SUPPLEMENTARY MATERIAL OF “VARIATIONAL BAYES’
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ABSTRACT. In this supplementary material, we provide all of the proof details
for the lemmas and theorems presented in the main text.

Proof of Lemma 2

Proof. Let {vp}52, = {Hf\il Vi 1% | be a sequence of measures in C that converges

weakly to a probability measure v,.. We want to show that v, € C. Define

(0.1) vi= / dv,, for i=1,2,---,M.
[Tz M

Obviously, each v? is a probability measure. Let f; be some bounded continuous
function defined on H; with ¢ = 1,2,--- /M. Based on the definition of weak
convergence, we obtain

02) I

j=1 H;

fidvn —>/ fidvi, as n — oo.
Hi
It should be noted that the left hand side of (0.2) is equal to

(0.3) fidvy,

Hi
and we find that each v} converges weakly to 2. Therefore, we find that v¢ belongs
to A;. Let f be a bounded continuous function defined on Hjle H;. Then, it is

a bounded continuous function for each variable. Based on the definition of weak
convergence, we find that

(0.4) /H y

=1

fdv, —>/ fdv,,
Hj [T, H;

and
05 [, ddm= [ favkeant o fdvl v,
[T, #H; 1L, H; [1L, H;
when n — oco. Relying on the arbitrariness of f, we conclude that v, = H;‘il 1/1,

which completes the proof.

Proof of Theorem 5
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Proof. From the proof of Lemma 2, we know that v} converges weakly to vl for
every j = 1,2,--- , M. According to v} < v] for j =1,2,--- , M, we have

Dxr(vnllvs) = /d”” (d””)du* Z/log( )

M
=Y D (v |[vd).
j=1

Using Lemma 2.4 proved in [2] and Lemma 22 shown in [1], we find that v, converges
to v, in the total-variation norm. Combined with the above equality (0.6), the proof
is completed. (I

(0.6)

Proof of Theorem 9

Proof. For a fixed j, let B € M(H;), and v € A; be a sequence that converges
weakly to v{ and

dvi 1 r
(0.7) thi = ngwexp(—q’j ()

Assuming that pZ(B) = 0 and by assumption (16) in the main text, we have
4 1 ,
VB) = [ exp(- () llde) =0
B Znr
Define
(0.8) B, = {zx € B|dist(z, B) > 1/m},

and let f,, > 0 be a positive continuous function that satisfies

1, x € B,

Then, we have

(0.9) / fmdv? = hm fmdz/ < hm VJ(B):O,
HJ
and
(0.10) vi(B) = supvi(Bn) =0,
m

based on the inner regular property of finite Borel measures. Therefore, there exists
a constant and a continuous function denoted by Z] and ®7(-) such that
dvl 1
- (x;) = —exp (— D" (x;)).
To complete the proof, we should verify the almost surely positiveness of the right-

hand side of the above equality. Assume that s exp ( — ®7(z;)) = 0 on a set

B C H; with pid(B) > 0. If B C H;\ supy T%, then it holds that uJ(B) = 0 by our
assumption. Therefore, B Nsupy T]JV is not empty, and there exists a constant N
such that for all N > N, BN T} is not empty. Denote By = BN T, and then for
a sufficiently large N, we have pf(By) > 11 (B). Let

By = {z € By |dist(z, Bf) > 1/m},

(0.11)
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and define a function g, similar to f, with B,, replaced by By/. Given that
wi(Byn) = sup,, pl(BR), for a large enough m, we find that

p(BR) > L (Bx) > 1l (B) > 0.

By the definition of weak convergence, we have

(0.12)
1 . 1 .
lim m(x)—exp ( — P (z d{:/ m(2)— exp ( — D" (x))dul.
)9 (#) 7 exp (= " (@) dp Y (2) 7 exp (= @5 () dp

The right hand side of the above equation is equal to 0, but for a large enough m,
the left hand side is positive and the lower bound is

(0.13) 2 exp(~Cw)d(B).

This is a contradiction, and thereby the closedness of A;(j = 1,---, M) have been
proved. Combining the obtained results with the statements in Theorem 3, we
obviously obtain the existence of a solution which completes the proof. [

Proof of Theorem 10

Proof. Here, we focus on the deduction of formula (21) presented in the main text.
By inserting the prior probability measure into the Kullback-Leibler divergence
between v and pu, for each ¢ (i = 1,2,--- , M) we find that

dv du()) < du )
Dy, (v = lo —lo —log | —/— |dv
KL (v]|1) /H g (dur> g (d#r ¢\ G

:/H<_§I:<I>§(a;j)+<1>0(x)+‘I>(x)>dz/+Const

j=1

:/Hi[/n#im <<I>° )HVJ dacj} (da)

J#i

- / @7 (x;)v' (dx;) + terms not related to ®;(;).

Fori=1,2,---,M, let 7 be a probability measure defined as follows:

<o (<[, (0 -a0) v
0.14 - O exp oY ( v (dx;)
(0.14) i . ) 11 (e,

J#i

By assumption (19) and (20) shown in the main text, we know that the right-hand
side of (0.14) is positive almost surely. Then, we easily know that the measures o’
and p! are equivalent with each other. Therefore, we obtain

dvt ) dvt .
Dy, (v||pe :—/ log( _>dV’—|—/ log< .)duz—i—Const
(0.15) kbl == [, o8\ e\

= Dy (V']|#") + terms not related to v°.

Obviously, in order to attain the infimum of the Kullback-Leibler divergence, we
should take v* = #'. Comparing formula (0.14) with definition (14) in the main
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text, we notice that the condition v* = ¢ implies the following equality:
D (x;) = / <<I>0(x) + <I>(a:)> ij(da:j) + Const,
[T Hy

i i

which completes the proof. ([l
Verify conditions in Theorem 10 for the linear inverse problem intro-
duced in Subsection 3.1

At last, we provide a detailed verification of the conditions in Theorem 10 for
the example employed in Subsection 3.1. As stated in Remark 14, we consider
N = log X and 7/ = log7 as hyper-parameters. For a sufficiently small ¢ > 0,
taking au(e w) = ||u||§{ , ax(e,N) :=max { — X, exp(eexp(\))} and a, (e, 7') :=
max { — 7/, exp(e exp(7 } then we try to verify conditions (19) and (20). In the
following, the notation C' is a constant that may be different from line to line. In
this example, we take 71 = u, x5 = X, and z3 = 7’. As shown in the main text, we
have

1 & K
>\/ —1

O (u, N, 1) 52 — ug;)? (e — Daj " — 5)\'7
7 N,

B(u, X, ') = S| Hu—d|? - 7

With these preparations, we firstly verify

(0.16) T!':= sup sup //(@0 + @)1 4 (u, N, 7N (AN )7 (dr) < oo
ueTy VA/GAA/
VTIG.AT/

Taking the specific expressions of ®° and @ into (0.16), we have

T < C sup sup (T11 + T2 4713 4 T14) ,

(0.17) weTy N ea,,
UTIG.AT/
where
K
1 ’ ™ ’ ™
= /R+ /R 2 > (uj = ugj)* (X = Dag e P e P T (dr' ) (dN),
j=1

K ke ’ ’7
= /R — 5 NeT T (aN),

7% = [ Hu - e ),
R
N,

R-

e~ T (dr').

Because the techniques used for estimating these terms are similar, we provide the
estimates of T3 as an example and omit the details for other terms. Because H is
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assumed to be a linear bounded operator, we have

T13 SC/(eeeT, i ]_)6_(1):/(7-/)/1,;/ (dT/)

(0.18) R

SC/max(LaT/(e,T'))e T dr) <
R

Next, we need to estimate

(0.19)  T?:= sup sup / /(@0 + @)1 (w, N, 77 (dr' )" (du) < oo
A/ETK‘]/ V”jeAu
vT €A

Taking the specific expressions of ®° and @ into (0.19), we have

(0.20) T2 <C sup sup (T21 + T2 473 + T24) ,
AleTJi\], szeAu
vT €A
where

/ Z —ug;) ;e it (du),
T22 _ )\/
2 | |7
e 1 ’ r ! ’
72— [t de Ot [ Gee O ar),
o 0 2

N r ’ ’
72t = S [ e ),
R

Remembering that the operator H is bounded and the specific forms of a, (e, 7")
and a, (€, u), we can obtain that the above four terms are all bounded. The following
inequality

(0.21)  T2:= sup sup / /(@0 + @)1 (u, N, 7)™ (dN ) (du) < oo
T’ET" V“E.A
EA)\/

can be proved similarly, we omit the details. With the above calculations, we
verified conditions (19) with ¢ = 1,2,3. Now, we turn to verify conditions (20). For
conditions (20) with ¢ = 2,3, the inequalities could be verified similarly as for the
case of i = 1. Hence, we only provide details when ¢ = 1 that is to prove

T := sup / exp < / (<I>0+@)1Au1/)‘,(d)\/)1/7/(d7'))max(l,||u||§_lu)u7;(du) < .
I/AIEA)\/ Hau R?
l/T/ €A,

Through a direct calculation, we find that
_/ (@9 + ®)1 4 (dN ) Z ar uoj)‘z/ (1— e (@)
R? R

+*/ X[~ X)X (aN)
N, /
+7d/]1§\7’\67¢7’(7 T (dr').



6 J. JIA, Q. ZHAO, Z. XU, D. MENG, AND Y. LEUNG

Then we have
1K
T < C’/ exp ( Za;l(uj - qu)Q/ (1—eM )t (d)\’)) max(1, |ul[3,, ) (du).
e TA\2 & .

Considering [, (1 — e )v' (dN) < 1 and the definition of 4, we know that the
right hand side of the above inequality is bounded which completes the proof.
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