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Abstract. In this supplementary material, we provide all of the proof details
for the lemmas and theorems presented in the main text.

Proof of Lemma 2

Proof. Let {νn}∞n=1 = {
∏M
i=1 ν

i
n}∞n=1 be a sequence of measures in C that converges

weakly to a probability measure ν∗. We want to show that ν∗ ∈ C. Define

νi∗ :=

∫
∏
j 6=iHj

dν∗, for i = 1, 2, · · · ,M.(0.1)

Obviously, each νi∗ is a probability measure. Let fi be some bounded continuous
function defined on Hi with i = 1, 2, · · · ,M . Based on the definition of weak
convergence, we obtain∫

∏M
j=1Hj

fidνn →
∫
Hi
fidν

i
∗, as n→∞.(0.2)

It should be noted that the left hand side of (0.2) is equal to∫
Hi
fidν

i
n,(0.3)

and we find that each νin converges weakly to νi∗. Therefore, we find that νi∗ belongs

to Ai. Let f be a bounded continuous function defined on
∏M
j=1Hj . Then, it is

a bounded continuous function for each variable. Based on the definition of weak
convergence, we find that∫

∏M
j=1Hj

fdνn →
∫
∏M
j=1Hj

fdν∗,(0.4)

and ∫
∏M
j=1Hj

fdνn =

∫
∏M
j=1Hj

fdν1
n · · · dνMn →

∫
∏M
j=1Hj

fdν1
∗ · · · dνM∗ ,(0.5)

when n → ∞. Relying on the arbitrariness of f , we conclude that ν∗ =
∏M
j=1 ν

j
∗,

which completes the proof. �

Proof of Theorem 5
1
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Proof. From the proof of Lemma 2, we know that νjn converges weakly to νj∗ for

every j = 1, 2, · · · ,M . According to νjn � νj∗ for j = 1, 2, · · · ,M , we have

DKL(νn||ν∗) =

∫
dνn
dν∗

log

(
dνn
dν∗

)
dν∗ =

M∑
j=1

∫
log

(
dνjn

dνj∗

)
dνjn

=

M∑
j=1

DKL(νjn||νj∗).

(0.6)

Using Lemma 2.4 proved in [2] and Lemma 22 shown in [1], we find that νn converges
to ν∗ in the total-variation norm. Combined with the above equality (0.6), the proof
is completed. �

Proof of Theorem 9

Proof. For a fixed j, let B ∈ M(Hj), and νjn ∈ Aj be a sequence that converges

weakly to νj∗ and

dνjn

dµjr
=

1

Zjnr
exp(−Φnrj (xj)).(0.7)

Assuming that µjr(B) = 0 and by assumption (16) in the main text, we have

νjn(B) =

∫
B

1

Zjnr
exp(−Φnrj (xj))µ

j
r(dxj) = 0.

Define

Bm = {x ∈ B |dist(x,Bc) ≥ 1/m},(0.8)

and let fm > 0 be a positive continuous function that satisfies

fm(x) =

{
1, x ∈ Bm,
0, x ∈ Bc.

Then, we have

νj∗(Bm) ≤
∫
Hj
fmdν

j
∗ = lim

n→∞

∫
Hj
fmdν

j
n ≤ lim

n→∞
νjn(B) = 0,(0.9)

and

νj∗(B) = sup
m
νj∗(Bm) = 0,(0.10)

based on the inner regular property of finite Borel measures. Therefore, there exists
a constant and a continuous function denoted by Zjr and Φrj(·) such that

dνj∗

dµjr
(xj) =

1

Zjr
exp

(
− Φrj(xj)

)
.(0.11)

To complete the proof, we should verify the almost surely positiveness of the right-
hand side of the above equality. Assume that 1

Zjr
exp

(
− Φrj(xj)

)
= 0 on a set

B ⊂ Hj with µjr(B) > 0. If B ⊂ Hj\ supN T
j
N , then it holds that µjr(B) = 0 by our

assumption. Therefore, B ∩ supN T
j
N is not empty, and there exists a constant Ñ

such that for all N ≥ Ñ , B ∩ T jN is not empty. Denote BN = B ∩ T jN , and then for
a sufficiently large N , we have µjr(BN ) ≥ 1

2µ
j
r(B). Let

BmN = {x ∈ BN |dist(x,BcN ) ≥ 1/m},
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and define a function gm similar to fm with Bm replaced by BmN . Given that
µjr(BN ) = supm µ

j
r(B

m
N ), for a large enough m, we find that

µjr(B
m
N ) ≥ 1

2
µjr(BN ) ≥ 1

4
µjr(B) > 0.

By the definition of weak convergence, we have

lim
n→∞

∫
Hj
gm(x)

1

Zjnr
exp

(
− Φnrj (x)

)
dµjr =

∫
Hj
gm(x)

1

Zjr
exp

(
− Φrj(x)

)
dµjr.

(0.12)

The right hand side of the above equation is equal to 0, but for a large enough m,
the left hand side is positive and the lower bound is

1

4
exp(−CN )µjr(B).(0.13)

This is a contradiction, and thereby the closedness of Aj(j = 1, · · · ,M) have been
proved. Combining the obtained results with the statements in Theorem 3, we
obviously obtain the existence of a solution which completes the proof. �

Proof of Theorem 10

Proof. Here, we focus on the deduction of formula (21) presented in the main text.
By inserting the prior probability measure into the Kullback-Leibler divergence
between ν and µ, for each i (i = 1, 2, · · · ,M) we find that

DKL(ν||µ) =

∫
H

log

(
dν

dµr

)
− log

(
dµ0

dµr

)
− log

(
dµ

dµ0

)
dν

=

∫
H

(
−

M∑
j=1

Φrj(xj) + Φ0(x) + Φ(x)

)
dν + Const

=

∫
Hi

[ ∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj)

]
νi(dxi)

−
∫
Hi

Φri (xi)ν
i(dxi) + terms not related to Φi(xi).

For i = 1, 2, · · · ,M , let ν̃i be a probability measure defined as follows:

dν̃i

dµir
∝ exp

(
−
∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj)

)
.(0.14)

By assumption (19) and (20) shown in the main text, we know that the right-hand
side of (0.14) is positive almost surely. Then, we easily know that the measures ν̃i

and µir are equivalent with each other. Therefore, we obtain

DKL(ν||µ) = −
∫
Hi

log

(
dν̃i

dµir

)
dνi +

∫
Hi

log

(
dνi

dµir

)
dνi + Const

= DKL(νi||ν̃i) + terms not related to νi.

(0.15)

Obviously, in order to attain the infimum of the Kullback-Leibler divergence, we
should take νi = ν̃i. Comparing formula (0.14) with definition (14) in the main
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text, we notice that the condition νi = ν̃i implies the following equality:

Φri (xi) =

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj) + Const,

which completes the proof. �

Verify conditions in Theorem 10 for the linear inverse problem intro-
duced in Subsection 3.1

At last, we provide a detailed verification of the conditions in Theorem 10 for
the example employed in Subsection 3.1. As stated in Remark 14, we consider
λ′ = log λ and τ ′ = log τ as hyper-parameters. For a sufficiently small ε > 0,
taking au(ε, u) := ‖u‖2Hu , aλ′(ε, λ

′) := max
{
− λ′, exp(ε exp(λ′))

}
and aτ ′(ε, τ

′) :=

max
{
− τ ′, exp(ε exp(τ ′))

}
, then we try to verify conditions (19) and (20). In the

following, the notation C is a constant that may be different from line to line. In
this example, we take x1 = u, x2 = λ′, and x3 = τ ′. As shown in the main text, we
have

Φ0(u, λ′, τ ′) =
1

2

K∑
j=1

(uj − u0j)
2(eλ

′
− 1)α−1

j −
K

2
λ′,

Φ(u, λ′, τ ′) =
eτ
′

2
‖Hu− d‖2 − Nd

2
τ ′.

With these preparations, we firstly verify

T 1 := sup
u∈TuN

sup
νλ
′
∈Aλ′

ντ
′
∈Aτ′

∫
R

∫
R

(Φ0 + Φ)1A(u, λ′, τ ′)νλ
′
(dλ′)ντ

′
(dτ ′) <∞.(0.16)

Taking the specific expressions of Φ0 and Φ into (0.16), we have

T 1 ≤ C sup
u∈TuN

sup
νλ
′
∈Aλ′

ντ
′
∈Aτ′

(
T 11 + T 12 + T 13 + T 14

)
,

(0.17)

where

T 11 =

∫
R+

∫
R

1

2

K∑
j=1

(uj − u0j)
2(eλ

′
− 1)α−1

j e−Φr
τ′ (τ

′)e−Φr
λ′ (λ

′)µτ
′

r (dτ ′)µλ
′

r (dλ′),

T 12 =

∫
R−
−K

2
λ′e−Φr

λ′ (λ
′)µλ

′

r (dλ′),

T 13 =

∫
R

eτ
′

2
‖Hu− d‖2e−Φr

τ′ (τ
′)µτ

′

r (dτ ′),

T 14 =

∫
R−
−Nd

2
τ ′e−Φr

τ′ (τ
′)µτ

′

r (dτ ′).

Because the techniques used for estimating these terms are similar, we provide the
estimates of T 13 as an example and omit the details for other terms. Because H is



VARIATIONAL INFERENCE FOR FUNCTIONS 5

assumed to be a linear bounded operator, we have

T 13 ≤C
∫
R

(eεe
τ′

+ 1)e−Φr
τ′ (τ

′)µτ
′

r (dτ ′)

≤C
∫
R

max(1, aτ ′(ε, τ
′))e−Φr

τ′ (τ
′)µτ

′

r (dτ ′) <∞.
(0.18)

Next, we need to estimate

T 2 := sup
λ′∈Tλ′N

sup
νu∈Au
ντ
′
∈Aτ′

∫
Hu

∫
R

(Φ0 + Φ)1A(u, λ′, τ ′)ντ
′
(dτ ′)νu(du) <∞.(0.19)

Taking the specific expressions of Φ0 and Φ into (0.19), we have

T 2 ≤ C sup
λ′∈Tλ′N

sup
νu∈Au
ντ
′
∈Aτ′

(
T 21 + T 22 + T 23 + T 24

)
,(0.20)

where

T 21 = eλ
′
∫
Hu

1

2

K∑
j=1

(uj − u0j)
2α−1

j e−Φru(u)µur (du),

T 22 =
K

2
|λ′|,

T 23 =

∫
Hu
‖Hu− d‖2e−Φru(u)µur (du)

∫
R

1

2
eτ
′
e−Φr

τ′ (τ
′)µτ

′

r (dτ ′),

T 24 =
Nd
2

∫
R

|τ ′|e−Φr
τ′ (τ

′)µτ
′

r (dτ ′).

Remembering that the operator H is bounded and the specific forms of aτ ′(ε, τ
′)

and au(ε, u), we can obtain that the above four terms are all bounded. The following
inequality

T 3 := sup
τ ′∈T τ′N

sup
νu∈Au
νλ
′
∈Aλ′

∫
Hu

∫
R
(Φ0 + Φ)1A(u, λ′, τ ′)νλ

′
(dλ′)νu(du) <∞(0.21)

can be proved similarly, we omit the details. With the above calculations, we
verified conditions (19) with i = 1, 2, 3. Now, we turn to verify conditions (20). For
conditions (20) with i = 2, 3, the inequalities could be verified similarly as for the
case of i = 1. Hence, we only provide details when i = 1 that is to prove

T 4 := sup
νλ
′
∈Aλ′

ντ
′
∈Aτ′

∫
Hu

exp

(
−
∫
R2

(Φ0 + Φ)1Acν
λ′(dλ′)ντ

′
(dτ ′)

)
max(1, ‖u‖2Hu)µ

u
r (du) <∞.

Through a direct calculation, we find that

−
∫
R2

(Φ0 + Φ)1Acν
λ′(dλ′)ντ

′
(dτ ′) ≤1

2

K∑
j=1

α−1
j (uj − u0j)

2

∫
R−

(1− eλ
′
)νλ

′
(dλ′)

+
K

2

∫
R
|λ′|e−Φr

λ′ (λ
′)µλ

′

r (dλ′)

+
Nd
2

∫
R
|τ ′|e−Φr

τ′ (τ
′)µτ

′

r (dτ ′).
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Then we have

T 4 ≤ C
∫
Hu

exp

(
1

2

K∑
j=1

α−1
j (uj − u0j)

2

∫
R−

(1− eλ
′
)νλ

′
(dλ′)

)
max(1, ‖u‖2Hu)µur (du).

Considering
∫
R−(1 − eλ′)νλ′(dλ′) < 1 and the definition of µur , we know that the

right hand side of the above inequality is bounded which completes the proof.
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