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1 MLR-SNet: Transferable LR Schedules
2 for Heterogeneous Tasks
3 Jun Shu , Yanwen Zhu, Qian Zhao, Deyu Meng , and Zongben Xu

4 Abstract—The learning rate (LR) is one of the most important hyperparameters in stochastic gradient descent (SGD) algorithm for

5 training deep neural networks (DNN). However, current hand-designed LR schedules need to manually pre-specify a fixed form, which

6 limits their ability to adapt to practical non-convex optimization problems due to the significant diversification of training dynamics.

7 Meanwhile, it always needs to search proper LR schedules from scratch for new tasks, which, however, are often largely different with

8 task variations, like data modalities, network architectures, or training data capacities. To address this learning-rate-schedule setting

9 issue, we propose to parameterize LR schedules with an explicit mapping formulation, calledMLR-SNet. The learnable parameterized

10 structure brings more flexibility for MLR-SNet to learn a proper LR schedule to comply with the training dynamics of DNN. Image and

11 text classification benchmark experiments substantiate the capability of our method for achieving proper LR schedules. Moreover, the

12 explicit parameterized structure makes the meta-learned LR schedules capable of being transferable and plug-and-play, which can be

13 easily generalized to new heterogeneous tasks. We transfer our meta-learned MLR-SNet to query tasks like different training epochs,

14 network architectures, data modalities, dataset sizes from the training ones, and achieve comparable or even better performance

15 compared with hand-designed LR schedules specifically designed for the query tasks. The robustness of MLR-SNet is also

16 substantiated when the training data are biased with corrupted noise. We further prove the convergence of the SGD algorithm

17 equipped with LR schedule produced by our MLR-SNet, with the convergence rate comparable to the best-known ones of the algorithm

18 for solving the problem. The source code of our method is released at https://github.com/xjtushujun/MLR-SNet.

19 Index Terms—Meta learning, learning to learn, transferable to heterogeneous tasks, DNN training, stochastic gradient descent

Ç

20 1 INTRODUCTION

21 STOCHASTIC gradient descent (SGD) and its many variants
22 [3], [4], [5], [6], [7], have been served as the cornerstone
23 of modern machine learning with big data. It has been
24 empirically shown that DNNs achieve state-of-the-art gen-
25 eralization performance on a wide variety of tasks when
26 trained with SGD [8]. Recent researches observe that SGD
27 tends to select the so-called flat minima, which seems to

28generalize better in practice, partially explaining its under-
29lying working mechanism [9], [10], [11], [12], [13], [14].
30Scheduling learning rate (LR) for the SGD algorithm is one
31of the most widely studied aspects to help improve the train-
32ing for DNNs. Specifically, it has been experimentally stud-
33ied how the LR [15] essentially influences minima solutions
34found by SGD. This issue has also been investigated from a
35theoretical perspective. For example, Wu et al., [12] theoreti-
36cally analyzed that LR plays an important role in minima
37selection from a dynamical stability perspective. Further-
38more, they used stochastic differential equations to prove
39that the higher the ratio of the LR to the batch size, the
40flatter minimum inclines to be selected. Besides, He et al.,
41[14] provided PAC-Bayes generalization bounds for DNN
42trained by SGD, which are highly correlated with LR. In
43summary, it is being more widely recognized that designing
44a proper LR schedule tends to highly influence the gen-
45eralization performance of DNN training result [17], [18],
46[19], [20].
47There mainly exist three kinds of hand-designed LR
48schedules: (1) Pre-defined LR schedule policies. Typical ones
49include decaying and cyclic LR [21], [22] (as depicted in
50Figs. 1a and 1b), with a good training efficiency in practice.
51This line of methods have been mostly used in current DNN
52training, and become the default setting across the current
53popular deep learning libraries like Pytorch [23]. Some theo-
54retical works have further proved that the decaying schedule
55can yield faster convergence [24], [25] or avoid strict saddles
56[26], [27] under some mild conditions. (2) Adaptive gradient
57descent methods. Typical methods in this category include
58AdaGrad [4], RMSProp [6], and Adam [7], often using the
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59 adaptive LR for eachmodel parameters based on some gradi-
60 ent information. (3) LR search methods. The main idea is to
61 borrow LR search strategies, such as Polyak’s update rule
62 [28], Frank-Wolfe algorithm [29], andArmijo line-search [30],
63 used traditional optimization approaches [31] to DNN train-
64 ing, by searching LR adaptively.
65 Although the above LR schedules can achieve competi-
66 tive results on certain learning tasks, they still have evident
67 deficiencies in practice. On the one hand, these policies
68 need to manually pre-specify the formulation of the LR
69 schedules, inevitably suffering from the limited flexibility to
70 adapt to the complicated DNN optimization problems due
71 to the significant variation of its training dynamics. On the
72 other hand, when solving new heterogeneous tasks, it
73 always needs to redesign proper LR schedules from scratch,
74 as well as tune their involved hyperparameters. This pro-
75 cess is often time and computation expensive, which tends
76 to further raise their application difficulty in real problems.
77 To alleviate the aforementioned issues, this paper aims to
78 develop a model to learn a plug-and-play LR schedule
79 under the meta-learning framework. The main idea is to
80 parameterize the LR schedule as an LSTM network [32],
81 which is capable of dealing with such a long-term informa-
82 tion dependent problem. As shown in Fig. 1c, with a param-
83 eterized structure, the proposed model has the capacity to
84 fit an explicit loss-LR dependent relationship to adapt to the
85 complicated training dynamics. We learn the LSTM net-
86 work from data in a meta-learning manner, which is able to
87 adaptively predict the LR schedule for an SGD algorithm to
88 help improve the DNN training performance. We call this
89 method Meta-LR-Schedule-Net (MLR-SNet for brevity).
90 Meanwhile, the parameterized structure makes it possible
91 to transfer the meta-learned LR schedule to be readily used
92 in new query tasks. In a nutshell, this paper mainly makes
93 the following five-fold contributions.
94 (1) The MLR-SNet is proposed to learn an adaptive LR
95 schedule for SGD algorithm, which is capable of dynami-
96 cally adjusting LR during the DNN training process based

97on current training loss as well as the information delivered
98from past training histories stored in the MLR-SNet. Due to
99the explicit parameterized formulation of the MLR-SNet, it
100can be more flexible than hand-designed policies to find a
101proper LR schedule for specific learning tasks.
102(2) The proposed method is model-agnostic, and can be
103applied to the SGD implementation on general DNN mod-
104els. That is naturally feasible since the proposed MLR-SNet
105is with general loss information as its inputs, which is inde-
106pendent of the structure of the DNN models. The MLR-
107SNet is thus able to be generally applied to different DNN
108training problems, e.g., image and text classification prob-
109lems, as shown in Figs. 1d and 1e. It can be seen that the
110meta-learned LR schedules have a similar tendency as spe-
111cifically pre-defined ones, as depicted in Figs. 1a and 1b, but
112with more adaptive variations at their locality. This vali-
113dates the capability and efficacy of our method for adap-
114tively scheduling LR.
115(3) With an explicit parameterized structure, it is possible
116to readily transfer the meta-trained MLR-SNet for helping
117schedule LR of SGD on new heterogeneous tasks. Different
118from hand-designed LR schedules often requiring to re-
119design the LR schedules or re-tune the hyperparameters for
120new query tasks, the meta-learned MLR-SNet is plug-and-
121play, and without additional hyperparameters to tune. To
122verify this point, we transfer the meta-learned MLR-SNet to
123different training epochs, datasets and network architectures,
124and achieve comparable performance with the correspond-
125ing best hand-designed LR schedules in the test data. Since it
126is directly employed as an off-the-shelf LR-schedule setting
127function, it is with similar computational complexity as the
128hand-designed LR schedules. Besides, it has been empirically
129verified that the generalization performance of meta-learned
130MLR-SNet is slightly related to the size of the meta-training
131dataset, while relatively weakly related to the similarity
132betweenmeta-training andmeta-test tasks andDNNmodels.
133This reveals the potential of transferring meta-learned LR
134schedules to improve the DNN training for the unseen tasks,

Fig. 1. Pre-defined LR schedules used in our paper for (a) image and (b) text classification experiments. (c) Visualization of how we input current loss
ft to MLR-SNet, which then outputs a proper LR at to help SGD find a better minima. LR schedules meta-learned by the proposed MLR-SNet on
(d) image and (e) text classification experiments (meta-training stage). (f) The predicted LR schedules, learned from CIFAR-10, on image (TinyIma-
geNet) and text (Penn Treebank) classification datasets (meta-test stage).
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135 and is hopeful to save large labor and computation cost for
136 DNN training inmore real applications.
137 (4) The MLR-SNet is meta-learned to improve the gener-
138 alization performance of the learned model on unseen data.
139 We validate that with sound guidance of clean data as
140 meta-data, our MLR-SNet can help achieve better robust-
141 ness when training data are biased with corrupted noise
142 than hand-designed LR schedules.
143 (5) We theoretically prove that the DNN models trained
144 with the SGD algorithm, using LR schedules produced by
145 our MLR-SNet, can obtain a convergence guarantee. Mean-
146 while, we can also prove the convergence guarantee for our
147 MLR-SNet updated by the Adam algorithm guided by the
148 validation loss under some mild conditions.
149 The paper is organized as follows. Section 2 reviews the
150 related works. Section 3 presents the MLR-SNet model as
151 well as its learning algorithm. Section 4 demonstrates the
152 experimental evaluations to validate the adaptability, trans-
153 ferability and robustness of the MLR-SNet, as compared
154 with current LR schedules policies. Section 5 provides some
155 analysis on MLR-SNet, e.g., its convergence and computa-
156 tional complexity. The paper is finally concluded.

157 2 RELATED WORK

158 Meta Learning for Optimization. Meta learning, or learning to
159 learn has a long history in psychology [33], [34].Meta learning
160 for optimization can date back to 1980s-1990s [35], [36], aim-
161 ing to meta-learn the optimization process of learning itself.
162 Inspired from such beneficial attempts, many researches
163 were proposed to meta-learn the optimization process of dif-
164 ferent learning tasks. The early work is proposed by Schmid-
165 huber et al. [35], developing an end-to-end differentiable
166 system to jointly train both the network and the learning algo-
167 rithmbygradient descent,making the network able tomodify
168 its own weights. Bengio et al. [36] also proposed to learn
169 parameterized local neural net update rules that avoid back-
170 propagation. Furthermore, Hochreiter et al. [37] jointly train
171 two networks, in which the output of back-propagation from
172 one network was fed into an additional learning network to
173 attain the learning algorithm.
174 Recently, [38], [39], [40], [41], [42], [43] have attempted to
175 scale this idea to larger DNN optimization problems. The
176 main idea is to construct a meta-learner as the optimizer,
177 which takes the gradients as input and outputs the whole
178 updating rules. These approaches tend to make selecting
179 appropriate training algorithms, scheduling LR and tuning
180 other hyperparameters in an automatic way. The meta-
181 learner of these approaches can be updated by minimizing
182 the generalization error on the validation set. Furthermore,
183 [41] utilized reinforcement learning and [42] used test error
184 of few-shot learning tasks to train the meta-learner. Except
185 for solving continuous optimization problems, some works
186 employ these ideas to other optimization problems, such as
187 black-box functions [37], few-shot learning [44], [45], mod-
188 el’s curvature [46], evolution strategies [47], combinatorial
189 functions [48], MCMC proposals [49], etc.
190 Though faster in decreasing training loss than traditional
191 optimizers in some cases, the learned optimizers by this line of
192 methods always could not generalizewell to varying problems
193 from the training ones, especially longer horizons [41] and

194larger scale optimization problems [40]. Comparatively, the
195meta-learnedLR schedule by our proposedmethod can be eas-
196ily transferred to newheterogeneous tasks, as clearly shown in
197our experiments reported in Section 4.2.
198HPO and LR Schedule Adaptation. Hyper-parameter
199optimization (HPO) was historically investigated by
200selecting proper values for algorithm hyperparameters to
201obtain better performance on the validation set (see [50]
202for an overview). Typical methods include grid search,
203random search [51], Bayesian optimization [52], gradient-
204based methods [53], [54], [55], etc. Recently, some works
205attempt to adapt a proper LR schedule under the frame-
206work of gradient-based HPO[54], [56]. Typical works
207along this line include Meta-SGD [45], RTHO [53] and
208HD [56]. Albeit making certain progress on the LR adap-
209tation task, these methods mainly focus on properly
210adapting learning rates themselves along the training pro-
211cess. This setting makes them relatively hardly scale to
212long-horizons problems [43], [58], and less adaptable to
213the variations of new heterogeneous query tasks. More
214discussions about this point can refer to Supplementary
215Material, which can be found on the Computer Society
216Digital Library at http://doi.ieeecomputersociety.org/
21710.1109/TPAMI.2022.3184315. Along this research line,
218the most related work to ours is E3 BM [57], which uses
219meta-learners to generate LRs and combination weights
220for different base-learners against few-shot learning tasks.
221This method takes concatenated mean values of sample
222data and training gradient as input, and mainly focuses
223on predicting learning rates for base-learners. The learn-
224ing rates for training more cumbersome feature extrac-
225tors, however, are largely not considered. Comparatively,
226our method uses more concise training loss knowledge as
227input, and attempts to get the learning rates of the entire
228network parameters, including both feature extractor and
229base learners. This makes it feasible to solve more chal-
230lenging LR setting tasks, e.g., ImageNet.
231Transfer to Heterogeneous Tasks. Transfer learning [59] aims
232to transfer knowledge obtained from source task to help the
233learning on the target task.Most transfer learning approaches
234assume the source and target tasks consist of similar instan-
235ces, features or model spaces [60], which greatly limits their
236application range. Recently, meta learning [44] aims to learn
237common knowledge/methodology shared over observed
238tasks, such that the learned knowledge/methodology is
239expected to be transferred to unseen tasks [1], [2]. Similarly,
240ourmethod aims to realize such amethodology-level transfer
241learning for the LR-schedule setting task, i.e., learn a general
242LR schedule predictor which is plug-and-play and easy to
243transfer to new query tasks. Such task-transferable capability,
244however, is not possessed by conventional hand-designed
245LR schedules andHPOmethods.

2463 MLR-SNET

247The problem of training DNNs can be formulated as the fol-
248lowing non-convex optimization problem

min
w2Rd

fTrðDTr;wÞ :¼ 1

N

XN
i¼1

fTr
i ðwÞ; (1)

250250
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251 where fTr
i is the training loss function for data samples i 2

252 DTr ¼ f1; 2; . . . ; Ng, which characterizes the deviation of the
253 model prediction from the data labels, and w 2 Rd repre-
254 sents the parameters of the model (e.g., the weight matrices
255 in the trained DNN) to be optimized. SGD [3], [61] and its
256 variants, including Momentum [62], Adagrad [4], Adadelta
257 [5], RMSprop [6], Adam [7], are often used for DNN train-
258 ing. In general, these algorithms can be expressed as the fol-
259 lowing formulation:

wtþ1 ¼ wt þ Dwt;Dwt ¼ OtðrfTr
w ðDTr;wtÞ;Ht;QtÞ; (2)

261261

262 where wt is tth updating model parameters, rfTr
w ðDTr;wtÞ

263 denotes the gradient of fTr at wt,Ht represents the historical
264 gradient information, and Qt is the hyperparameter of the
265 optimizer O, e.g., LR, in the current interation. To present
266 our method’s efficiency, we focus on the following vanilla
267 SGD algorithm in this paper,1

wtþ1 ¼ �tðwt;atÞ ¼ wt � atrwf
TrðDt;wtÞ; (3)

269269

270 where rwf
TrðDt;wtÞ ¼ 1

jDtj
P

i2Dt
rwf

Tr
i ðwtÞ, Dt � DTr

271 denotes the batch samples randomly sampled from the
272 training dataset DTr, jDtj denotes the batch size, rwf

Tr
i ðwtÞ

273 denotes the gradient of sample i computed at wt and at is
274 the LR at tth iteration.

275 3.1 Existing LR Schedule Strategies

276 As [17] demonstrated, the choice of LR plays a central role
277 for effective DNN training with SGD. In this part, we will
278 recall LR schedules proposed in the previous works.
279 The following presents the commonly used pre-defined
280 LR schedules for current DNN training:

ðFixedÞ at ¼ a0;

ðMultiStepÞ at ¼ a0 � ðgMÞi; li�1 � Ecur � li;

for given epochs l0; l1; . . . ; ln;

ðExponentialÞ at ¼ a0 � ðgEÞEcur�1;

ðSGDRÞ at ¼ amin þ 0:5ðamax � aminÞ 1þ cos

�
Ecur

Eper
p

�� �
; (4)

282282

283 where a0 denotes the initial LR and at denotes the LR at
284 t-iteration, ½amin;amax� specifies a range for LR setting of
285 SGDR. Ecur accounts for how many epochs have been per-
286 formed, and Eper denotes that after Eper epochs SGDR
287 restarts to decrease the LR, and it generally sets Eper ¼
288 E0 � ðTMulÞk for the kth restart. gM; gE < 1 denote the decay
289 factors for MultiStep and Exponential, respectively.
290 Inspired by current meta-learning developments [44],
291 [63], [64], some researches proposed to learn a generic
292 optimizer from data [38], [39], [40], [41], [42], [43]. The
293 main idea among them is to learn a meta-learner as the
294 optimizer to guide the learning of the whole updating
295 rules. For example, [38] tries to replace Eq. (2) with the

296following formulation:

wtþ1 ¼ wt þ gt; ½gt; htþ1�T ¼ mðrt; ht;fÞ; (5)

298298

299where gt is the output of a LSTM netm, parameterized by f,
300whose state is ht. This strategy has been expected to make
301selecting appropriate training algorithms, scheduling LR
302and tuning other hyperparameters in a unified and auto-
303matic way. Though faster in decreasing training loss than
304the traditional optimizers in some cases, the learned opti-
305mizer, however, might not always generalize well to more
306variant and diverse problems, like longer horizons [43] and
307large scale optimization problems [40] since the framework
308is too flexible to be relatively easy to overfit training tasks.
309Rather than the entire learning rules, a natural compro-
310mise for the task is to focus on the LR schedules while keep
311using the gradient knowledge across the meta-training/test-
312ing stages. Inspired by this motivation, recently some meth-
313ods [53], [56] consider the following constrained
314optimization problem to search the optimal LR schedule a�

315such that the produced models are associated with a small
316validation error

min
a¼fa0;...;aT�1g

fValðDVal;wT Þ;

s:t: wtþ1 ¼ �tðwt;atÞ; t ¼ 0; 1; . . . ; T � 1;
(6)

318318

319where fVal denotes the validation loss function, DVal ¼
320f1; 2; . . . ;Mg denotes hold-out validation set, at is to-be-
321solved LR hyperparameter, �t : R

d �Rþ ! Rd is a stochastic
322weight update dynamics, like the updating rule of the
323vanilla SGD in Eq. (3), and T is the maximum iteration step.
324Though achieving comparable results on some tasks with
325hand-designed LR schedules and meta-learned optimizers,
326when generalized to new tasks, the meta-learned LR sched-
327ules keep constant. This makes it hardly well adapt to the
328task variations, and thus leads to possible performance deg-
329radation. Namely, it still requires learning the LR schedules
330from scratch especially for new heterogeneous tasks to
331obtain satisfied performance, which is sometimes time and
332computation expensive.

3333.2 Proposed Meta-LR-Schedule-Net Method

334To address the aforementioned issues, we propose to design
335a meta-learner with an explicit mapping formulation to
336parameterize LR schedules as shown in Fig. 1c, called Meta-
337LR-Schedule-Net (MLR-SNet for brevity). The parameter-
338ized structure can bring two benefits: 1) It gives fine flexibil-
339ity to learn a proper LR schedule to comply with the
340significantly changed training dynamics of DNNs; 2) It
341makes the meta-learned LR schedules become transferable
342and plug-and-play, able to be readily applied to new hetero-
343geneous tasks, without requiring to re-learn or tune addi-
344tional hyperparameters.

3453.2.1 Formulation of MLR-SNet

346The computational graph of MLR-SNet is depicted in
347Fig. 2a. Let Að	; 	;fÞ denote MLR-SNet. Then the updating
348equation of the vanilla SGD algorithm in Eq. (3) can be
349rewritten as

1. For different learning tasks, the commonly used optimizers are
different. For example, image tasks often use SGD with Momentum,
while text tasks always employ SGD or Adam. To guarantee the chosen
optimizer able to be applied to various tasks, we learn the LR schedules
for the vanilla SGD in this paper. We further validate that MLR-SNet
can be applied to other optimizers, e.g., Adam (refer to Section 5.5).

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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TrðDt;wtÞ;
where ft ¼ fTrðDt;wtÞ; ut ¼ ðht; ctÞT ;

(7)

351351

352 where Aðft; ut;fÞ outputs the LR (at) at the tth iteration, f is
353 the parameter of MLR-SNet, ft is the loss of the batch sam-
354 ples Dt at the tth iteration, and ut ¼ fht�1; ct�1g, where
355 ht; ct 2 Rd0 denote the output and state of the LSTM cell at
356 the tth iteration (t ¼ 0; . . . ; T � 1), d0 represents the dimen-
357 sion of the state vectors (i.e., the size of hidden nodes). At
358 each SGD iteration, Aðft; ut;fÞ can learn an explicit loss-LR
359 dependent relationship, such that the net can adaptively
360 predict LR according to the current input loss ft, as well as
361 the historical training information ut stored in the net. For
362 every iteration step, the whole forward computation pro-
363 cess can be written as (as shown in Fig. 2b)

It

Ft

Ot

gt

0
BBB@

1
CCCA ¼

s

s

s

tanh

0
BBB@

1
CCCAW2

relu

relu

� �
W1

ht�1
ft

� �

ct ¼ Ft 
 ct�1 þ It 
 gt

ht ¼ Ot 
 tanhðctÞ
pt ¼ sðW3htÞ
at ¼ g 	 pt; (8)

365365

366 where It; Ft; Ot denote the Input, Forget and Output gates in
367 the current iteration, and s; tanh; relu denote the Sigmoid,
368 Tanh and ReLU activation functions, respectively. The
369 MLR-SNet parameter is f ¼ ðW1;W2;W3Þ, where W1 2
370 Rd0�ðd0þ1Þ;W2 2 R4d0�2d0 ;W3 2 R1�d0 . Different from the
371 vanilla LSTM, the input ht�1 and the training loss ft are pre-
372 processed by a fully-connected layer W1 with ReLU activa-
373 tion function. Then it works as the LSTM and obtains the
374 output ht. Subsequently, the predicted value pt is obtained
375 by a linear transformW3 on the ht with a Sigmoid activation
376 function. Finally, we introduce a scale factor g to guarantee
377 the final predicted LR located in the interval of ½0; g�. In our

378 paper, we set g ¼ f
1=2
0

log jf0�Cj
4C1=4 , where f0 denotes the initial

379 loss, and C accounts for the number of classes. Albeit sim-

ple, this net is known to be capable of finely dealing with

such long-term information dependent problem, and thus

expected to learn a proper LR schedule to comply with the

training dynamics of DNNs.
380 Remark. On the one hand, different from Eq. (6) directly
381 learning the LR schedules themselves, we use the MLR-SNet

382parameterized by f to learn the LR schedules. This parame-
383terized meta-learner helps extract the latent methodology of
384how to design a proper LR schedule for generally handling a
385DNN training problem, rather than only the hyperpara-
386meters for a specific problem. Therefore, the meta-learned
387MLR-SNet can be readily transferred to new DNN training
388tasks for designing the LR schedules. On the other hand,
389compared with learning the whole updating rules as repre-
390sented in Eq. (5), our MLR-SNet learns the most important
391LR schedules for the SGD algorithm while keeps using the
392gradient knowledge of the learned problem, making it rela-
393tively easier to learn and under better control. This can
394explain why MLR-SNet always tends to make the DNN
395training proceduremore robust and efficient in experiments.

3963.2.2 Learning Algorithm of MLR-SNet

397(1) Meta-Train: adapting to the training dynamics of DNN. The
398MLR-SNet can be meta-trained to improve the generaliza-
399tion performance on unseen validation data for DNN train-
400ing by solving the following optimization problem:

min
u

fValðDVal;wT ðfÞÞ;
s.t. wtþ1ðfÞ ¼ �tðwt;Aðft; ut;fÞÞ; t ¼ 0; . . . ; T � 1:

(9)

402402

403where ft ¼ fTrðDt;wtÞ and �tðwt;atÞ corresponds to Eq. (3).
404Now the important question is how to efficiently meta-
405learn the parameter f for the MLR-SNet. We employ the
406online approximation technique in [64] to jointly update
407f and model parameter w to explore a proper LR sched-
408ule with better generalization for DNNs training. How-
409ever, the step-wise optimization for f is still expensive to
410handle large-scale datasets and huge DNN structures. To
411address this issue, we attempt to update f once after
412updating w several steps (Tval). The updating process can
413then be formulated as:

414Algorithm 1. The Meta-Train Algorithm of MLR-SNet

415Input: Training data DTr, validation set DVal, max iterations T ,
416updating period Tval.
417Output: Model parameter wT and MLR-SNet parameter
418fs; s 2 S � f1; . . . ; Tg
4191: Initialize model parameter w0, MLR-SNet cell u0 ¼ ðh0; c0ÞT ,
420and MLR-SNet parameter f0.
4212: for t ¼ 0 to T � 1 do
4223: Dt  SampleMiniBatch(DTr) with batch size jDtj.
4234: if t % Tval ¼ 0, then
4245: D

ðvÞ
t  SampleMiniBatch(DVal) with batch size jDðvÞt j.

4256: Update ftþ1 by Eq. (10).
4267: end if
4278: Update wtþ1 by Eq. (12).
4289: end for

429Updating f. When it does not satisfy the updating condi-
430tions, f keeps fixed; otherwise, f will be updated using the
431model parameter wt and MLR-SNet parameter ft obtained
432in the last step by minimizing the validation loss defined in
433Eq. (9). Adam algorithm can be utilized to optimize the vali-
434dation loss, expressed as:

ftþ1 ¼ ft þAdamðruf
ValðDðvÞt ; ŵtþ1ðuÞÞ; htÞ; (10) 436436

Fig. 2. The structure and computational graph of our proposed MLR-
SNet.
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437 where Adam denotes the Adam algorithm, whose input is
438 the gradient of validation loss with respect to MLR-SNet
439 parameter f on mini-batch samples D

ðvÞ
t from DVal. ht

440 denotes the LR of Adam. ŵtþ1ðfÞ2 is virtually formulated on
441 a mini-batch training samplesDt fromDTr as follows:

ŵtþ1ðfÞ ¼ wt �AðfTrðDt; wtÞ; ut;fÞ 	 rwf
TrðDt; wÞ

��
wt
: (11)443443

444

445 Updating w. Then, the updated ftþ1 is employed to ame-
446 liorate the model parameter w, i.e.,

wtþ1 ¼ wt �AðfTrðDt; wtÞ; ut;ftþ1Þ 	 rwf
TrðDt; wÞ

��
wt
: (12)

448448

449 The whole algorithm in the meta-training stage can then be
450 summarized in Algorithm 1. All computations of gradients
451 can be efficiently implemented by automatic differentia-
452 tion libraries, like PyTorch [23], and easily used to general
453 DNN architectures. It can be seen that the MLR-SNet can
454 be gradually optimized during the learning process and
455 adjust the LR dynamically based on the training dynamics
456 of DNNs.

457 Algorithm 2. The Meta-Test Algorithm of MLR-SNet

458 Input: Training data Dm
Tr for new task m, max iterations Tm,

459 meta-learned MLR-SNet Að	; 	;fsÞ; s 2 S.
460 Output:Model parameter uT .
461 1: Initialize model parameter u0, MLR-SNet cell u0 ¼ ðh0; c0ÞT ,
462 and choose the subset of meta-learned MLR-SNet fs; s 2
463 S � f1; . . . ; Tg for test.
464 2: for t ¼ 0 to Tm � 1 do
465 3: Dm

t  SampleMiniBatch(Dm
Tr) with batch size jDm

t j.
466 4: Compute the loss fTrðDm

t ; utÞ, and then MLR-SNet predicts
467 the LR AðfTrðDm

t ; utÞ; ut;fsÞ for current iteration.
468 5: Update utþ1 by Eq. (13).
469 6: end for

470 (2) Meta-Test: generalization to new heterogeneous tasks.
471 After the meta-training stage, the meta-learned MLR-SNet
472 with parameter fT is expected to be transferred to guide
473 the SGD running on new DNN training tasks. To better
474 preserve the proper LR changing dynamics during DNN
475 training, we prefer to keep several MLR-SNet forms with
476 parameters fs; s 2 S � f1; . . . ; Tg (e.g., fT=3;f2T=3;fT as
477 employed in our experiments) and use them as LR sched-
478 ules along with different iterations in the meta-testing
479 stage. The new DNN parameter u for the new task is then
480 updated by (the whole meta-test process refers to Algo-
481 rithm 2)

utþ1 ¼ ut �AðfTrðDn; utÞ; ut;fsÞ 	 ruf
TrðDn; uÞ

��
ut
; (13)

483483

484 where fs; s 2 S is the parameters of the subset of the meta-
485 learned MLR-SNets. This means that we restore several LR
486 schedule setting rules, and dynamically employ specific
487 ones along different range of DNN training iterations. It is
488 seen that the meta-learned MLR-SNets are plug-and-play,
489 and involve no additional hyperparameters to tune.

4904 EXPERIMENTAL RESULTS

491To evaluate the proposed MLR-SNet, we first conduct
492experiments to show our method can learn proper LR
493schedules compared with baseline methods (Section 4.1).
494Then we transfer the meta-learned LR schedules to various
495tasks for meta-test to show its superiority in generalization
496(Section 4.2). What influences the generalization perfor-
497mance of meta-learned LR schedules is discussed in Sec-
498tion 4.3. Finally, we show our method behaves robust and
499stable when training data contain different data corruptions
500(Section 4.4).

5014.1 Meta-Train: Evaluation of the LR Schedules
502Meta-Learned by MLR-SNet

503In this section, we attempt to evaluate the capability of
504MLR-SNet to learn proper LR schedules for various tasks.

5054.1.1 Image Classification Benchmarks

506Datasets. We choose CIFAR-10 and CIFAR-100 to present
507the efficiency of our method, which include 32�32 color
508images arranged in 10 and 100 classes, respectively. Both
509datasets contain 50,000 training and 10,000 test images.
510Baselines. The compared methods include the SGD with
511hand-designed LR schedules (the formulation is expressed
512as Eq. (4)): 1) Fixed LR, 2) Exponential decay, 3) MultiStep
513decay, 4) SGD with restarts (SGDR) [22]. Meanwhile, we
514compare with adaptive gradient method: 5)Adam, LR search
515method: 6) L4 [28], and current LR schedule adaptation
516method: 7) hyper-gradient descent (HD) [56], 8) real-time
517hyperparameter optimization (RTHO) [53]. We run all
518experiments with 3 different seeds reporting accuracy. Our
519algorithm and RTHO [53] randomly select 1,000 clean
520images in the training set of CIFAR-10/100 as validation
521data.
522Hyperparameter Setting. We employ ResNet-18 on CIFAR-
52310 and WideResNet-28-10 [65] on CIFAR-100. All compared
524methods andMLR-SNet are trained for 200 epochswith batch
525size 128. For baselines involving SGD as base optimizer, we
526set the initial LR as 0.1, and weight decay as 5e�4. While for
527Adam, we just follow the default parameter setting. As for
528each LR schedule,MultiStep decays LR by 10 every 60 epochs
529(i.e., gM ¼ 0:1; l0 ¼ 0; l1 ¼ 60; l2 ¼ 120; l3 ¼ 180; l4 ¼ 200);
530Exponential multiplys LR with gE ¼ 0:95 every epoch; SGDR
531sets amin ¼ 1e�5;amax ¼ 0:1, and E0 ¼ 10; TMult ¼ 2. L4, HD
532and RTHO update LR every data batch, and we use the rec-
533ommended setting in the original paper. HD and RTHO
534search different hyper-LRs from f1e�3; 1e�4; 1e�5; 1e�6; 1e�7g
535reporting the best performing hyper-LR. The detailed discus-
536sion can be found in the supplementary material, available
537online.
538MLR-SNet Architecture. The architecture of MLR-SNet is
539illustrated in Section 3.2. In our experiment, the size of hid-
540den nodes (i.e., d0) is set as 50. The initialization of MLR-
541SNet follows the default setting in PyTorch. We employ
542Adam optimizer to train MLR-SNet, and set the LR as 1e�3,
543and the weight decay as 1e�4. The input of MLR-SNet is the
544training loss of a mini-batch samples. Every iteration LR is
545predicted by MLR-SNet and we update it every 100 itera-
546tions (Tval ¼ 100) according to the loss of the validation data.

2. Notice that ŵtþ1ðfÞ here is a function of f to guarantee the gradi-
ent in Eq. (10) to be able to be feasibly computed.
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547 Results. Figs. 3a and 3b show changing tendencies of
548 training loss and test accuracy on CIFAR-10 and CIFAR-100
549 datasets in iterations of all competing methods, respec-
550 tively, and Table 1 shows the corresponding classification
551 accuracy on the test set. It can be observed that: 1) our MLR-
552 SNet obtains better test performance than all other compet-
553 ing methods, and the learned LR schedules by MLR-SNet
554 have similar shapes as the corresponding hand-designed
555 policies (as depicted in Fig. 1d), while with more elaborate
556 variation details in the locality for better adapting training
557 dynamics. Besides, such LR schedules learned by MLR-
558 SNet empirically justify the general trend of hand-designed
559 LR schedules (e.g., MultiStep, Exponential) for CIFAR-10
560 and CIFAR-100 datasets. This implies that the proposed
561 method could be potentially useful to verify the validity of
562 hand-designed LR schedules for relatively complicated and
563 variant training tasks. 2) The Fixed LR decreases the loss
564 sharing the similar performance to other baselines at the
565 early training, while fails to further decrease loss at the later
566 training stages. This implies that this strategy could not
567 finely adapt to such DNN training dynamics. 3) The Multi-
568 Step LR drops the LR at some epochs, and such an elegant
569 strategy overcomes the issue of Fixed LR and decreases loss

570substantially after dropping the LR. Thus it obtains higher
571test performance. Besides, though MultiStep and MLR-SNet
572can decrease the loss to 0 approximately, our MLR-SNet
573achieves better generalization performance since the outer
574objective in Eq. (9) tends to help learn the LR schedules to
575find a better minima. 4) The Exponential LR decreases loss
576with a faster speed at the early training steps than other
577baselines, while makes slow progress due to smaller LR at
578the later stages. 5) The SGDR LR uses the cyclic LR, decreas-
579ing loss as fast as the Exponential LR. 6) Though Adam has
580an adaptive coordinate-specific LR, it behaves worse than
581MultiStep and Exponential LR as demonstrated in [66]. An
582extra tuning is thus necessary for better performance. 7) L4
583greedily searches LR locally to decrease loss, making it fairly
584hard to adapt the complex DNNs training dynamics, and
585even with worse test performance than Fixed LR. 8) HD and
586RTHO perform similarly to hand-designed LR schedules.
587The LR schedules of these competing methods behave more
588flatter than our MLR-SNet. This is because that they are
589largely absent of the past training history information to
590guide the learning of LR, and they are easily fall into bad
591local minima at the early training stage, and hardly escape
592from this bad local minima, which then hampers their gener-
593alization performance. As compared, our MLR-SNet has a
594larger range of LR with more adaptive variations at their
595locality. It is seen that it drops quickly at the early training
596stage, and then gradually converges. This illustrates that LR
597schedules produced by MLR-SNet can better adapt to com-
598plicated training dynamics, naturally leading to its better
599generalization performance. 9) Since the image tasks often
600use SGD algorithm with Momentum (SGDM) to train
601DNNs, we also present the test performance of baseline
602methods trained with SGDM with momentum 0.9 in Table 2.
603They obtain a remarkable improvement when trained with
604SGD. Though not using extra historical gradient information
605to help optimization, our MLR-SNet is capable of achieving
606comparable results with baselines, since it also insightfully
607stores the historical LR training information in the net.

Fig. 3. Changing tendencies in terms of training loss (left column) and test accuracy (middle column) in iterations of all comparison methods on image
classification datasets in the meta-train stage. The LR schedules (right column) employed by all methods are also compared.

TABLE 1
Test Accuracy (%) of CIFAR Datasets With SGD Baselines

Optimizer CIFAR-10 CIFAR-100

SGD+Fixed 92.26 � 0.12 70.67 � 0.34
SGD+MultiStep 93.82 � 0.09 77.04 � 0.17
SGD+Exponential 90.93 � 0.11 76.88 � 0.08
SGD+SGDR 93.92 � 0.11 72.52 � 0.34
Adam 90.86 � 0.15 68.94 � 0.24
SGD+L4 89.15 � 0.14 63.61 � 0.65
SGD+HD 92.34 � 0.09 72.22 � 0.30
SGD+RTHO 92.60 � 0.18 72.32 � 0.47
MLR-SNet (Meta-train) 94.80 � 0.10 80.44 � 0.17
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609 Dataset. We choose Penn Treebank dataset [67] for evalua-
610 tion, which consists of 929k training words, 73k validation
611 words, and 82k test words, with a 10k vocabulary in total.
612 Baselines. We compare with 1) SGD, 2) Adam with LR
613 tuned using a validation set (SGD+Val Strategy and Adam
614 +Val Strategy). They drop the LR by a factor of 4 when the
615 validation loss stops decreasing. Also, we compared with 3)
616 L4, 4) HD, 5) RTHO. We run all experiments with 3 different
617 seeds reporting accuracy. Our algorithm and RTHO [53]
618 regard the validation set as validation data.
619 Hyperparameter Setting. We use a 2-layer and 3-layer
620 LSTM network which follows a word-embedding layer and
621 the output is fed into a linear layer to compute the probabil-
622 ity of each word in the vocabulary. Hidden size of LSTM
623 cell is set to 512 and so is the word-embedding size. We tie
624 weights of the word-embedding layer and the final linear
625 layer. Dropout is applied to the output of word-embedding
626 layer together with both the first and second LSTM layers
627 with a rate of 0.5. As for training, the LSTM net is trained
628 for 150 epochs with a batch size of 32 and a sequence length
629 of 35. We set the base optimizer SGD to have an initial LR of
630 20. For Adam, the initial LR is set to 0.01 and weight for
631 moving average of gradient is set to 0. We apply a weight

632decay of 5e�6 to both base optimizers. All experiments
633involve a 0.25 clipping to the network gradient norm. For
634both SGD and Adam, we decrease LR by a factor of 4 when
635performance on validation set shows no progress. For L4,
636we try different a in f0:1; 0:05; 0:01; 0:005g and report the
637best test perplexity among them. For both HD and RTHO,
638we search the hyper-lr lying in f1; 0:5; 0:1; 0:05g, and report
639the best results.
640MLR-SNet Architecture. We keep the same setting as the
641image classification, while we take LTr

logðvocabulary sizeÞ as input of
642MLR-SNet to deal with the influence of large scale classes
643for text dataset.
644Results. Figs. 4a and 4b show the train and test perplexity
645in iterations on the Penn Treebank dataset with 2-layer and 3-
646layer LSTM, respectively. The test perplexity of final trained
647model is presented in Table 3. It can be observed that: 1) The
648Val Strategy heuristically drops LR when the validation loss
649stops decreasing. This hand-designed LR schedules can
650decrease the loss quickly at the early training stage to find a
651good minima, while it is hard to further search for a better
652solution. 2) Our MLR-SNet predicts LR according to training
653dynamics and updates its parameters byminimizing the vali-
654dation loss, i.e., if the LR schedules produced by the MLR-
655SNet are of high quality, then a DNN model trained with
656such LR schedules should achieve low loss on a separate vali-
657dation dataset. This process is a relatively more intelligent
658way to employ the validation dataset than Val Strategy. Thus

TABLE 2
Test Accuracy (%) of CIFAR Dataset With SGDM Baselines

Optimizer CIFAR-10 CIFAR-100

SGDM+Fixed 87.69 � 0.14 70.88 � 0.12
SGDM+MultiStep 95.08 � 0.13 80.74 � 0.19
SGDM+Exponential 94.64 � 0.05 78.87 � 0.04
SGDM+SGDR 95.06 � 0.17 80.93 � 0.05
Adam 90.86 � 0.15 68.94 � 0.24
SGDM+L4 91.03 � 0.14 66.51 � 2.83
SGDM+HD 93.99 � 0.12 76.80 � 0.19
SGDM+RTHO 93.17 � 0.49 76.14 � 0.29
MLR-SNet (Meta-train) 94.80 � 0.10 80.44 � 0.17

Fig. 4. Changing tendencies in terms of training perplexity (left column) and test perplexity (middle column) in iterations of all comparison methods on
text classification datasets in the meta-train stage. The LR schedules (right column) employed by all methods are also compared.

TABLE 3
Test Perplexity on the Penn Treebank Dataset

Optimizer 2-layer LSTM 3-layer LSTM

SGD+Val Strategy 74.33 � 0.23 76.05 � 0.39
Adam+Val Strategy 71.17 � 0.23 74.80 � 0.73
SGD+L4 82.58 � 1.32 92.27 � 0.92
SGD+HD 76.90 � 0.33 78.63 � 0.08
SGD+RTHO 76.69 � 0.11 78.52 � 0.16
MLR-SNet (Meta-train) 70.53 � 0.25 72.28�0.25
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660 than Adam and SGD. The meta-learned LR schedules of the
661 MLR-SNet are shown in Fig. 1e, which first decreases slowly
662 at the early training stage, then is demonstrated as a quick
663 drop process, and finally gradually becomes stable. 3) L4
664 often falls into a bad minimum since it greedily searches LR
665 locally. 4) SinceHD andRTHO lack an explicit parameterized
666 structure, they directly learn LR schedules themselves by
667 minimizing the validation loss, which tends possibly to fall
668 into a bad local minimawithout considering the past training
669 history information, and lead to performance degradation.
670 As compared, ourMLR-SNet can predict LR schedules based
671 on complicated training dynamics, and brings performance
672 improvement. 5) When the number of LSTM’s layers
673 increases, the LR schedules predicted by MLR-SNet show
674 more advantages for such an LSTM training problem, and
675 bring more performance improvements compared with
676 hand-designed LR schedules.
677 Remark. Actually, the performance of compared baselines
678 can be approximately regarded as the best/upper perfor-
679 mance bound. Since these strategies have been tested to
680 work well for specific tasks, and they are written into the
681 standard deep learning library. For different image and text
682 tasks, our MLR-SNet can achieve a similar or even slightly
683 better performance compared with the best baselines. We
684 thus believe that these experiments can demonstrate the
685 effectiveness and generality of our proposedmethod.

686 4.1.3 Ablation Study

687 To learn the LR schedule, it produces new hyperparameters,
688 like the structure of meta-learner and the hyperparameters
689 of meta-optimizer. We conduct ablation study of them.
690 The Architecture of MLR-SNet. Fig. 5 shows the test accu-
691 racy on CIFAR-10 with ResNet-18 of different MLR-SNet
692 architecture configurations. We have set varying layers for
693 our MLR-SNet with fixed hidden nodes to see its perfor-
694 mance variation. As shown in Fig. 5a, it is seen that the
695 depth of the MLR-SNet has unsubstantial influence on the
696 final performance. As for the width of the MLR-SNet, we
697 have also tested different node number settings with fixed 1
698 and 2 layers of MLR-SNet. As shown in Fig. 5b, it can be
699 observed that when the node size of the hidden layer is set
700 small, e.g., 20, it inclines to show slightly slower conver-
701 gence tendency at the early training stage compared with
702 that depicted under larger node size. Besides, when the
703 node size of the hidden layer is set relatively large, e.g., 300,
704 the accuracy curve inclines to perform relatively more
705 unstable at the whole training process even it also achieves

706good performance at final. Yet in most cases, the method
707performs consistently well. This can validate that our algo-
708rithm is not substantially sensitive to the configuration set-
709ting of the MLR-SNet’s architecture. We easily suggest to
710use the one hidden layer with 50 nodes for MLR-SNet archi-
711tecture as in our experiments attributed to its simplicity and
712relatively low cost for computation.
713The Hyperparameters of the Meta-Optimizer. Fig. 6 shows
714the test accuracy on CIFAR-10 with ResNet-18 obtained
715under different hyperparameter configurations of the meta-
716optimizer. Fig. 6a presents the test accuracy of varying LR
717values from 1� 10�6 to 5� 10�2 of meta-optimizer with
718fixed weight decay 1e�4. It can be easily observed that LR
719ranging from 5� 10�3 to 5� 10�4 achieves almost similarly
720good performance. Besides, when the LR increases to larger
721than the order of 10�3, it tends to certainly hamper the con-
722vergence tendency of the Adam optimizer, and thus lead to
723performance degradation. Furthermore, when learning rate
724decreases to smaller than the order of 10�4, the updating
725speed of MLR-SNet becomes slower, and thus the produced
726learning rates incline to hardly adapt to the complicated
727training dynamics. This also leads to performance degrada-
728tion. It is thus suggested to set the LR of the adopted Adam
729meta-optimizer in the range from 5� 10�4 to 5� 10�3 to
730facilitate users to more easily reproduce results of our MLR-
731SNet method.3 It has also been substantiated to be an effec-
732tive specification throughout all our experiments.
733Fig. 6b presents the test accuracy of varying weight decay
734values from 1� 10�6 to 5� 10�2 of meta-optimizer with
735fixed LR 1e�3. It can be seen from the figure that when the
736weight decay varies from 1� 10�6 to 1� 10�3, similarly
737good performance can be consistently achieved. This com-
738plies with the commonly setting rage of weight decay for
739Adam optimizer in practice. When weight decay increases
740larger than the order of �10�3, the performance becomes
741gradually degraded. This can be rationally explained by the
742fact that larger weight decay tends to decrease the norm of
743the meta-learner weights, and could be seen as increasing
744the effective learning rate of Adam optimizer to a certain
745extent, as illustrated in [70], [71]. As shown in the learning
746rate testing experiments, this inclines to slightly degrade the
747performance as it behaves in Fig. 6a. We thus simply sug-
748gest users to adopt weight decay 10�4, which has been
749tested effective throughout all our experiments.

Fig. 5. Test accuracy on CIFAR-10 with ResNet-18 with different settings of
(a) network layers and (b)hidden layer nodes ofMLR-SNet architectures.

Fig. 6. Test accuracy on CIFAR-10 with ResNet-18 with different settings
of (a) learning rates and (b) weight decays of meta-optimizer ‘Adam’.

3. In the released codes of our algorithm, we have specifically set its
default setting as 1� 10�3. Such a default learning rate setting has also
been used for the Adam optimizer in PyTorch [70], and also has been
commonly adopted by many previous literatures like [9], [71].

SHU ET AL.: MLR-SNET: TRANSFERABLE LR SCHEDULES FOR HETEROGENEOUS TASKS 9
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751 Capability of the LR Schedules Meta-Learned
752 by MLR-SNet

753 As aforementioned, the meta-learned LR schedules are
754 transferable and plug-and-play, attributed to its explicit
755 parameterized mapping form. We then validate its transfer-
756 ability and generalization to new heterogeneous tasks.

757 4.2.1 Baselines

758 The L4, HD, RTHO methods learn the LR schedules specifi-
759 cally for given tasks, and they do not learn transferable
760 structure allowing to be generalized to new tasks. We thus
761 do not compare them in this part. The employed compari-
762 son methods for image classification include SGDM4 with
763 hand-designed LR schedules: 1) Fixed LR, 2) Exponential
764 decay, 3)MultiStep decay, and 4) SGDR, as well as the adap-
765 tive gradient method Adam. As for the text classification
766 experiments, we compare with SGD and Adam algorithm
767 with Val Strategy LR schedule. The hyperparameters of
768 these hand-designed LR schedules are tuned from scratch
769 as strong baselines to show the task-transferable potential
770 of our meta-learned MLR-SNet.5

771 We use the MLR-SNet meta-learned on CIFAR-10 with
772 ResNet-18, as introduced in Section 4.1.1, as the plug-and-
773 play LR schedules to directly predict the LR for SGD algo-
774 rithm to new heterogeneous tasks. As discussed in Sec-
775 tion 3.2.2, we save several meta-learned MLR-SNets at
776 different epochs in the whole one meta-train run for helping
777 setting LR schedules in the meta-testing stage. The motiva-
778 tion can be easily observed from Fig. 7a, which reveals that
779 if we only use the single meta-learned MLR-SNet at certain
780 epoch to predict LR, then the predicted LR will converge to
781 a constant after several iterations. This implies that if we
782 directly select one single MLR-SNet learned by our algo-
783 rithm, it will raise the risk of the overfitting issue.
784 This thus inspired us to select more MLR-SNets learned
785 during the meta-training iterations participating in meta-
786 test process. Generally, if we want to select k nets for meta-
787 test, the MLR-SNet learned at ½T�lk �th epoch (l ¼ 1; 2; . . . ; k)

788should be chosen, where ½	� denotes ceiling operator, and T
789is the iteration number in training. Fig. 7b show the test
790accuracy with ResNet-18 on CIFAR-100 of different test
791strategies, i.e., choosing different k MSR-SNets to transfer. It
792can be seen that once we choose more than three nets, simi-
793lar performance can be obtained. We thus easily set k as 3
794throughout all our experiments.

7954.2.2 Generalization to Different Training Epochs

796The plug-and-play MLR-SNet is meta-trained with epoch
797200, and we transfer it to other different training epochs, e.g.,
798100, 400, 1200. All the methods are trained with ResNet-18
799on CIFAR-100 with batch size 128 with varying epochs. The
800hyperparameter setting for compared hand-designed LR
801schedules is the same as that in Section 4.1.1 as illustrated
802above, except for MultiStep LR. For epoch 100, 400 and 1200,
803MultiStep decays LR by 10 every 30, 120, 360 epochs, respec-
804tively. For our method, we use the transferring MLR-SNet as
805below: 1) For epoch 100, we employ the 3 nets at 0-33, 33-67,
80667-100 epoch, respectively; 2) For epoch 400, we employ the
8073 nets at 0-133, 133-267, 267-400 epoch, respectively; 3) For
808epoch 1200, we employ the 3 nets at 0-400, 400-800, 800-1200
809epoch, respectively.
810As shown in Fig. 8, our MLR-SNet has the ability to train
811the SGD algorithm in the meta-test stage for longer horizons
812and achieves comparable performance as the best baseline
813MultiStep LR. The Fixed LR shakes at the later stage for the
814longer epochs. This substantiated that the learned MLR-
815SNet is capable of generalized to setting LR schedules with
816such longer horizons problems.

8174.2.3 Generalization to Different Datasets

818We transfer the LR schedules meta-learned on CIFAR-10 to
819SVHN [72], TinyImageNet,6 and Penn Treebank [67] data-
820sets to validate the generalization of our method to different
821datasets, especially varying data modalities. For SVHN and
822TinyImageNet datasets, we train a ResNet-18 with 200
823epoch. For Penn Treebank classification, we train a 3-layer
824LSTM with 150 epoch. The hyperparameters of all com-
825pared methods are with the same setting as CIFAR-10 and
826Penn Treebank introduced in Section 4.1. The results are
827presented in Fig. 9. It is worth noting that the LR schedules
828for image task and text task have different forms, while our
829MLR-SNet can still obtain a relatively stable and compara-
830ble generalization performance for different tasks with the
831corresponding best baseline methods.

8324.2.4 Generalization to Different Net Architectures

833To further validate that our method can be applied to different
834network architectures, we also transfer the LR schedulesmeta-
835learned on ResNet-18 to ShuffleNetV2 [73], MobileNetV2 [74]
836and NASNet [75].7 These network architectures are different
837from ResNet-type network, especially the NASNet is learned
838from data, not the artificial constructed network. As shown in
839Fig. 10, our method can achieve comparable results and even
840get better performance to the best baseline method. This

Fig. 7. (a) The LR variation curves along iterations with the same input
loss (we set it as 5) predicted by a single meta-learned MLR-SNet
obtained at certain epoch of meta-training stage. As is shown, when iter-
ation increases, the LR is almost constant. This implies that the meta-
learned MLR-SNet at certain epoch fails to predict the long trajectories
LR. (b) The recording test accuracy on CIFAR-100 with ResNet-18 using
different meta-test strategies.

4. Here we present stronger baseline results compared with trained
with SGD, while our MLR-SNet still predicts LR schedules for SGD.

5. A fair task-tranferable setting for these hand-designed LR schedules
is to assemble hyperparameters tuning on CIFAR-10 with ResNet-18 to
train new query tasks. More details refer to Supplementary Material,
available online.

6. It can be downloaded at https://tiny-imagenet.herokuapp.com
7. The pytorch codes of all these networks can be found on https://

github.com/weiaicunzai/pytorch-cifar100
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841 further shows that our MLR-SNet is able to be transferred to
842 varying types of network training.We also transfer to Efficient-
843 Net [76], and the experimental details can be found in the sup-
844 plementarymaterial, available online.

845 4.2.5 Generalization to Large Scale Optimization

846 Problem

847 In this part, we attempt to use the meta-learned LR sched-
848 ules to train DNN on ImageNet dataset [77]. To our best
849 knowledge, only [40] had attempted this task among exist-
850 ing learning-to-optimize literatures. However, it can only
851 be executed for thousands of steps, and then its loss begins
852 to increase dramatically, thus not able to be implemented in
853 the optimization process in practice. We transfer the LR
854 schedules meta-trained on CIFAR-10 with ResNet-18 to
855 ImageNet dataset with ResNet-50.8 All compared methods
856 are trained by SGDM with a momentum 0.9, a weight decay
857 5e�4, an initial learning rate 0.1 for 90 epochs, and batch size
858 256. MultiStep decays LR by 10 every 30 epochs; Exponential
859 multiplies LR with gE ¼ 0:95 every epoch; SGDR sets

860amin ¼ 1e�5;amax ¼ 0:1, and E0 ¼ 10; TMult ¼ 2. Following
861[66], we decay LR by 10 every 30 epochs for Adam.
862The test accuracy on ImageNet validation set is presented
863in Fig. 12a. It can be seen that the performance of our
864method is competitive with those hand-designed LR sched-
865ules methods, though we train the model with SGD using
866the LR schedules predicted by our transferred MLR-SNets.
867Meanwhile, the LR schedules predicted by MLR-SNet
868brings non-extra computation complexity in the DNN train-
869ing process. This implies that our method is hopeful to be
870effectively and efficiently used to deal with such large scale
871optimization problems, making learning-to-optimize ideas
872towards more practical applications.

8734.3 How do Meta-Training Tasks Influence the
874Generalization Performance of Meta-Learned
875LR Schedules

876In this section, we empirically study how meta-training tasks
877influence the generalization performance of meta-learned LR
878schedules. To conduct ablation study for answering this ques-
879tion, we construct three groups of meta-training tasks to char-
880acter the influence factors for the generalization performance.
881An overview of them is shown in Table 4. Themeta-test task is

Fig. 8. Test accuracy on CIFAR-100 of ResNet-18 with varying epochs for our transferred MLR-SNet in the meta-test stage.

Fig. 9. Test accuracy with different datasets for our transferred MLR-SNet in the meta-test stage.

Fig. 10. Test accuracy on CIFAR-10 with different network architectures for our transferred MLR-SNet in the meta-test stage.

8. The training codes of baseline methods can be found on https://
github.com/pytorch/examples/tree/master/imagenet
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883 learned LR schedules. The hyperparameter setting follows
884 those introduced in Section 4.1.1.
885 The Similarity Between Meta-Training and Meta-Test Tasks.
886 Grayscale digits (MNIST), RGB digits (SVHN) and natural
887 photos (CIFAR-10) represent incremental similarity betw-
888 een meta-training and meta-test tasks. We use the three
889 datasets to meta-learn MLR-SNet with ResNet-18, respec-
890 tively. As shown in Fig. 11a, three transferred LR schedules
891 meta-learned from different datasets achieve very similar
892 final performance on the meta-test task. This validates that
893 such similarity difference has a relatively weak influence on
894 the generalization of meta-learned LR schedules.
895 Scale of Meta-Training Tasks. The scale of meta-training
896 tasks is also taken into consideration. We uniformly sam-
897 pled 50, 250, 500 samples per class in CIFAR-100 as training
898 datasets, denoted by 1/10 CIFAR-100, 1/2 CIFAR-100 and
899 CIFAR-100, respectively. We use the three datasets to meta-
900 learn MLR-SNet with ResNet-18. Fig. 11b shows the gener-
901 alization performance of three kinds of such meta-learned
902 LR schedules. As is shown, the performance deteriorates
903 when the size of training task set is small. If the scale of
904 training task set is in the same order of magnitude, it tends
905 to obtain similar generalization performance.
906 Architectures of Training Models. Different network archi-
907 tectures in the meta-training stage may produce different
908 LR schedules. We adopt three different classifier networks,
909 including ResNet-18, ResNet-34, and ResNet-50, to meta-
910 learn MLR-SNet on CIFAR-100. Fig. 11c shows that three
911 transferred LR schedules achieve similar generalization per-
912 formance, even though they are meta-learned based on dif-
913 ferent classifier networks.
914 Remark. We have empirically verified that the generaliza-
915 tion performance of the meta-learned LR schedules is not sen-
916 sitive to the similarity between meta-training and meta-test
917 tasks, and network architectures in the meta-training stage.
918 This can be rationally explained by the fact that ourMLR-SNet
919 is sufficiently simple to make it less rely on the task-related
920 information. Besides, it is also verified that the size of meta-
921 training task could slightly influence the final generalization
922 performance. This might possibly due to that few meta-train-
923 ing data could not provide enough information to fit the
924 proper LR schedules. Furthermore, these empirically results
925 state that our MLR-SNet is easy to be meta-trained for achiev-
926 ing an admirable performance on themeta-test tasks.

927 4.4 Robustness on Data Corruptions

928 In this section, we further validate whether our MLR-SNet
929 behaves robust against corrupted training data guided by a

930clean validation set. To this aim, we design experiments as
931follows: we take CIFAR-10-C and CIFAR-100-C [78] as our
932training set,9 consisting of 15 types of algorithmically gener-
933ated corruptions from noise, blur, weather, and digital cate-
934gories. These corruptions contain Gaussian Noise, Shot
935Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur,
936Motion Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Con-
937trast, Elastic, Pixelate and JPEG. All the corruptions are gen-
938erated on 10,000 test set images of CIFAR-10/100 dataset,
939and each corruption contains 50,000 images since each type
940of corruption has five levels of severity. We treat CIFAR-10-
941C or CIFAR-100-C dataset as training set, and the original
942training set of CIFAR-10 or CIFAR-100 as test set. We train
943models with ResNet-18 for each corrupted dataset. Finally,
944we can obtain 15 models for CIFAR-10-C or CIFAR-100-C
945dataset. The average accuracy of 15 models on test data is
946used to evaluate the robust performance of each LR sched-
947ules strategy. All compared hand-designed LR schedules
948are trained with a ResNet-18 by SGDM with a momentum
9490.9, a weight decay 5e�4, an initial learning rate 0.1 for 100
950epochs, and batch size 128. Exponential LR multiplies LR
951with 0.95 every epoch; MultiStep LR decays LR by 10 every
95230 epochs; SGDR sets amin ¼ 1e�5; amax ¼ 0:1, and E0 ¼
95310; TMult ¼ 2; Adam just uses the default parameter setting.
954We update the MLR-SNet under the guidance of a small set
955of validation set without corruptions, to guarantee that the
956final learned models finely generalize to clean test set. We
957randomly choose 10 clean images for each class as valida-
958tion set in this experiment.
959Table 5 shows the mean test accuracy of 15 models (�std)
960on the training set of CIFAR-10 or CIFAR-100 dataset. As
961can be seen, our proposed MLR-SNet is capable of achieving
962better generalization performance on clean test data than
963baseline methods, which implies that our method behaves
964more robust and stable than the pre-set LR schedules when
965the learning tasks in which the distribution of training and
966test data are mismatched. This is due to the fact that our
967MLR-SNet has more flexibility to adapt the variation of the
968data distribution than the pre-set LR schedules, and it can
969find a proper LR schedule through minimizing the generali-
970zation error which is based on the knowledge specifically
971conveyed from the given validation data.
972Furthermore, we attempt to explore the generalization of
973our meta-learned LR schedules. Different from the above
974experiments where all 15 models are trained under the guid-
975ance of a small set of validation set, we just meta-learn the
976MLR-SNet on the Gaussian Noise corruption dataset, and
977then transfer the meta-learned LR schedules to other 14 cor-
978ruptions datasets.We report the average accuracy of 14mod-
979els on test data to show the robust performance of our
980transferred LR schedules. All the methods are meta-tested
981with a ResNet-18 for 100 epochs with batch size 128. The
982hyperparameter setting of hand-designed LR schedules
983keeps the same as above. Table 6 shows the mean test accu-
984racy of 14 models on the training set of CIFAR-10 or CIFAR-
985100 dataset. As can be seen, our transferred LR schedules
986obtain the best performance in the last epoch compared with

TABLE 4
Variants Constructed From Meta-Training Tasks

Influence factors Tasks design

Task similarity MNISTa, SVHNa, CIFAR-10
Task scale 1/10 CIFAR-100b, 1/2 CIFAR-100b,

CIFAR-100
Architecture ResNet-18, ResNet-34, ResNet-50

a: uniformly downsample to 50000 samples.
b: uniformly sample to certain proportion of full CIFAR-100.

9. They can be downloaded at https://zenodo.org/record/
2535967#. Xt4mVigzZPY and https://zenodo.org/record/3555552#.
Xt4mdSgzZPY
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987 hand-designed LR schedules. This implies that our trans-
988 ferred LR schedules can also perform robust and stable for
989 the learning tasks in which the distribution of training and
990 test data aremismatched. Besides, our transferring LR sched-
991 ules are plug-and-play, and have no additional hyperpara-
992 meters to tunewhen transferred to new heterogeneous tasks.

993 5 FURTHER ANALYSIS ON MLR-SNET

994 In this section, we first provide the convergence guarantee
995 for the SGD algorithm with LR schedules produced by our
996 MLR-SNet, as well as the convergence guarantee for the
997 meta-learning of the MLR-SNet (Section 5.1). In Section 5.2,
998 we further analyze the computational complexity for the
999 MLR-SNet. The “width” of the solution is visualized in Sec-

1000 tion 5.3. In Section 5.4, we further verify that the LSTM-type
1001 meta-learner behaves more superiorly than MLP-type meta-
1002 learner. Finally, we show that the MLR-SNet can be applied
1003 to Adam optimizer in Section 5.5.

1004 5.1 Convergence Analysis of MLR-SNet

1005 The preliminary experimental evaluations show that our
1006 method gives good convergence performance on various
1007 tasks. We find that the meta-learned LR schedules in our
1008 experiments follow a consistent trajectory as shown in Fig. 1,

1009almost obeying a decay LR form. Without loss of generality,
1010we assume that the learning rate can be represented by

at ¼ at�1bt; t ¼ 1; 2; . . . ; T; (14)
10121012

1013where at denotes the learning rate predicted by MLR-SNet
1014at the tth iteration, and bt denotes the decay factor at the tth
1015iteration, 1=K � a � bt � b � 1, where a ¼ ðM=T Þ1=T ; b ¼
1016ðN=T Þ1=T , and a 6¼ b;M;N / T , and K is the arbitrarily
1017large constant. We denote by E½	� the expectation with
1018respect to the underlying probability space. To present the
1019convergence results, we also assume that10:
1020(A1) The loss function fðwÞ : Rd ! R is L-smooth, i.e., f
1021is differentiable and its gradientrfðwÞ is L-Lipschitz.
1022(A2) f satisfies the m-PL condition, that is, their exists
1023some m > 0, 1

2 krfðwÞk2 � mðfðwÞ � f�Þ; holds for any w,
1024where f� represents the infimum of fðwÞ.
1025(A3) For t ¼ 1; 2; . . . ; T , we assume Et½kvt �rfðwtÞk2� �
1026kkrfðwtÞk2 þ s, where k; s > 0, and vt is an unbiased esti-
1027mate of the gradient of f at point wt, i.e., Etvt ¼ rfðwtÞ.
1028First, we consider the case where the function is smooth
1029and satisfies the Polyak-Lojasiewicz (PL) condition [82],
1030[83]. The proofs of all Theorems are listed in the appendix

Fig. 11. Illustration of meta-training tasks influencing the generalization performance of meta-Learned LR schedules.

TABLE 5
Test Accuracy (%) on CIFAR-10 and CIFAR-100 Training Sets of Compared Models Trained on CIFAR-10-C and CIFAR-100-C with

Hand-Designed LR Schedules and Meta-Trained MLR-SNet (Meta-Training)

Datasets/Methods Fixed MultiStep Exponential SGDR Adam Ours(Train)

CIFAR-10-C Best 79.78 � 3.95 85.52 � 1.72 83.48 � 1.45 85.94 � 1.52 81.45 � 1.42 86.04 � 1.51
Last 77.88 � 3.91 85.36 � 1.71 83.32 � 1.43 78.21 � 2.01 80.29 � 1.64 85.87 � 1.54

CIFAR-100-C Best 46.74 � 3.03 52.26 � 2.58 49.72 � 1.97 52.54 � 2.49 45.45 � 1.94 52.56 � 2.26
Last 44.79 � 3.91 52.16 � 2.59 49.58 � 1.98 41.58 � 3.24 43.76 � 2.22 52.42 � 2.34

Best and Last denote the best test result and the last epoch test result, respectively. The Bold and Underline Bold denote the first and second best results,
respectively.

TABLE 6
Test Accuracy (%) on CIFAR-10 and CIFAR-100 Training Sets of Compared Models Trained on CIFAR-10-C and CIFAR-100-C with

Hand-Designed LR Schedules and Transferred MLR-SNet (Meta-Test)

Datasets/Methods Fixed MultiStep Exponential SGDR Adam Ours(Test)

CIFAR-10-C Best 79.96 � 4.09 85.64 � 1.71 83.63 � 1.38 86.10 � 1.44 81.57 � 1.39 85.73 � 1.71
Last 77.89 � 4.05 85.48 � 1.71 83.47 � 1.37 78.46 � 1.92 80.39 � 1.65 85.62 � 1.76

CIFAR-100-C Best 46.91 � 3.08 52.38 � 2.43 49.90 � 1.93 52.80 � 2.39 45.58 � 1.95 52.51 � 2.38
Last 44.81 � 5.98 52.28 � 2.44 49.75 � 1.94 41.68 � 3.33 43.94 � 2.18 52.35 � 2.46

Best and Last denote the best test result and the last epoch test result, respectively. The Bold and Underline Bold denote the first and second best results,
respectively.

10. They are commonly used for existing SGD convergence theories
[79], [80], [81].
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1031 file, which can be found on the Computer Society Digital
1032 Library at http://doi.ieeecomputersociety.org/10.1109/
1033 TPAMI.2022.3184315.

1034 Theorem 1. Assume (A1,A2,A3) hold, and the SGD is with
1035 learning rate (14), where a0 ¼ ðLð1þ kÞÞ�1. Then for a given
1036 T � maxf3;M;Ng, the wt generated from SGD satisfies

Efðwtþ1Þ � f� �CðMÞexp � mT

KLð1þ kÞ lnðT=MÞ
� �

ðfðw1Þ � f�Þ þ 2K2CðMÞ ln2ðT=MÞðN=MÞ2
e2m2ð1�M=NÞT :

10381038

1039 where CðMÞ ¼ expð mM
KLð1þkÞ lnðT=MÞÞ.

1040 Theorem 1 states that SGD with learning rate produced by
1041 our MLR-SNet as described in Eq. (14) can obtain an approxi-
1042 mately linear convergence rate, achieving the best-known rates
1043 for the non-convex optimization [79]. While the assumption
1044 (A2)means that all stationary points are optimal point, which is
1045 not always true for deep learning, the following theorem dis-
1046 cusses the casewhere the PL condition is not satisfied.

1047 Theorem 2. Assume (A1,A3) hold, and the SGD is with learn-
1048 ing rate (14), where a0 ¼ ðcLð1þ kÞÞ�1; c > 1. Then for wt

1049 generated using SGD, we have the following bound

min
t

EkrfðwtÞk2 � 2cKLð1þ kÞ lnðT=MÞ
T �M

½Efðw1Þ � EfðwT Þ�

þ O sKT

cð1þ kÞðT �MÞ
� �

:
10511051

1052

1053 It can be seen that when s 6¼ 0, if we set c / ffiffiffiffi
T
p

and s ¼
1054 Oð1Þ, it would give the Oð1= ffiffiffiffi

T
p Þ rate; when s ¼ 0, if we set

1055 c ¼ Oð1Þ, it would give the Oð1=T Þ. It is worth noting that

1056the condition s ¼ 0 holds in many practical scenarios, e.g.,
1057[84]. On the other hand, we provide a convergence analysis
1058of the MLR-SNet updated by the validation loss.

1059Theorem 3. Assume (A1,A3) hold, f has r-bounded gradients
1060with respect to training/validation data, and theAðuÞ is differen-
1061tial with a d-bounded gradient and twice differential with its Hes-
1062sian bounded by B. Assume that the learning rate at ¼ AðutÞ
1063predicted byMLR-SNet obey Eq. (14). We suppose that the learn-
1064ing rate of Adam algorithm for updating MLR-SNet satisfies
1065ht ¼ h for all t 2 ½T �; h � �

2L and 1� b2 � �2

16r2
, where b2; � are

1066the hyperparameters of the Adam algorithm (It can be found in
1067Appendix, available in the online supplemental material). Then
1068for ut generated using Adam, we have the following bound:

min
0�t�T

E½krLValðŵtðutÞÞk22� � Oð
1

c2 lnðT Þ þ s2Þ: (15) 10701070

1071

1072It can be seen that when s 6¼ 0, if we set c / ffiffiffiffi
T
p

, and s ¼
1073Oð1Þ, it would lead to the Oð 1

T lnðT Þ þ s2Þ convergence rate;
1074when s ¼ 0, if we set c ¼ Oð1Þ, it would give the Oð 1

lnðT ÞÞ
1075convergence rate. It can then be proved that the conver-
1076gence of the proposed method.
1077Theorems 1 and 2 proposed in the paper are inspired by
1078the theoretical analysis for standard SGD optimizers, but
1079under different learning rate assumptions from conventional.
1080Specifically, classical convergence analysis on the SGD algo-
1081rithm requires pre-assume the conditions on the stepsize
1082sequence at; t ¼ 1; . . . ;1 that they should satisfy that

X1
t¼1

at ¼1; and
X1
t¼1

a2
t < 1: (16)

10841084

1085Different from these conventional assumptions, our theory
1086further considers the relationship between subsequent steps-
1087izes at�1 and at. The decay factor bt so assumed is varied

Fig. 12. (a)Test accuracy on ImageNet validation set with ResNet-50. (b)Computational time costed by different LR schedule methods. (c) (Upper)
Train lossf and (Lower) test loss as a function of a point on a random ray starting at the solutions for different methods on CIFAR-100 with ResNet-18.

Fig. 13. Performance comparison of two types of meta-learners. (a) Two types of meta-learners are trained on CIFAR-10 and Penn Treebank data-
sets following the experiment setting in Section 4.1. The figure presents the test performance of two tasks. (b) The LR schedules meta-learned on
CIFAR-10 is transferred to TinyImageNet and Penn Treebank datasets following the experiment setting in Section 4.2. The meta-test performance
are shown in the figure.
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1089 dynamic variations along with the training process delivered
1090 by the LSTM meta-learner, as clearly shown in Figs. 3 and 4.
1091 Besides, Theorem 3 presents the convergence analysis of the
1092 LSTM-based meta-learner. This is also different from the con-
1093 vergence analysis for standard SGD optimizers, which aims to
1094 solve a single level optimization problem. Comparatively, our
1095 analysis is built on the bilevel optimization, and thus needs to
1096 evaluate the convergence property of meta-level optimization
1097 problem. Thus this result is specific to theproposedmeta-learn-
1098 ing problembeyond conventional SGD convergence analysis.

1099 5.2 Computational Complexity Analysis

1100 In the meta-training stage, our MLR-SNet learning algorithm
1101 can be roughly regarded as requiring two extra full forward
1102 and backward passes of the network (step 6 in Algorithm 1) in
1103 the presence of the normal network parameters update (step 8
1104 inAlgorithm 1), togetherwith the forward passes ofMLR-SNet
1105 for every LR. Therefore compared to normal training, our
1106 method needs about 3� computation time for one iteration.
1107 Sinceweperiodically updateMLR-SNet after several iterations,
1108 this will not substantially increase the computational complex-
1109 ity compared with normal network training. In the meta-test
1110 stage, our transferred LR schedules predict LR for each itera-
1111 tion by a small MLR-SNet (step 4 in Algorithm 2), whose
1112 computational cost should be significantly less than the cost of
1113 the normal network training. To empirically show the compu-
1114 tational complexity differences between baselines and our
1115 MLR-SNet, we conduct experiments with ResNet-18 on
1116 CIFAR-10 and report the running time for all methods. All
1117 experiments are implemented on a computer with Intel Xeon
1118 (R) CPU E5-2686 v4 and a NVIDIA GeForce RTX 2080 8GB
1119 GPU. We follow the corresponding settings in Section 4.1, and
1120 results are shown in Fig. 12b. It is seen that except that RTHO
1121 costs significantly more time, our MLR-SNet takes a similar
1122 time to complete the meta-training and meta-test phase com-
1123 pared to hand-designed LR schedules with hyperparameters
1124 found by search methods (the computation cost of searching
1125 hyperparameters is not included). Considering its good trans-
1126 ferability and generalization capability, it should be rational to
1127 say that it is efficient.

1128 5.3 Visualizing the “Width” of Solutions

1129 We further point out that visualizing the “width” of a given
1130 solution w in a low-dimensional space may help understand
1131 why the model has fine generalization capability. Generally,
1132 [10], [11] suggested that the wider optima leads to better

1133generalization. We use the visualization technique in [13] to
1134show how the loss changes along many random directions
1135drawn from the d-dimensional Gaussian distribution. Fig. 12c
1136visualizes the “width” of the solutions learned on CIFAR-100
1137with ResNet-18 for different LR schedules. It can be seen that
1138our method, as well as the competitive baselines, lies in a wide
1139flat region of the train loss. This could explainwhy they achieve
1140better generalization performance. Deeper understanding of
1141this pointwill be further investigated.

11425.4 Why do we Need LSTM Meta-Learner

1143We regard scheduling LR as a long-term information depen-
1144dent problem, and thus we parameterize the LR schedules as
1145an LSTM network. As we know MLP (multilayer perceptron)
1146network can also learn an explicitmappingbut ignores the tem-
1147poral information, herewe compare theperformance of the two
1148types of meta-learners. Fig. 13 compares the performance of
1149two types of meta-learners for both meta-training and meta-
1150test procedures. As is shown, the MLP meta-learner achieves
1151better performance in the early learning stage for both meta-
1152training and meta-test procedure. While at the later training
1153stage, the LSTM meta-learner gradually brings a notable per-
1154formance increase compared with the MLP meta-learner. This
1155might be possibly due to that the MLPmeta-learner easily falls
1156into the local optimal LR learning, while lacking in considering
1157the overall significantly changed training dynamics. Though
1158MLP meta-learner can also depict the loss-LR relationship, it
1159ignores the more important training dynamics information
1160involved for the scheduling LR. The LSTMmeta-learner, how-
1161ever, is capable of accumulating temporal information on com-
1162plicated training dynamics, and thus inclines to help find a
1163more proper LR schedule for suchDNNs training.

11645.5 Applying MLR-SNet on Top of Adam Algorithm

1165To further demonstrate the versatility of our method, we apply
1166the MLR-SNet on top of the Adam algorithm. Fig. 14 shows
1167that our method can help find better LR schedules than the Val
1168Strategy. And the transferred LR schedules can also attain com-
1169parable performance with the hand-designed LR schedules.
1170This implies that our framework is hopeful to learn the proper
1171LR schedules for various optimizers.

11726 CONCLUSION AND DISCUSSION

1173In this paper, we have proposed to learn an adaptive and trans-
1174ferrable LR schedule in a meta learning manner. To this aim,
1175we have designed an LSTM-type meta-learner (MLR-SNet) to
1176parameterize LR schedules, which gives more flexibility to
1177adaptively learn a proper LR schedule to complywith the com-
1178plex training dynamics of DNNs.Meanwhile, themeta-learned
1179LR schedules are plug-and-play and transferrable, which can
1180be readily transferred to schedule LR for SGD to new heteroge-
1181neous tasks. Comprehensive experiments have been imple-
1182mented, and the results substantiate the superiority of our
1183method on various image and text benchmarks in its adaptabil-
1184ity, transferability and robustness, as compared with current
1185LR schedules policies. TheMLR-SNet is hopeful to be useful in
1186practical problems as it requires a negligible increase in the
1187parameter size and computation time, and a small transferrable
1188cost for new tasks. We will make a further endeavor to further
1189ameliorate our proposed method to make it a general and

Fig. 14. Applying MLR-SNet on Top of Adam Algorithm. (a) The MLR-
SNet for Adam is meta-trained on Penn Treebank datasets with 2-layer
LSTM following the experiment setting in Section 4.1. The figure present
the test perplexity. (b) The meta-learned LR schedules are transferred
to train the three-layer LSTM on Penn Treebank dataset. The test per-
plexity is depicted.
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1190 useful tool for helping improve current DNN training. More
1191 practical applicationswill also be attempted to further verify its
1192 effectiveness in general learning tasks. It is also an important
1193 issue to further enhance the convergence theory and especially
1194 discover new skills and techniques useful to general meta-
1195 learning algorithms for this line of research. Provable transfer-
1196 able LR schedules theory, as done formethodology-level trans-
1197 fer [1], is also of interest.
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