

Ы 时变电磁场

5/23/2011

在时变电磁场中,电场与磁场都是<u>时间和空间的函数;变化的</u>
 <u>磁场会产生电场,变化的电场会产生磁场</u>,电场与磁场相互依存,构
 成统一的电磁场。

• 英国科学家<u>麦克斯韦</u>将静态场、恒定场、时变场的电磁基本特 性用统一的电磁场基本方程组高度概括。<u>电磁场基本方程组</u>是研究 宏观电磁场现象的理论基础。

(##XEA#

🔬 磁通变化				
• 回路不变,磁场随时间变化				
<u>a dy</u> <mark>(部 d)</mark> 称为感生电动势,这是变压器工作的原理,又称为变压器电势。				
• 回路切割磁力线,磁场不变				
$r = -\frac{dy}{dt} + \frac{\delta (\mathbf{V} \times B) \cdot dt}{\delta t}$ 称为动生电动势,这是发电机工作原理,又称为发电机电势。				
• 磁场随时间变化,回路切割磁力线				
$\mathcal{L} = -\frac{d\psi}{dt} = \oint (V \times B) dI - \int_{0} \frac{\partial B}{\partial t} dS$				
实验表明:感应电动势 <i>Є</i> 与构成回路的材料性质无关(甚至可以是假想回路),只 要与回路交链的磁通发生变化,回路中就有感应电动势。当回路是导体时,才有感应电				
流产生。 5/232011 ● チャンズネクキョ				

•	磁场基	本方程组(麦克斯 ⁼	韦方程组)
1	R	麦克斯韦方程组; 韦在19世纪建立的描述 <u>本方程</u> 。方程组的微纶 斯韦方程。在麦克斯 场已经成为一个不可分 系统而完整地概括了『 预言了电磁波的存在。	是英国物理学家麦克斯
	$\nabla \times H = J$	$+ \frac{\partial \boldsymbol{D}}{\partial t} \qquad \oint_{l} \boldsymbol{H} \cdot d\boldsymbol{l} = \int_{s} (\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t})$)·dS 全电流定律
	$\nabla \times E = -\frac{1}{2}$	$\frac{\partial \boldsymbol{B}}{\partial t} \qquad \oint_{l} \boldsymbol{E} \cdot d\boldsymbol{l} = -\int_{k} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S}$	电磁感应定律
	$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$	$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = 0$	磁通连续性原理
	$\nabla \cdot \pmb{D} = \rho$	$\oint_{s} \boldsymbol{D} \cdot d\boldsymbol{S} = q$	高斯定律
5/23/2011			● チキえそんキ

- CT-	All and the second second		
🍰 分界面上	上的衔接条件		
	$\mathbf{A} \mathbf{B}_{1n} = \mathbf{B}_{2n}$	$H_{2t} - H_{1t} = k$	
	电场: $D_{2n} - D_{1n} = \sigma$	$E_{2t} = E_{1t}$	
			Auto
5/23/2011			(s+12/+

🛃 正弦电磁场的复数形式						
正弦电磁场的复数形式与正弦稳态电路中的相量法类同,后者有三要素: 振幅 (标量,常数)、 <u>频率和相位</u> 。 $((1)=\sqrt{2}\log(at+a)) \rightarrow i=1e^{i\theta}$						
di(t)/dt → 1 <th colspan="6">$\frac{di(1)}{dt} = \sqrt{2} loccos(\omega t + 90^{\circ}) \rightarrow j\omega \dot{l} = j\omega l e^{j\phi}$ $\hat{n} \dot{\sigma} t \dot{\sigma} t \dot{\sigma} = \sqrt{2} loccos(\omega t + 90^{\circ}) \rightarrow j\omega \dot{l} = j\omega l e^{j\phi}$ $\hat{n} \dot{\sigma} t \dot{\sigma} t \dot{\sigma} t \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma}$</th>	$\frac{di(1)}{dt} = \sqrt{2} loccos(\omega t + 90^{\circ}) \rightarrow j\omega \dot{l} = j\omega l e^{j\phi}$ $\hat{n} \dot{\sigma} t \dot{\sigma} t \dot{\sigma} = \sqrt{2} loccos(\omega t + 90^{\circ}) \rightarrow j\omega \dot{l} = j\omega l e^{j\phi}$ $\hat{n} \dot{\sigma} t \dot{\sigma} t \dot{\sigma} t \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma} \dot{\sigma}$					
$F(x, y, z, t) = \sqrt{2}F(x, y, z)$	$(\cos(\omega t + \varphi)) \rightarrow$	$\dot{F} = F(x, y, z)e^{i\varphi}$				
$\frac{\partial \boldsymbol{F}}{\partial t} = \sqrt{2} \boldsymbol{F}(x, y, z) \boldsymbol{\omega} d$	$\cos(\omega t + \varphi + 90)$	$\dot{J} \rightarrow j\omega \dot{F} = j\omega F e^{i\phi}$				
正弦电磁场基本方程组的复数	数形式	场与动态位的关系				
$\oint_{l} \dot{\boldsymbol{H}} \cdot d\boldsymbol{l} = \int_{S} (\boldsymbol{J} + j\boldsymbol{\omega} \dot{\boldsymbol{D}}) \cdot d\boldsymbol{S}$	$\oint_{S} \dot{B} \cdot dS = 0$	$ \nabla \cdot \dot{A} = -j\omega\mu\varepsilon \dot{\phi} \dot{B} = \nabla \times \dot{A} $				
$\oint_{l} \vec{E} \cdot dl = -\int_{S} j\omega \vec{B} \cdot dS$ 5/23/2011	$\oint_{S} \dot{D} \cdot dS = \dot{q}$	$\dot{E} = -j\omega\dot{A} - \nabla\dot{\phi} = -j\omega\dot{A} + \frac{1}{j\omega\mu\varepsilon}\nabla(\nabla\cdot\dot{A})$				

	电准静态场	
	低频时,忽略二次源 $\frac{\partial B}{\partial t}(=0)$ 的作用,即 $E_t pprox 0$. 电磁场基本方程为	9
	$ \begin{aligned} \nabla \times \boldsymbol{H} &= \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \ , \nabla \cdot \boldsymbol{B} = \boldsymbol{0} \ , \nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t} \\ \nabla \times \boldsymbol{E} &\approx \boldsymbol{0} \ , \nabla \cdot \boldsymbol{D} = \rho \end{aligned} $	
	特点: 电场的有源无旋性与静电场相同,称为电准静态场(EQS)	•
	用洛仑兹规范 $ abla \cdot oldsymbol{A} = -\partial arphi / \partial t$,得到动态位满足的微分方程	
	$\nabla^2 \boldsymbol{A} = -\mu \boldsymbol{J} , \qquad \nabla^2 \boldsymbol{\varphi} = -\rho / \boldsymbol{\varepsilon}$	
E/00	2014	@ ##11/#

	集肤效应
	$\dot{J}_{y}(x) = C_{1}e^{-kx} + C_{2}e^{kx}$
	当 $x \to \infty$, j_y 有限, 故 $C_2 = 0$, $C_1 = \dot{J}_y(0) = \dot{J}_0$, 则 $\dot{J}_y(x) = \dot{J}_0 e^{-ax} e^{-y\beta x}$
	$\mathbf{\dot{H}} \mathbf{\dot{j}} = \gamma \mathbf{\dot{E}}, \mathbf{\dot{f}} \dot{\mathbf{\dot{E}}}_{j}(x) = \frac{l}{\gamma} \frac{j}{j_0} e^{-\alpha x} e^{-\beta \beta x} \qquad \qquad k = \sqrt{j_0 \mu \gamma} = \sqrt{\omega \mu \gamma} 245 = \sqrt{\omega \mu \gamma} 2(1+j) \\ = \frac{l}{d} (1+j) = \alpha + j\beta$
	$\mathbf{\dot{H}} \nabla \times \dot{E} = -j \omega \mu \dot{H} \mathbf{\dot{f}} \mathbf{\dot{f}} (x) = -j \frac{k \dot{J}_{\mu}}{\mu \gamma \omega} e^{-a x} e^{-j \beta x}$
5/23	22011 (C) ##11/14

