Chapter 1

BASIC CONCEPTS

1.1 Introduction to QFT and the Lectures

READING MATERIAL:wiki: quantum field theory”

Why QFT

1. classical physics + QM are not enough to describe all phenomenology, espe-

cially microcosmic phenomenology.

— in microcosmic, particles are very small and moves at very high speed

(QM+RST)

— describe a process with creative or annihilate of particles
2./field need quantization when space-time interval tending to zero
— review: radiations in QM
3. wave-particle duality

— in classical physics (wave or particle)
— in QM (duality, more quanta)

— unity of description in QFT
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4. aupdated language to describe updated nature

— what are elementary particles and interactions
— description of new phenomenology: dark matter, dark energy, ...

— develop physics to an unified theory

Introduction to QFT

e history:

1925: Born and Jordan, to calculate in quantum transition

— 1926: Born, Heisenberg, and Jordan, a quantum theory for free EM field;

Dirac, solve some problem

the early motivation to develop QFT in history: solve the problem of many

particle interactions (more from experiment)

the second motivation: combine SRT and QM (more from theory)

e axiomatic system:

— 31in QM and 2 in'SRT

— compared with classical physics - - -

e wave-particle duality:

before the broth of QFT, wave theory vs. particle theory

wave theory: Maxwell’s EM theory and GRT - core: field

particle theory: QM — core: quanta

But, probability of wave function is essentially field!

e lacks of QM and SR

— QM: negative energy, non-conservation of number of particle, negative

probability problem in relativistic QM
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e description language and basic concepts:

updated field concept

vacuum

Lagrangian

symmetry
e some successful examples:

— w1 anomaly magnetic moment

alen = % = 0.00115965218178(77)
alezp = 0.00115965218073(28)

— and Lamb shift

— comprehension electric charge from renormalization
e development in future

— SM and its triumph

— physics beyond SM: neutrino mass, dark matter, dark energy, gravitation

theory...

— possible‘candidates: ED, SUSY, Superstring

o the relationship between particle physics and QFT

On the Course
e contents (see contents for details)
e references

(Das) Ashok Das, Lectures on Quantum Field Theory, Univ. of Rochester, USA,
2008.

(Zee) A.Zee
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(Zuber) Zuber,

(Ramond) Ramond
o test and result: 30% from 3 quizzes + 70% from open final test
e questions and answers outside class:

— email: hepzhy @mail.xjtu.edu.cn

— office: Room 1108 in Main Building
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1.2 Lecture 2: Review of QM and SR

1.2.1 5 hypothesis

e Hilbert space

Hermitian operator

statistic hypothesis

The speed of light postulate

principle of special relativity

Hypothesis : Hilbert space
description of a state

e review of the description of a state in classical physics:

a particle at the position of x at the time of ¢: z(t)

its momentum is p(t) at the time ¢

a curve in the plane of & — p, which means a precise trajectory {x(¢), p(¢)}

characteristics:

* describe a particle by physical observables, like the position z, the

momentum p

* a certain trajectory {x(t), p(t)} - phase figure
o the description is invalid in micro-motion. review the diffraction of a electron

diffraction device

electron motion is a line in classical mechanics; a point at the screen

reduce the size of hole; diffraction pattern

control electron current; single electron; pattern at the screen

randomization of a single electron; probability of many electrons;
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— the position is not a certain quantity
e review interference experiment

e A novel way to describe a state.

describe the state of a particle

x(t) — |z) at the time of ¢
* |) labels a object (particle) state
* x in the |) is a value that refers to ...

x {| z)} form a set of physical state

p(t) — |p) at the time ¢

examples:
* spin state: label spin-up state (in 2z direction) | +) and spin-down state
| —). The means are ...

* describe pages of a book‘as | page = x) with the mean of ...

* describe a classmate in our lesson
- by name: | name)
- by ID: | ID)
«relationship: | name) <——| ID)
- by column and row in the class | column, row)

* find more examples nouework

— new characteristics:

*

physical quantity vs. physical value

*

determinacy vs. probability

*

how to understand probability in | f(x,y))?

- in terms of the distribution function ...

*

how to explain probability?
- natural? or compromised?

- Copenhagen School and Copenhagen explain
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- more...
e Some reasons to choose the novel sign.

— to describe the diffraction of electron
— what’s the definition of a particle in classical physics?

+ with well defined mass, spin, energy, momentum, and so on)
* the characteristics: described by many physics quantities

* Of, We can say, a particle is a state with a set of many certain physics
quantities
Definition and Properties
hypothesis I: physical state corresponds to a vector in Hilbert space.
e Hilbert space: a complex vector space with well-defined inner product
e three kinds of operation:

— addition
— number product

— inner product

e some properties:

b o=0+Y; W+ +x=v+(9+X), ay+¢)=ap+ag, (11
(@+D)p=a)+by, (4,0)=(6¢)", (¢ +x) =W 0)+ W +x), (1.2)
(¥, a9) = a(¥,9), (ay, ) =a"(,9), (¥,¥)=[¢[*(1.3)

e some concepts: linearly independence; base vector; complete set; infinite dimen-

sion vs. finite dimension
e base vector and matrix representation
e what physical information can be obtained from a vector in Hilbert space?

e NOTE: left-vector and right-vector
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Dirac notation

origin: 1. left-vector # right-vector; 2. they locate in the same bracket; 3. right-

vector 1) — left-vector )

left-vector — bra (3| and right-vector — ket |¢)

inner product in Dirac notation (| - |¢) = (¢ | ¢)

denote Hermitian eigenstates {1); } by corresponding eigenvalues {7}

some composition Dirac notation: | «) | /),

a)(B [, 4 p)

what is Dirac notation advantage??

an example: expand a random state into Hermitian eigenstates
RESICILESHAR IDED IR
1. (¢ | ¥) is coefficient; 2. | 4)(¢ |/is projection operator; 3. complete relation

2 li)i|=1

the physical means of (i | ¥), (¢ | U), | 4,t) and (i,¢ | ¥)

Hypothesis 2: Hermitian Operator

e | @) is a state, what do we know from the state?

e review classical observables

ein QM, we need an operator

What Is An Operator

e a general operator: Ay = ¢ or Alety) — ¢

e cigenvalues (some special values): Ai; = a;1; corresponding to special states

(eigenstates)

e linear operator: A(ay) + bp) = a Ay + bAP
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e unity operator: Ay = 1)
e inverse operator: Ay = ¢, A"t =1

e unitary operator: AAT = ATA =1

What Is A Hermitian Operator
e Hermitian operator: A = Af

o three important properties of Hermitian operator:

— real eigenvaleus a (1), ) = (v, AY) = (¢, ATY) = (A, ¥) = a* (¥, )
— orthogonality of states with different eigenstatesuomswork

— completeness of eigenstates. (proof ...)
¢ hypothesis II: Hermitian operator is a candidate of physics quantity.

e why??

Examples
e position state | z): position operator: X
X|a)=1z|x)

e spin state | +), | =): spin operator: .S
h
S14)=%01%)

(the eigenvalues of spin are +5/2)

e pages of a book | page = x): page operator: G

G | page = z) = x | pate = x)

e a classmate in our lesson

- | name): name operator
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— | ID): ID operator
- | name) <——| ID) (?)

— | column, row): column operator and row operator (?)

e momentum operator p = —¢hV and eigenstate in position space...

commutator: p and &

e commutator [p, %] = ...

e what do we know from commutator? after the section Hypothesis III

experiment and statistical hypothesis

e what can we measure? in classical physics and in QM

e determinacy vs. probability: physical results in classical physics vs. ones in

QM-diffraction
e measurement in QM

e how to describe measurement in QM?
hypothesis III: modular of vector in Hilbert corresponds to probability of

measurement

e an example: expand a random state (vector) in a set of complete eigenstates

{1 }(base vector)

V= ZCﬂ/Ji
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e inner product and physics mean:
(Yi, @) = (Q/Juzcj%) = — pi=lel?
J
(1 + 02, ®) = (b1 + 2, »_cithj) =c1+ca —> pi =l + el
J
(6 ®) = (D cithi, @)

inner product (x, ¢) “represents” a probability of finding state x from ¢, or a

probability of a system with initial state ¢) and final state y

matrix mechanism

e a set of complete Hermitian eigenstates — a set of base vectors in linear space

e right-vector, ket, corresponds to column vector-and left-vector, bra, corresponds
to row vector

e operator corresponds to a n X 1 matrix
a operator transform a state to-another state: A | W) — A | i) = 3¢k | j);

coefficient cé- includes all information

C§:<j‘A|i>EAji

e a operator representation under itself eigenstates: diagonal matrix with eigenval-

ues diagonal matrix element

representation

e why we can choose different representation in math and in physics?

In math, a set of eigenstates of Hermitian operator is complete. In physics, a
“measurement” result is always gotten when acting a Hermitian operator on ran-

dom state.
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e concept: representation transformation
)= " lai) =D G bi) (1.4)
i j
= Jai) = ZFij | b) (1.5)

= Fy={ai|by) @
F;; transforms {| b;)} into {| a;)}

how to transform {| a;)} into {| b;)}? F

unitarity of F’Lj HOMEWORK

representation transformation and physical measurement

inner product, eigenvalues, det(A) and ¢r(A) are invariant under representation

tr anSfOrmatiOnHOMEwom{

S (mddd) ¢ 1) R

i,
= Y (X Fa ) SOIED

i, k
Zn;cjz Fii) ' Fi6,5 ngZFth > 0

(V| o)

ket and wave function

e what’s the meaning of | «)?

e what’s the meaning of | z)?

e what’s the meaning of (5 | a)?
e what’s the meaning of (z | a)?
e what’s the meaning of ¢ (z)?

e now, we have ¢, (z) = (z | @)
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on Schrodinger’ Eq
e Schrodinger’s Eq
ihg0(x) = (V) +V(@)b()
e V(z) a function? or an operator?
e express it into Dirac sign...(exercise in classs)

e time independent form:

Ho(z) = E¢(x)
e time evolution relation: ...

e now, we know Schrodinger’s EQ, i.e. energy eigenstate equation + evolution

relation

on hypothesis
o three hypothesis=three questions

— how to describe a physical system in QM? a state (vector) in Hilbert space

— how to get physical information of a state? to act a Hermitian operator on

the state

— how to explain results? probability

e measurement:

act a Hermitian operator on a state = measurement?

two hypothesis in SR:
o M-M experiment: velocity of light: natural law
e relativity principle: from Galilean’s relativity to SR relativity
e invariant interval of spacetime

e Lorentz transformation
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1.3 Lecture 3: Notations and Lagrangian Formula

Natural Units

e interactional unit: CGS with 3 independent unit
e in particle physics, velocity(c) and action(h) are taken unit, i.e. ¢ = h = 1.
o the left unit is chosen as energy. eV’
[S](h) =1 = [E][T],[V](c) = 1 = [L]/[T], [E)(GeV) = [M][c]* = [M]
so, time and energy have a converse unit; - - -

e relation: [V],[S], [E] in natural unit and [T, [L], [M] in CGS

e number transformation: ((¢) = 3 x 10, (7)) = 1.05 x 10727, (¢) = 1.6 x 1073
in CGS)
lem = (¢)7HR) " He)GeV ™ - c- h = 5.08 x 10¥GeV !
Lsec = (h) "1 (e)GeV ™ h = 1.5 x 10*GeV ™!
lg = (¢)*(e)7'GeV - ¢* = 0.56 x 10** GeV

or

1GeV ™ (-c-h) = 0.198 x 10~ ¥em
1GeV ™1 (-h) = 0.658 x 10~ **sec

1GeV (-c?) = 1.78 x 10 %4g

e clectromagnetism formulas
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in Gaussian system and

_ g
42
in Lorentz-Heaviside system (chosen)
in LH system, electric charge
e = Varhca

with fine-structure constant v ~ 1377

4D space-time

e review of 3-D Euclidean space:

15

)

f - ($17l‘2,x3)
A = (A1, Az, A43)
A-B = > AiBi=A;B; = 6;;A;B; = 6 A; B,
i=1,2,3
L 1 ori=7
62’]’ = Y= f J :diag(l,l,l,l
0 other
4% >0

e 4-D Minkowski space: invariant ds? = c*t? — 22 — y? — 22

= (ct, @)
z, = (ct,—%) =gz’ = gZatV
9w = (¢")7 ' =g" =diag(1,-1,-1,-1) = ¢"" = g,,,
g = §"°gu = diag(1,1,1,1)
9" g = 0,

guv: gauge tensor. what is the means of “gauge”? the role of g,,,,: represent the
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construct of space-time, rise subscript and down superscript

-,

Ar = (A% A)
A, = guA =
A,B* = g, A"B" = A°B° — A.B=A°B" — A'B’

? = z,at =gttt = A -

e Lorentz invariant length
ds® = gudatdr” = dt? — dz?
o time-like region of space-time: ds? > 0;

space-like region of space-time: ds? < 0;

22 = 0 defines trajectories for light-like particle, called light-like region.
e plot ¢t — z figure to show three regions.
o future light cone and past light cone.

e derivative

0 0
w o 9 9
g oz, (875’

P =

ijk

o —

exercise

e A-A
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o ,A%

gy 2 with F, = 0,4, — 0,4,

principle of least action
e the action: I = fttf dtL(q(t),q(t))

e Lagrange depends on positions ¢(t), velocities ¢(t), and sometimes also explic-

itly on time for open systems.
e Lagrange only depends on the first derivation of the position. why?

e another principle to building action: Lagrange should be relativistic invariant

equation of motion (action I depends on path connectedt = 0tot =T

- / dt{af)a <t>+a§(fw6q<t>}
= [ o 0a 4 G s 390)] - 5540}
= / {al gtaig)} <>+[a§é>5q<t>} ZOT

N
dq(t) Ot 9q(t)

due to 6¢(0) = dg(T") = 0. why?

Hamilton’s function
e L(g,q) = H(p,q)

o Legendre transformation
H(p,q) = pidi — L
or more precise
H(p,q) = pidi(p, ) — L(g,4(p, q))

with conjugate momenta p; = a%L(q7 q)
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e derive Hamilton equation of motion
0 0 0
dH ) = .i ) + p; 1 ) - . L ) ] ) 1 ) d i
(»,q) {q (P, ) + 1 ap; 1P 4) 24; (¢,4(p )5, 4P Q)} p

0 . 0 ) 0 ) 0 .
+{pj87hqj(p,Q) - @L(%q(p, q)) — @L(q,q(p, q))afqiqj(p, Q)}d(b’

= {di(p,q) + [pj - a(z.jL} aipi‘b(p’ q)}dpz-

= gy Hitna) + [os 50t 5ot

. 0 .
= dip.a)dpi — 5 -L(g,d(p, a))da;
K3
S — i,
OH __ oL __ :
¢ — oq . Di

Infinite degree of freedom system - field

o the action for many degree of freedom system:
L= Z lmiq-z - Va1, 2--¢i--an)
2 '

V includes interaction energy between particles v(g; — ¢;) and the energy due to

an external potential w(g;)

e when the interval [ (I = ¢;11 — ¢;) tending to zero, we obtain a infinite degree of

freedom system: field

the subscript ; in ¢;(¢) means that ¢;(¢) depends on position, so ¢;(t) — ¢(,x).

9)*

AN AYNEAY
(giy1 —@)® — (E):v(b) +(8y¢) +<az¢> + -

> o= / drdydz = / Rz

S|

migl = my(
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2
L:/d%{ (aat¢) —pV2¢}—T¢2—§¢4“'

after re-defined parameters and ¢ (but why?), we have

SO

1 1 g
S = /dtd?’x(i(@M(é)Q — §m2¢2 - f.qbg — I(ﬁ +-)= /d4xﬁ

[ ] LOrentZ COVarianCe:

oL oL oL .
D5+ 2= svo+ o

(8¢> Ot 5ve' VT a5 ‘b>
oL
% \Y%

oL 0 0L
(5 Vovs ataqs) "
oL oL

o~ %ove -
, which means that £ = L(¢, 0,¢)

08

= /d4x
= /d4x

com:

0

e position x is not dynamical variable anylonger. ¢ becomes dynamical variable

in QFT.

an example: electromagnetic field

e Maxwell’s equation

e charge conservation is

8p -

e it is a set of equation of motion on electromagnetic field, which Lagrange does

correspond to the equations?
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e Clues: symmetries on B and E, and on time ¢ and position x

e notation for 4-D vector, tensor, etc, to exhibit relativistic covriance

= (t,7)
"= (p.d)
0o -B' —-E? —-FE3
E! 0 -B3> B?
I

E? B3 0 -B!

for u, v taking 0,1, 2,3

e Maxwell’s eq.

0, F1 ="
i.e.
0 o .
'FOV W — v
5. oz J
forv =0,
VE = P
forv =1,
Opok . O pik _ i = -——E+VxB=j
ot ox’ ot
(using
9 i 0 3 9 ijk j

s0, 2 F'* =V x B.)

e where are other two Maxwell’s eq.?

e define antisymmetric tensor
0 -B' -B?> -B3

5 N 1 B! 0 E3 -—FE2
P o= _FVi = — R —
2 g

B3 E?* -—F! 0
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other two Maxwell’s eq. are

O F" =0

e current conservation becomes

8" =0

up to now, it’s only a simply fashion to express Maxwell’s eq. by F'#¥. The physics
quantities are still electromagnetic field strength E and B. How to express them in
QFT?

-,

e define electromagnetic field in QFT: A* = (¢, A)
o FHV = grAY — Q¥ A+

—

. E,E:---

eom: 02A* — OFOV A, = j*

the eom is gauge invariant under A* — A* + 9*¢

The above clue: Maxwell’ eq. — F*¥ — eom on A*. But how to write EM field

theory directly?

e Lagrangian equation on EM:
0 0

L—-0

6; *‘aamﬁ =0

o L=L(A,,3,4,)

Lorentz invariance

.= % {00, AY 0" A, + b0, A0, A" + ¢(D, A")? + dA® + e A, 5"}

coincide with eom

L= _E(FW)Q —JuAt +c ((BHAM)2 - auAyauAM)

the last term is a total derivation

(0, AM)? — 9, AY9, AP = 8M{Al,(g‘“’(8pA”) - 8”/1“)}
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1.4 Lecture 4: Symmetries

why symmetry
e symmetry appears in physics
e symmetry provides a tool to describe the beauty of the nature
e symmetry corresponds conservation law

e 50, symmetry is physics

examples

e snowflake: rotation and reflact
e Higgs potential: continuous rotation
e charge conjugation: W~ — e 1,

e isospin: intro.,

classification
e space-time vs. internal
e continuous vs. discrete

e exact vs. approximate

conservations in physics
e space translation
e time translation
e space rotation

e parity
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group theory

e a closed set with defined operating (addition or product)

e an example: parity(intro., define, time table)

e unity, invert element

e an example: group elements in snowflake (elements, product table, generator)

e Lie group: infinity elements (an example: rotation), generators, Abelian and

non-abelian, Lie algebra

spacetime transformation and conservation

e assuming a space-time transformation x}, = x, + dx,, or a inner transformation,

the action is invariant.

e the action:

0 = 65= [ d*a'C'(z)) - / d*aL(z)
R’ R

- /R / d*z' L' (z') — /R / d*a'L(x) + /R , d*z'L(x) — /R d*zL(x)

= / d4z’5£—|—/ d4x’£(as)—/d4x£(z)
’ U R

using

a0 gl 4. i w\ g4
dx—J(I)dx—Det(axV)dx—<1—|—ax#5m>d;v
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5SS = / d*a'oL + / d*z'L(x) — / d*zL(z)
’ ’ R
0
4,1 w\ 4 . 4
//d xéﬁ—&—/(l—i—axuéx )d xL(x) /Rd xL(x)

0
4 4
/,,d 16£+/d :I:E(x)a oat

X

= / A4z (0,L5" + 6oL) + / d4:c£( )iaxu

oxt
oc
_ /dxaﬂﬁéx+ ¢50¢+( (0,9)) /d4 S L(x)
oc
= [de (s 0,6 dtz0, (Lo
[ = (00 + s 00’) /m )

J Bgé‘wa ( <8f¢)50¢> (“8<gf¢>>5°¢] + [ atan o)

_ 4 9
_ /d 20, (a(aﬂqs) £50¢+£§x“> +eof.

— Jg denote a change of function form

— J¢ means a total change of ¢ under all transformations
5¢ = 0, ¢80z + S0, (5¢ = iT pde")

— independent variation d¢’ and §x. WHY ??

08

4 9 v

_ 4 . 8£ 7 7 N7 a‘c
= /d x0, (’a(am)T Pde’ + (L’g/ 3(1%(/))0 o) ox” )

/d4x8"jl‘6a

with current j, = 8(2545) 0p — a(gf¢) Oy oz’ + LIx,,.

Here, we can obviously see independent variations, de’ and dz”.
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e charge:

0 = JOug"
= " - Vi’

Q = [

2,Q = 8t/d3xj0:/d3iji =7

some example on spacetime transformation
e time translation:

— transformation

20 = 2946t

520 — ot

bp — 0

— conservation current and charge:

oL
= Lo — =)
J 9 90,9) o
/d%@oo Z /d%(,c - 5{5)@ = —/d%% =—H

e position translation:
— transformation

2 = 246t

szt —  (0,6z")

— conservation current and charge:

oL
9(0u9)

/ dz0% = / d%;(g)w = / dBzpVe

j* = Lg" — Vo
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e spacetime translation in 4-dim

e spacetime rotation

Noether’ Theorem and conservation laws

e if the action is invariant under a continuous transformation, there is a conserva-

tion.
e Proof:
— transformation:
¢ — =79
¢ = (1+iT%%)¢p
0pi = i(T%)ye%;
60 = ilT*)i;0u(e*d5)

= i(T%)i;[(0ue™) 05 + € 0u(5)]
the first term stand for the case of € depending on spacetime, i.e. €(x).

— change of the action:

oL oL .
5L = %5¢i+m5(3#¢)

— in a simple case: €(z) = €

oL oL
96, (T%)ijo; + 90,6 (Ta)ijau(%')} €

‘ oL . . 0L
- {aﬂ a(aud)i) (T )”% * 88#‘151‘
. 8‘c e} o
= g5, 0

o oo
i0,,5'"%e

55:1[

(Ta)ijau(%‘)} e

e the number of conversation charges = the number of generator elements of group

— spacetime translation: 4
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— space rotation: 3

— spacetime rotation: ?thinking?

27
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1.5 Lecture 6: Lorentz Symmetry
Lorentz group definition

e Einstein’s SRT:

gudatda” = g, da"tdz’, (1.7)

e A general coordinate transformation z# — z'*
2 = At + o* (1.8)
i .

— Lorentz transformation

— Transformation operator 7'(A, a) induced on physical state corresponding

to above transformation.

— T(A, a) form a group:

T(A;a)T(1,0) = T(1,0)T(A,a) = T(A, a), (1.9)
T(A,a)T (N, a) = T(AA, Aa + a), exce. (1.10)
T(A,a)T(A™Y, —A"ta) = T(1,0). (1.11)

This whole group is called inhomogeneous Lorentz group or Poincare group.

properties and subgroup

o transformation in homogeneous Lorentz group

g,“,AgAK = gpr- (1.12)

e it gives
(DetA)? =1, (1.13)
(A)2 =1+ ALAL =1+ AA? = A9 > 1. (1.14)

e DetA and AJ can be used to classify the group
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e important subgroup of Poincare group:

homogeneous Lorentz group T'(A, 0) form homogeneous Lorentz group.

DetA = +1 subgroup DetA = +1 form a subgroup.

AJ > 1 subgroup A§ > 1 form a subgroup,
(AN)) = AJAQ + AYAG + AAG + AJAS (1.15)
= AGAG+ (g, AZ, AD) (Mg, AF, AD) (1.16)

RGNS — /(A2 — 1/(A2 — 121 (17)

vV

The subgroup of Lorentz transformation with DetA = +1 and A§ > 1 is

know as the proper orthochronous Lorentz group.

Any Lorentz group transformation can be written as the produce of an el-
ement of the proper orthochronous Lorentz group with one of the discrete

transformations P or 1" or PT.

The Poincare Algebra
e unity element: A% = ¢4 and a,, = 0.
o the infinitesimal transformation:
A =08 +wh,  a, =€, (1.18)

e from formula g,,, AL A} = g,\, w must satisfy

Wy = —Wyp
e closing to identity U(1,0) , U(1 + w, €) must be equal to

Ul+w,e) =1+ %WWJW — i€, P* + -

e J#” and P, are Hermitian operators Why? , J wt — By PII = P~

e JH¥ also antisymmetic

N T
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e Under Lorentz transformation

UN,a)U(l+w,e) U A a) =UM1+w)A™!, Ae — AwA™ta) (1.19)

1
= U(A, a)(§w;ij — e, PYU YA a) = (A1 +w)A™), I — (Ae—~ AwA ™ o), 20
= U\ a)JU (A a) = NGAY (™ — a"PY + o’ P*) (1.21)

& U\ a)P*U (A, a) = ALPY (1.22)

e if U(A, a) also be infinitesimal transformation, i.e. A¥ = 6%+ w¥ and a,, = €,

above formula become

1

¢[§W,WJW — e PP, TP = wh JH fwy JP — e PX + ) PP(1.23)
.1 y

z[§wwﬂ — e, P, P = w), P* (1.24)

and we find the commutation rules

QTP = P TN — gt T — P N A (1.25)
i[PH, JPA] = nHP PA — gt PP (1.26)

[P, PY] =0 (1.27)

This is the Lie algebra of the Poincare group.

o In physics, the conserved operator play a special role. Definition of special op-

erators:

energy operator H = P°

momentum operator P = (P, P2, P3)

angular-momentum operator .J = (J23, J31  J12)

Lorentz *boost’ vector operator K = (.J01, J02, J03)
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e These operators have following communication relation:

i, ;] = e, (1.28)
[Ji, Kj] = i€iji Kk, (1.29)
[Ki, Kj] = —iegpdr, (1.30)
[Ji, Pj] = i€jnPr, (1.31)
(K, Pj] = —iHdy, (1.32)
i H] = [P, H]=[H H =0, (1.33)
Ki,H] = —iP; (1.34)

Lorentz group: SU(2) ® SU(2)
e Lorentz boost does not form a group: [K;, K| = —i€ijiJi
e define a new linear operator

DN |

e commutation relations
[N;, NI =0, "IN N;] = i€gjuNy,  [N], NI = ie;j N}

o N;: SU(2); N]T: another SU(2)
e Lorentz group: SU(2) ® SU(2)
e review of angular momentum (SU(2)):
J2 | Im) = ..., J, | Im)
I, m denote eigenvalues of operators J2 and J,
e similarly,

- N;N; eigenvalues n(n + 1)

- NJ.TN]T eigenvalues m(m + 1)
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e Lorentz group representation (m,n)

- (0,0)

- (1/2,0)

- (0,1/2)

- (1/2,0) ® (0,1/2) = (1/2,1/2)

- (1/2,0)® (1/2,0) = (1,0) & (0,0)

particle classification

e review of Noether theorem: the number of conservation quantities

e O rotation + 4 translation = 10 conservation quantities

e Lorentz boost is not a conservation quantities: Why? ([K;, H] = —iP;)

e 1 energy H + 3 momentum P +3 angular momentum J =1, where are other 37

e Pauli-Lubanski four-vector

) ,
W = et P, Mpo = f%eﬂ”f’”spaay

e Casimir operator: intro.

e Casimir operator of Lorentz group: P,P* (with eigenvalue m?) and W, W*

with eigenvalue —m?s(s + 1)
e physical states (particle) are classified in terms of Lorentz group

P?2=m?>0:5=0,1/2,1,---

P2=m2=0:(P-W=0)s=0,1/2,1,- -

- P?2 = m? = 0: spin is continuous (an infinite number of polarization

states). Not found in nature

P?2 = m? < 0: tachyon
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1.5.1 elementary particles and their interactions
e atom —nuclear —>quarks
e clementary particles introduction
o four kinds of interactions
e clectromagnetic interaction
— between electronic charged particle, like e*, u*, 7%, u, d, ¢, s,t,b
— coupling: e
— mediating by massless photon

e strong interaction

— between quarks and gluons which have color charges
— mediating by gluons

— massless gluons with color charges can interact with themselves. (but pho-

ton don’t interact with itself)
e weak interaction

— between all particle of SM

- mediating massive W* and Z

o all matter is constructed by fermions, leptons and quarks. interaction is mediated

by vector gauge bosons, 7, g, W=+, Z

1.5.2 particles and their fields
e photon: a massless vector gauge boson A,,

e clectron/positron: fermion field ¢ in EM interaction; weak isospin (fermion

field): (ve,e™ )T

e proton/neutron: isospin doublet (p,n)T
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e pi meson: pesudo-scalar mesons, 7+ form a isospin doublet



