions in EDSR, RDN and RCAN with the competing
convolutions, respectively.

We have further constructed a version of equivariant
convolution based on the Harmonic+ filter parametrization,
named E2-CNN+. Since heavy band limiting for current
E2-CNN may hamper the performance in low-level image
processing tasks, E2-CNN+ would provide a fairer com-
parison between Harmonic based filter parametrization and
the proposed method. We have carefully tuned the param-
eters of harmonic bases (τ and Kj for j = 1, · · · , J in
[1]) in Harmonic+ filter parametrization for possibly fair
comparison. Besides, we also adopt F-Conv-1D (Fourier-
1D filter parametrization based equivariant convolution) in
this experiment to test the performance of Fourier-1D filter
parametrization.

Table 7 and Table 8 show the results with respect to the
4 utilized datasets, without and with data argumentation,
respectively. From the tables, we can observe that E2-CNN+
achieves better performance than E2-CNN, however, the
performance is still relatively worse than F-Conv method.
These results imply that better expression ability of fil-
ter parametrization would lead to better performance in

low-level tasks. Besides, the F-Conv-1D and F-Conv meth-
ods achieve comparable performance, while both outper-
form the other competing methods. These results show
the advantage of the Fourier series expansion based filter
parametrization in conducting equivariant convolutions for
low-level image processing tasks.
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