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1. Introduction
Let Bp = BR(0) be a ball with radius R in R”, n > 3. Let 1 < k < n be an integer, m > 1 and km < n, f(¢) be a real continuous
function defined for all 7 > 0. We consider the uniqueness of negative radial solutions to the fully nonlinear elliptic equation

0 (D(|Du|" "> Du)) = f(~u) ~ in Bp,
u=0 on 0By.

(1.1

Denote by A = (4,,...,4,) € R", 6,(4) is the kth elementary symmetric function of 4 as follows:

6, (A) = D iy Ay Ay

1<) <iy<--<ig<n

For a (non-symmetric) matrix B, o, (B) is the sum of k x k principal minors of B. Then the (m, k)—Hessian operator is defined by
Splul = 0,(D(|Dul"* D) = 6,(A(D(| D"~ Du))),

where A(D(| Du|"~?Du)) are the eigenvalues of D(|Du|""2Du). Recall that the Garding cone is defined as
I, ={A€R"|6,()20, j=1,...,k}.

Let
®(Bg) = {u € C'(Br) N C'(BR) | D(|Du|" > Du) € C°(Bg)}.

A function u € @(By) is called m-k-admissible if A(D(| Du(x)|"2 Du(x))) € I, Vx € Bp. In particular, 2-k-admissible is also called
k-admissible. We denote the set of m-k-admissible functions which vanish on the boundary by <1'J(';"k(BR). Taking restriction on
admissible functions makes the (m, k)-Hessian operator elliptic.
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The (m, k)-Hessian operator is firstly introduced by Trudinger-Wang in [37], where they use the (m, k)-Hessian operator to give
a local gradient estimate for k-admissible function. When m = 2 and k& = 1, (1.1) reduces to the well-known semilinear elliptic
equation

{Au+f(u) =0 in B,

(1.2)
u=0 on 0By.

The existence of nontrivial solutions to (1.2) has been researched by many authors (see [6] and reference therein). The symmetry of
solutions to problem (1.2) was studied in an excellent paper [33] of Serrin. Using the powerful Alexandroff-Serrin method developed
in [33], Gidas-Ni-Nirenberg [16] proved that if f is C!, then the positive solution to (1.2) is radially symmetric. Under further
condition on f, there are many interesting works about the existence of radially symmetric solution, we refer to [3,5,11,19,35].

When f(u) = u” with 1 < p < :i_;, Gidas-Ni-Nirenberg proved that (1.2) has a unique solution. While for p > "+2 , there is no

solutions to (1.2) by Pohozaev identity [30]. For f = Au’ + u,, Ni-Nussbaum [25] proved the uniqueness of solutlons provided
l<p<g< Lz Zhang [45] proved the uniqueness for ;’ﬁ < % When f = Au+ud, the uniqueness was studied by Kwong-Li [22] for
l<g< = "+2 and by Zhang [44], Srikanth [34] and Adimurthi—Yadava [2]1for 1 < g < ﬂz Finally, for n > 6, Erbe-Tang completely
solved the uniqueness for f = Au” +uf with 1 < p < ¢ < ==, and gave some partial unlqueness results for the cases n = 3,4,5. On the
other hand, the work of Brezis—-Nirenberg [6] revealed that the uniqueness of solutions does not hold for all n >3 and 1 < p < "+§
More uniqueness results on further condition on f can be found in [11,18-21,23,24,28,29,43].

When k=1, 1 <m < n, (1.1) becomes the following quasilinear elliptic equation

{div(lDul'"zDu)+f(u) =0 in Bp,

(1.3)
u=0 on 0By

Eq. (1.3) was by studied by Franchi-Lanconelli-Serrin in [15], where they proved the uniqueness of positive radial solution for
subllnear case. Using the separation technique in [15], Citti [10] get some uniqueness results to (1.3) in the case 1 < m < 2 and
n>2-1 — by applying the method in Kwong-Zhang [23]. For f(u) = Au+u? with m—1 < g < =="= - a uniqueness result was given by

Adlmurthl—Yadava [2]. Later, Erbe-Tang [13] established a new Pohozaev-type identity and used it to prove the uniqueness when
fw) =uw withm—1<p< ”’"—"J'm and f(u) = AP +uf withm—1<p<gq< ""’_ﬂ, n > m+m?. Uniqueness of positive radial solutions

of (1.3) with exponential nonhnearltles was studied by Pucci-Serrin [32], Adimurthi [1]. In [36], Tang studied the uniqueness for

n-laplace case.
When m =2, 2 <k <n, (1.1) becomes a type of fully nonlinear elliptic equations, the k-Hessian equation.

{o‘k(Dzu) =f(-u)  in Bp,

1.4
u=0 on 0By

The k-Hessian equation has been studied extensively in past decades, one can refer to Caffarelli, Nirenberg and Spruck [7] and
Wang [40]. Let y(k) be the critical exponent for the k-Hessian, that is y(k) = <"+2)k for1 <k < g and y(k) = oo for g <k<n
Tso [38] proved that (1.4) with f(—u) = (—u)? is solvable if and only if p < y(k). In [9,39,40], Wang proved that (1.4) has a C?
solution in the superlinear case, sublinear case and critical case. Chou-Geng-Yan [8] got existence and nonexistence results of radial
solution to (1.4) with f(—u) = (—u)’® + A(—u)*. Suppose f € C?([0, )), f(0) =0, f(s) > 0 on (0, ). Recently, Wei [42] proved that
(1.4) admits at least two solutions for f(—u) = A(—u)? + (—u)? with small enough 4 and 0 < p < k < ¢ < y(k). In [41], Wei proved
that (1.4) has at most one negative radial solution in either of the following two cases

o —sf'(=s) > kf(-s) and Hli(s) <0 for s <0,
o —sf'(=s) < kf(=s),

where H(s) = W and F(s) = [ f(-r)dr.
It is natural to consider the uniqueness of radial solution to (1.1) for general m and general k. In the following of this paper, we
always assume k > 1, m > 1, mk < n, f € C2([0, )), f(0) =0, f(s) > 0 on (0, c0) throughout this paper. Set
((m = Dn+m)k
n— mk '

y(m, k) =

and

f(=s5) (1.5)
0, s=0,

(n=mk) f (=5)s—=n((m—Dk+1)F(s) s <0
m k(s) {
where F(s) = /OS f(=r)dr. Moreover, we suppose f satisfies one of the following conditions:
(C1) —sf'(=s)> (m— Dkf(-s) and H’;‘k(s) <0 for s <0,
(C2) —sf'(=s) < (m—1kf(—s) for s < 0.

We will apply the argument of Erbe and Tang [12,13,36] which was used by Wei [41] to deal with k-Hessian problem, to the
(m, k)-Hessian equation. The main theorem is as follows:
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Theorem 1.1. If f satisfies (C1) or (C2), then Eq. (1.1) has at most one negative radial solution in (DB”*"(B R)-

The corollaries follow naturally:
Corollary 1.2. If f(—u) = (-u)?, (n— 1)k < p <y(m,k) or 0 < p < (m — 1)k, then (1.1) has at most one negative radial solution.

Corollary 1.3. If f(—u) = A(—u)? + (—uw)%, (m — Dk < p,q < y(m, k), A > 0, then (1.1) has at most one negative radial solution.

There are several results about (m, k)-Hessian equations. In [37], Trudinger—-Wang proved that any C? k-admissible function is
m-l-admissible for any / = 1,...,k—1 and m < % Very recently, Bao-Feng [4] considered the entire solution to the m-k-Hessian

equation, they gave a necessary and sufficient condition to the global solvability for the m-k-Hessian inequalities. Feng-Zhang studied
the existence of infinitely many boundary blow-solutions in [14], later Zhang-Yang [46] generalized it to a more general m-k-Hessian
type equation via a new technique and Kan-Zhang [17] extended it to m-k-Hessian systems.

In the next section, we give some preliminary results about a Cauchy problem about the ODE related to (1.1). In Section 3, we
prove the uniqueness when f satisfies (C2). In Section 4, we obtain a Pohozaev type identity. In Section 5, we use the Pohozaev
type identity and separation technique to prove the uniqueness when f satisfies (C1).

2. Preliminary results

In this section, we give some preliminary results and reduce the problem to an ODE problem.
Assume u € @(BpR) be a radial solution of (1.1). Let r = |x|, x € Bg(0), 0 = = € S", x € Bg(0)\{0}. Then we have
| Du|"2Du = |u' "4,
and
D(Du|™ Dy =(1'|"u/)'0 ® 0 + /"' DO = (/" w/Y 9 @ 0 + |u/|"u'r™ (1 ~ 0 ® )
= "R (Y = R0 @ 6,
By direct calculation,
Sl =o 1 " 2u’1+<(|u "2y =)0 @ 0)
=CHE W "+ E e W R R = )
k

C
=L TR
n

where Ck = ( k), . It follows that a negative radial symmetric ground state u = u(r) to Eq. (1.1) can be consider as a solution to

G " = P f()in (0. R),

(2.1)
u(R) =
By Maclaurin inequality, for any 1 </ < k, the radial solution u also satisfies
Cl
2 Y 2 P CC TR R () in O, R), 2.2)
n
Note that there may occur singularity to |u/|"~> when «’ = 0, it is necessary concern the precise meaning of solution to
Ck
L " = 7 f(<u)in (O, R). (2.3)
n

Here will shall treat the classical solutions, with the precise meaning that u € C'([0, R)) with «/(0) = 0 and v = |«/|"~ 2y e C! (0, R)).

Proposition 2.1. If u is a classical solution to (2.3) for odd k, then v = |u'|™ 2y e Ccl([0, R)) and

ron—1
n "
U(r)—r<ck / pr

Remark 2.2. If 4 is a negative solution to (1.1), with u € CO(BR\ {0) N CY(Bg \ {0}) and D(|Du|™ 2Du) € CO(Bg \ {0}). Then this
proposition implies that D(| Du|"~2Du) € CO(Bpg).

7 1
)k, v(0) = 0, u’(0>=( o/ O 2.4

Proof. By direct calculation, we obtain

"o~ oky = %r"lf(—u).
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Integrate it on (0, r), we get

oot = 2 /0 o fuoyr

1
_ n "yl k
V= r(c—:‘( A r—ﬂf(—u(t))dt) .

It follows that

) _( n "=l d % 1 n "=l d %_1
v _<C_f,‘/0 pr S (—u(®)) T) +Er<C_}f/o P S (—u(®)) t> <
1
[ n "=l K
_<C_,’,‘/0 r" f(—u(t))dt)
1
1(n [Mm! [ n 7!
+ E(C_’Il‘</0 r—nf(—u(t))dt) ((C_'lf‘/o o

So

By computation, we have

ron—1 ! r in—1
< /0 ;—_lﬂ—u(t))dt) = f(=u(r) — (n—1) /0 L fuydr.

rn

By I’'Hopital’s rule

T sn—1
1im/ L f(u() = lf(—u(O))-
0 n

r—=0 r

So

1
w0)=0 and M(O):(éf(—u(())))k. O

According to Proposition 2.1, the solution to (2.1) is also a solution to the following problem

S W Y = - in (0, R,

u(0) = —a < 0,u'(0) = 0.

Ck
n

f(—u(t))dt> - (

1
L n [T! Eoifn [Te!
0= p(& [ o) 1 (& [ Srom)

=

r

n

G

J

l"l

n

f (—u(t))dt>

ron—1

- f(—u(t))dt>>

-

- n "=l !
(C_'I: A rn—_[f(—u(l))dl) .
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(2.5)

It follows from Propositions A1-A4 Franchi-Lanconelli-Serrin [15], (2.5) has a unique solution depending continuous on the
initial data when k = 1. For odd k, the proof are the same as the case k = 1 in [15]. Suppose that u is the unique solution to (2.5),
which depends continuously on the initial data. We denote this solution by u(z, «). Let

b(a,u) =sup{T € R |u <0 on [0,T]}.

We only consider the case b(a,u) < 0, since in fact we concern the solution to (2.1). Since u < 0 and f(—u) > 0 in [0, b(a, u)), we
obtain see from Eq. (2.2) that (|u’ |'"_2u’ ) is positive in [0, b(a, u)) for 1 <1 < k. So « is positive. The solution to (2.5) in fact satisfies

%(r"’k(u’)(m’l)k)’ =rlf(-w), «>0 in(0,R),
u(0) = —a < 0,u'(0) = 0.

3. Sublinear case

We say f is superlinear with respect to the (m, k)-Hessian operator if
—sf'(=s)> (m—Dkf(=s), s<0
and f is sublinear with respect to the (m, k)-Hessian operator if
—sf'(=s) < (m = Dkf(=s), s<0.

In this section, we will deal with the sublinear case.

(2.6)

The following type of monotonicity proposition for quasilinear equation was proved by Tang [36], Wei [41] proved it for

k-Hessian equation.
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Proposition 3.1. If f is superlinear with respect to the (m, k)-Hessian, u; and u, are two solutions of (2.6) with u;(0) = «; and u,(0) = a,

(a; < ay) such that
up <u, <0 onl0,1y),

then ::—‘ is strictly decreasing on [0, t,)).
2

Proof. Write
w;(r) = 'Ry Dk,
By (2.6), we find that

, n—1 n
w; + p w; = Ef(—ul-).
n

Then
1141181+ w;(t) =0.

In fact, on [0, ,), u; is bounded, so is f(—y;). By (3.1),

t
w;(t) = étl_" /0 s"7 f(—u;(s))ds < Ct.

n

So (3.2) holds.

Letting + — 0 in (3.1) and using L’Hospital’s rule, we
. f(=a;)
’ _ i
tl—l>r(1)1 w;(0) = Crll‘ '

By using L’Hospital’s rule, we obtain

@) e w0 fay)

get

(_al )(m—2)k

lim ———— = lim = —_ = ,
=0+ (uh)m=Dk st wy () =0t wh(n) f(—ap) T (—ap) 2k

where the last inequality is due to (C1). Then

L@ @O 4O o) _ (Lo

im = lim -
-0+ u’z(t) uy(1) -0+ u;(t) uy(1) f(—a)

So (“‘(t) ), < 0 for sufficient small 7. If the assertion does not hold, there exists 7; € (0,,) such that

uy(1)

(?)’(zl):o and ()" > 0.
2

e}
U

Thus ug(tl)uz(tl) = ul(tl)u;(tl). Use the fact u,(}) < u,(¢,) and (C1), we find

! ’
<u1 )” _<u1u2 —u1u2>’
uy u%

1
) (m=2k

_a

5]

1 (u’l)z_'"((u’l)('"‘l)k)'uz - ul(u’z)z_m((u’z)('"_l)k),

“Tm—1 2
U

—
m—1,2
U

L1y %71 f(—uy)
kCE (u)(k=Dn=1)
(m=1)k

— —1
! Al = f(=uyp) _n—k(“,l)m
1 kcllc (u/l )(k—l)(m—]) k

nm g !

S(=uy)

_ n E S (=upuy <u2
T (m- DkCk u% ((u/z))(m—l)k—l

The last line is negative due to the superlinear assumption. This leads a contradiction to (Z—l)’/(tl) >0. So
2

By the same discussion, we obtain the following

WK T )

t

t

)

> 0.

)

3.1

(3.2)

up ()
T <0on[0,7y). O

Proposition 3.2. If f is sublinear with respect to the (m, k)-Hessian, u;, and u, are two solutions of (2.5) with u,(0) = a; and u,(0) = a,

(a; < ay) such that
u;p <up, <0 onl0,1y),

then Z—‘ is strictly increasing on [0, t,).
2
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Theorem 3.3. If f satisfies (C2), then Eq. (1.1) has at most one negative radial solution.

Proof. Suppose u; and u, are two different radial solutions to (1.1) with u(0) = &, u,(0) = a,. Assume that a; < a,, then
u; <u, in |0, R).

In fact, if there exists r, € [0, R) satisfying
u(rg) = uy(rg) and u (r) < uy(r) in [0, ry)

Then
uy(rp) _ o _ uy(0)
uy(ro) a  uy(0)

This contradicts with "‘ is strictly increasing on [0, ry). So u; < u, on [0, R).
Using Proposition 3 2 and L’Hospital’s rule, we find that V r € [0, R),

R
uy(r) < lim uy (1) _ ) ( ). (3.3)
uy(r) =R uy(r) M'Z(R)
Since u; and u, satisfy (2.1), we get
R Cck-1 R ’
n=1pc_ .. — n—1 n—k( 1 (m=1)k
/0 "= f(—u;(r)dr - /0 <r (ul.(r)) ) dr
Ck—l -
=L R (u(R)) " (3.4)

It follows from (3.3), (3.4) and assumption (C1) that

R R
=(u,(R)) """ /0 P f (—uy (M) — (h(R)) " /0 P f (g (P)dr

R o @R)" o)
- n—1 po_ (R 1)k<( 1 _ 1 >
/0 P (—uy () (1(R)) (u;(R))“"_”k F=ur ()

R (m—1)k —
=1 g 1 ¢ oy (n=Dk (@1 (R)) A ul(r))>
> /0 r f( uz("))(uz(R)) < (ul(R))(’”‘l)k f(—uz("))

>0.

It is a contradiction! So we have u; =u, in [0, R]. []

4. A Pohozaev type identity for radial solutions

Pohozaev identity has been shown to be very useful in studying the existence and uniqueness of Laplacian equation and
quasilinear equation. The Pohozaev type identity for m-Laplace equation can be found in [26,27,31]. In [38] Tso prove a Pohozaev
type identity for k-Hessian on a general domain, Wei [41] used the radial solution version on a ball to prove the uniqueness of
radial solution to k-Hessian equation. In this section, we establish a Pohozaev type identity for (m, k)-Hessian equation on a ball.

Proposition 4.1. Let u = u(t, a) be a solution of (2.6), then for each a € R, e € R,
ck kCk 1
(m—1)k n IN(m=Dk+1 e _ F e+k—1

TR + RS TSA e

=— / uf (—uyetk? — —e R P2y
m—
1 k
a(e 1 —n+k)C; / w 1k g
(m —Dn

a n— k (m=Dk+1 o1
ot t et /(u) a, “.1

k (m—l)k+1 (m—l)k

where F(s) = [ f(=nd.

In particular, let a = ﬁ, e=n—k+ 1, we have

n—mkck( YDk — l)kcrllc(ul)(m—l)kJrlrn—kJrl — (m = Dk + )F ()"
n

=(n — mk) / uf (—"tdt — n((m — Dk + 1) / ' Fuy" ldr. (4.2)
0 0
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Remark 4.2. If we denote
H,, 1 (5) = (n — mk) f(=s)s — n((m — Dk + 1)F(s),

and

Py i u(r)) =(n — mk) (u 7\ (m=1k =k

Ck
+ (m— )—L @) m=Dk+l =kl _ (4 — D)k + D) Fu)r”,

then (4.2) is equivalent to

vak(u(r)) = /r Hm,k(“(f))fnfldt.
0

Proof. By (2.1), we have

k

P f(—u(r) = 2 c" k=L () m=Dk 4 c" "=k @ ()= DEED @y

Differentiating two 51des of (4.1), we obtain

k
i( aC, (= Dkype- 1)
dr\(m—1)n

aCk

— n a
“(m=Dn

((e 1= n R )M Dkype2 4 (g ymm Dk e ) + _lufre+k—2’
m

d kCy IN(m=Dk+1 e
_r(n((m—l)k+1)(u) ’)

e n—k k(= Dk+1 o= L erk—1
= =c — —u),
((m—l)k+l (m—l)k) ) L A

i( 1 F(u)re+k 1) _ e wl reit e k=1
dr m—1

Putting (4.6), (4.7) and (4.8) together and integrating on (0, r), we obtain (4.1). [J

Fuyre =2,

Nonlinear Analysis 242 (2024) 113495

(4.3)

4.4

(4.5)

(4.6)

“4.7)

(4.8)

For a fixed « < 0, as «/(r) > 0, we have the inverse function r = r(u), which satisfies /() > 0 in (0, a). and

HOE ,()—((u’)m‘lfﬁ, () = = —— ()" R (@Y

It follows by (2.5) that

i I 4 kG =142 k=1 ;
(m—1Dr" + T —kc’,:(r) rlf in (0, @),

(0) = b(@), r(@) =
Denote
Ck
Py () == (@) @) V4 (Hy ) = (n = k)

) @) 4 (Om = D+ DF@)(r@)"

- (m

Proposition 4.3. Let u = u(t, a) be the solution to (2.6), t = t(u, @) be the inverse function of u. Then

Ck ru
P () = —- / H), ()(r(9))" 7 ( ()" Dkds.

Proof. By (4.3), and (4.9), we have
k

Cc k
Po(r) =(1 = m) = V¥~ o — 1 EE DR (= Dk ) F

k

kCk
—(n—mk) (r) =Dy =k 4 (m — 1) —= ¢y~ ((m = 1k + D F ().

From (4.10), we obtain
k

kC —
= rl—k(r/)—(m—l)k—Z(_(m S kr—l(r/)2>'
n k

(4.9

(4.10)

(4.11)

(4.12)

(4.13)
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Recall that for s < 0,
(n=mk)f(=s)s = n((m = Dk + 1)F(s) _ H, (s)
f(=9) T f(=s)

H, ,(s) =
we have

/ ' H,, )" dr
0
= / ' H,, , (5)(r(s)"'F (s)ds

:/ H, g () (=)(r())"~ " (s)ds

kCk  ru
" / (@)™ (57D (= = D' (s)

+ Lo @R )ds

kC

K u
=—(m-D—= / H,, ( ()(r(s)"* (¢ ()™= D*=1p (5)ds

+ 1=

- kC,’j/ H,,  (5)(r())' %=1 (! (5))~ = DR+ g

ck pu
=2 / H,, 1 ($)(r(s)"™*d(r' (5))"m= Dk
n Jq ?

+ I ; kC,’,‘/ H’”vk(s)(r(s))"_k_l(r’(s))‘('"‘l)k+1ds
Cck ok |
=7" e ()R (! ()~ Dk — 7n/ T (H, (o)

L ; ka/ H,, () () (! (5)) =Dk g
ck ’ ck pu
= =2 () (@)™ (¢ )~ — = / ) TVEH, (5)(r(5)" 7 ds. (4.14)
By (4.4), (4.13) and (4.14), we have
Cck kCk
(n = mk) =2 ()~ =Dk =k 4 (m — 1)—2L ¢y~ On=Dk=lpn=ktl _ (i — Dk + 1) F(u)r”
n n

ck ck pu
=— m,k<u>(r(u>>""‘(r’(u»*""”k—7" H), ()0 ()7 DK ()" ds.

This finishes the proof. [

5. Superlinear case

In this section, we use the Pohozaev identity and monotone separation technique to prove the uniqueness of radial solution to
(1.1) in the superlinear case under assumption H r’n (8 <0.

Theorem 5.1. If f satisfies (C1), then Eq. (1.1) has at most one negative radial solution.

This theorem is an immediate consequence of the following two lemma.

Lemma 5.2. Assume f is superlinear with respect to the (m, k)-Hessian, u,(r) = u,(r,a;) and u,(r) = u,(r, a,) are two solutions of (2.5)
with b(a;) = b(a,) such that u; < u, in [0, b(a;)], then u; = u,.

Lemma 5.3. Assume f satisfies (C1), u,(r) = u;(r, ;) and u,(r) = u,(r, a,) are two solutions of (2.5) with a; < a, < 0 and b(a;) = b(a,).
Then u; < u, in [0, b(a;)].

Lemma 5.2 was proved by Adimurthi-Yadava [2] and Erbe-Tang [13] in different way for quasilinear equations. We use the
method of Tang [36] and Wei [41]. In [13], Erbe-Tang proved Lemma 5.3 for p-Laplacian equation by dividing the interval into

two part and using the monotone separation technique. Here we divide it into three part as Wei did in [41]. To prove Lemmas 5.2
and 5.3, we first prove a monotonicity lemma.

Lemma 5.4. Let u;(t) = u(t, a;) and u,(t) = u(t, a,) be two solutions of (2.5), t,(u) = t(u, «;) and t,(u) = t(u, a,) be the inverse functions
of u; and u, respectively. Set
(t (w)"* (ty(w))"™*

SO = T [ Wy
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Then

S’y <0 if and only if §71 ()M < A1 (gl yimmDRHL (5.1)

Proof. Since
1k ’

((t’ )zm_l)k ) =(n— ke @)V — (m = Dk )T

1

n—1 (’/1)2
k1

_ M —(m=1)k—1 (= 1)k+2 k1

—Ef( w()™" ™ 4
n

n -1
=—f=wi{71),
k 1 1

Cn

k=K (¢ )~m= k=] ( —(m— 1)1’1’)

we have
n—k ¢t \(m—1k
n 1@)

S'wy=—1—__
(14) Cr/,C t;—k(t/l)(m_l)k

(tllc—l(tll)(m—l)k+l _ l/;—l(t;)(m—l)kﬂ )f(—u).
So (5.1) holds. [

Proof of Lemma 5.2. Denote b = b(a;) = b(a,). If @) = a,, then u; = u,. Now we suppose «; < a,. Then we have
uy <u, for rel0,b).

In fact, if there is r, € (0,b) such that u; < u, in (0,r)), u;(r;) = uy(r)), then by Proposition 3.1, Z—; is strictly decreasing. This
contradicts with u;(r;) = u,(r;). So u; < u, holds on [0, b).
Applying Proposition 3.1 and L’Hostipals rule, we obtain
W) om@ GO
uy(r) " i=bup(t) (b))

Note that u;(b) = u,(b) = 0, by (2.1), we have

(5.2)

b
Bt o)™ = 2 [
0

n

So by (5.2), we obtain

b b
0 =, (b)) Dk /0 P (—up(r)dr — (b)) /0 7 (—uy (M)dr

b @ O™ (cuy(r)
— n—1 rc_ ! (m—1)k 1 _ 1
- /O P )y )V O o ar
Cu M) f =y () )dr
(—up(r)m=Dk  f(=uy(r))

b
< /0 T ALl

<0,

f(=s)
(=s)m=DFk

where the last inequality holds provided that is decreasing for s < 0. This is due to —sf’(—s) > (m — 1)k f(—s) for s < 0. So

we get a contradiction and complete the proof.

Remark 5.5. The proof of Lemma 5.2 is similar to that of Theorem 3.3 except that we need u; < u,, which is not easy to get. This
is why we need Lemma 5.3.

Proof of Lemma 5.3. Let 1, (u) = t(u, a)), t,(u) = t(u, a,) be the inverses of u; and u,. If the assertion of this lemma is not valid, then
the graph of ¢, and 7, must intersect in (a,,0). It follows that there is a point v; € (a,,0) such that

H) =6, ) <), 1w > 5w, in(a,0). (5.3
Note that #,(0) = 1,(0) = b(a;), there exists a point v, € (v;,0] such that

11(0y) =1,(vy),  11(0y) > 15(vy), 1 (W) < (), in (v}, 0y). (5.4)
Thus there is a point v, € (v, v,) such that

1 (w) =15(0,),  11(w) < th(w), in [v1,0,). (5.5)
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Moreover, we have

1 (u) < thw), in (ay,0;]. (5.6)
In fact, if (5.6) does not hold, there exists u, € (a,,v;), such that

1"l (ug) = t;(uo).

By (4.10), we have

(m = D ) — 1)) =2 (¢ 0))2(t w = (lu 5)

({1 @) ™" = o)) £ (=ug).

ka

Since #;(w) > t,(u) in [ay, v;), We have (t; — 1,)"(uy) < 0. So ¢, — t, has at most one critical point in (a,, v,). However, because of
71(v)) < 7y(v)) and #] <, near a,, t; — 1, has no less than two critical points in (a,,v;). So we have proved (5.6) holds.
Let S, = S(v.), where S(u) is defined in Lemma 5.4. Then we have

(t; ()" * ()" )" 5.7)

©T W0 [ @™k T (o
and

_ @@ @) (@) 55
CT (R T (1 (v )R T (o))" :

Fori=1,2, set

G @)t
n (] (u))m=Dk
kck (t’_(u))n—k+l

- (m=1) nn _(t;(u))(m—l)k+1

P )= (H ) = (n = mku)

+ ((m = Dk + DF @)(t;w)".

By Proposition 4.3, we have

Cr [ (1, ()" * Cr [ (t2(s)"*
1 _p2 —__n H' 1 _n ’ 2
Pm,k(vc) Pm,k(Uc) n / k( )(l ( ))(m l)kd Sc n /0!2 Hm,k(s) (t;(s))(mfl)k ds

_ (1, ()%
'_/ Hy, (5 )(r’( e
Cy (t ()" * (ty(s))"* )
— H' -8 d
T /.,2 '"*k(s)<(t’l(s))<m—1>k W )

Cy [, (1, (5))"* (1,(5))"
i / H’"”‘(”((t’l(s))(m—l)k = <t;<s>><m—l)k>ds

=:I+1I+1IL (5.9)

It is easy to see
_ (1 ()" k
- _/ ! (s )@ s <0 (5.10)
since we have assumed H' ,’n (<0 for s < 0.
In (ay,v;), by (5.3), (5.6) and (5.7), we obtain that

(1 ()" * (ty(s)"*

({(s)0m=DE (1 (5))m

So we get

ck oo (t, ()"~ (ty(s))"*
. n ! 1 _ 2
= — /az H’"»k(s)((z; ()T S, O >ds <o. (5.11)

In (vy,v,), by (5.4) and (5.5), we have

tllc—l(t/l)(m—l)k+l < tlzc—l(t/z)(m—l)k+1 in (v, 0,).
It follows by Lemma 5.4 that S"(u) < 0 in (v, v,). So

10
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GOt eyt e
W S Gk~ ek OO 7 S > 0 s € v

Hence we obtain

_CE e (1, ()" * (ty())"*
o= - /u] Hm’k(S)<(l/1(S))('"—l)k -8, T )ds <0. (5.12)

Substituting (5.10), (5.11) and (5.12) into (5.9), we get

Pl ()= PL (v) 0. (5.13)
On the other hand, by (4.11),
P, ()= Py (v.)

ck (t; )" " (t ()" *
=5y (il == mb) ((t’l(vc»wfbk ) c(r;wc»w*”k)

kCLC( (Z](UC))n_k+1 (IZ(UC))n_k+1 )

(#) )m=Dk=1 7 (1] (v, )= D=1
+ ((m - l)k + l)F(UC)((Il(UC))n — SC(IZ(UC))n)
<0. (5.14)

- (m-1

n

The inequality holds because of (5.8) and F(v,) < 0. It contradicts with (5.13). The proof is completed. []

Proof of Corollary 1.2. For f(¢) =, if 0 < p < (m — 1)k, then f is sublinear with respect to (m, k)-Hessian. So (C2) holds.
If p> (m — 1)k, f is superlinear with respect to (m, k)-Hessian. We have

I APV UEP
F(s)_/of( DAt = g (s,

By (1.5),
n((m— Dk + 1)
H,y i (8) = (n— mk — T)s.
So if we assume p <y, , = %
-Dk+1
Hr’nk(s)=n_mk_M <0.
’ p+1

So (C1) holds. By Theorem 1.1, we finish the proof. []

_ mk
) ~ (m=Dk—p~
is clear the u € C'(R") for p < (m — 1)k and D(|Du|""%Du) € CO(R"). When p > (m — 1)k, (—u)” & D(| Du|"~>Du) € CO(R").

Remark 5.6. By direction calculation, u = —c¢|x|” is a solution to ak(D(lDul'"‘zDu)) = (—u)? for some ¢ = c(m, k, p), It

Proof of Corollary 1.3. For f = Ar? + 19 with 4 > 0, we have

(_S)p+1 (_S)q+1

F(s)=—2 - .
® p+1 qg+1
Then
_ AsA—(-5)4"*B
B0 = 5 Sy
H (s)= AA+ (=24 PB—(q—p—1DA+(q—p+ DA-s5)T"B
e A+ (=)77)? ’
where
Mmoo M= DD (= Dk 1)
p+1 qg+1
If p < y(m, k), we have
A>0 and B>0.
If n > (m — Dmk?* + 2mk, we have
g-p—-1 Sw_(m_l)k_l
n—mk
_(m—=1Dnk + mk — (m — )nk + (m — Dmk? — n + mk
h n— mk

11
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and

_2mk +(m— Dmk? —n
- n—mk

<0,

_ ((m—=Dn+m)k

qg—p+12(m—-1)k +1
n—mk
_(m—l)nk—(m—l)mkz—(m—l)nk—mk+n—mk
- n—mk
_—=(m=1)mk* = 2mk + n
- n—mk

>0.

Hence f satisfies (C1). By Theorem 1.1, we finish the proof. []

Acknowledgements

The authors would like to express sincere gratitude to Prof. Xi-Nan Ma for the constant encouragement in this subject. The author
would also thank Wei Wei and Dekai Zhang for their helpful discussion and encouragement. The author is supported by National
Natural Science Foundation of China No. 12301257.

References
[1] Adimurthi, Uniqueness of positive solutions of a quasilinear Dirichlet problem with exponential nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A 128 (5)
(1998) 895-906.
[2] Adimurthi, S.L. Yadava, An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem, Arch. Ration. Mech. Anal.
127 (3) (1994) 219-229.
[3] F.V. Atkinson, L.A. Peletier, Ground states and Dirichlet problems for —Au = f(u) in R?, Arch. Ration. Mech. Anal. 96 (2) (1986) 147-165.
[4] Jiguang Bao, Qiaoli Feng, Necessary and sufficient conditions on global solvability for the p-k-Hessian inequalities, Canad. Math. Bull. 65 (4) (2022)
1004-1019.
[5] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (4) (1983) 313-345.
[6] Haim Brezis, Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (4) (1983)
437-477.
[7]1 L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. IIl. Functions of the eigenvalues of the Hessian,
Acta Math. 155 (3-4) (1985) 261-301.
[8] Kai-Seng Chou, Di Geng, Shu-Sen Yan, Critical dimension of a Hessian equation involving critical exponent and a related asymptotic result, J. Differential
Equations 129 (1) (1996) 79-110.
[9] Kai-Seng Chou, Xu-Jia Wang, A variational theory of the Hessian equation, Comm. Pure Appl. Math. 54 (9) (2001) 1029-1064.
[10] Giovanna Citti, Positive solutions for a quasilinear degenerate elliptic equation in R”, Rend. Circ. Mat. Palermo (2) 35 (3) (1986) 364-375, (1987).
[11] S. Coleman, V. Glaser, A. Martin, Action minima among solutions to a class of Euclidean scalar field equations, Comm. Math. Phys. 58 (2) (1978) 211-221.
[12] Lynn Erbe, Moxun Tang, Structure of positive radial solutions of semilinear elliptic equations, J. Differential Equations 133 (2) (1997) 179-202.
[13] Lynn Erbe, Moxun Tang, Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball, J. Differential Equations 138 (2)
(1997) 351-379.
[14] Meiqiang Feng, Xuemei Zhang, The existence of infinitely many boundary blow-up solutions to the p-k-Hessian equation, Adv. Nonlinear Stud. 23 (1)
(2023) 20220074, 12.
[15] Bruno Franchi, Ermanno Lanconelli, James Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in R", Adv. Math. 118 (2)
(1996) 177-243.
[16] B. Gidas, Wei Ming Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (3) (1979) 209-243.
[17] Shikun Kan, Xuemei Zhang, Entire positive p-k-convex radial solutions to p-k-Hessian equations and systems, Lett. Math. Phys. 113 (1) (2023) 16, 9.
[18] Hans G. Kaper, Man Kam Kwong, Uniqueness for a class of nonlinear initial value problems, J. Math. Anal. Appl. 130 (2) (1988) 467-473.
[19] Hans G. Kaper, Man Kam Kwong, Uniqueness of nonnegative solutions of a class of semi-linear elliptic equations, in: Nonlinear Diffusion Equations and
their Equilibrium States, II (Berkeley, CA, 1986), in: Math. Sci. Res. Inst. Publ., Vol. 13, Springer, New York, 1988, pp. 1-17.
[20] Hans G. Kaper, Man Kam Kwong, Uniqueness results for some nonlinear initial and boundary value problems, Arch. Ration. Mech. Anal. 102 (1) (1988)
45-56.
[21] Man Kam Kwong, Uniqueness of positive solutions of Au—u+u” =0 in R”, Arch. Ration. Mech. Anal. 105 (3) (1989) 243-266.
[22] Man Kam Kwong, Yi Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1) (1992) 339-363.
[23] Man Kam Kwong, Li Qun Zhang, Uniqueness of the positive solution of Au+ f(u) =0 in an annulus, Differential Integral Equations 4 (3) (1991) 583-599.
[24] Kevin McLeod, James Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA 78 (11, part 1) (1981) 6592-6595.
[25] Wei-Ming Ni, Roger D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of Au+ f(u,r) =0, Comm. Pure Appl. Math. 38 (1) (1985)
67-108.
[26] Wei-Ming Ni, James Serrin, Nonexistence theorems for quasilinear partial differential equations, in: Proceedings of the Conference Commemorating the
1st Centennial of the Circolo Matematico Di Palermo (Italian) (Palermo, 1984), 1985, pp. 171-185, number 8.
[27] Wei-Ming Ni, James Serrin, Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math. 39 (3)
(1986) 379-399.
[28] L.A. Peletier, James Serrin, Uniqueness of positive solutions of semilinear equations in R”, Arch. Ration. Mech. Anal. 81 (2) (1983) 181-197.
[29] L.A. Peletier, James Serrin, Uniqueness of nonnegative solutions of semilinear equations in R", J. Differential Equations 61 (3) (1986) 380-397.
[30] S.I. Pohozaev, On the eigenfunctions of the equation 4u+ Af(u) =0, Dokl. Akad. Nauk SSSR 165 (1965) 36-39.
[31] Patrizia Pucci, James Serrin, A general variational identity, Indiana Univ. Math. J. 35 (3) (1986) 681-703.
[32] Patrizia Pucci, James Serrin, Uniqueness of ground states for quasilinear elliptic equations in the exponential case, Indiana Univ. Math. J. 47 (2) (1998)
529-539.
[33] James Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971) 304-318.

12


http://refhub.elsevier.com/S0362-546X(24)00014-2/sb1
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb1
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb1
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb2
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb2
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb2
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb3
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb4
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb4
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb4
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb5
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb6
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb6
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb6
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb7
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb7
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb7
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb8
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb8
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb8
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb9
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb10
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb11
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb12
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb13
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb13
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb13
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb14
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb14
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb14
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb15
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb15
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb15
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb16
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb17
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb18
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb19
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb19
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb19
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb20
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb20
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb20
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb21
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb22
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb23
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb24
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb25
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb25
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb25
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb26
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb26
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb26
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb27
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb27
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb27
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb28
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb29
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb30
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb31
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb32
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb32
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb32
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb33

Z. Gao

[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

Nonlinear Analysis 242 (2024) 113495

P.N. Srikanth, Uniqueness of solutions of nonlinear Dirichlet problems, Differential Integral Equations 6 (3) (1993) 663-670.

Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (2) (1977) 149-162.

M. Tang, Uniqueness of positive radial solutions for n-Laplacian Dirichlet problems, Proc. Roy. Soc. Edinburgh Sect. A 130 (6) (2000) 1405-1416.

Neil S. Trudinger, Xu-Jia Wang, Hessian measures. II, Ann. of Math. (2) 150 (2) (1999) 579-604.

Kaising Tso, Remarks on critical exponents for Hessian operators, Ann. Inst. Henri. Poincaré C 7 (2) (1990) 113-122.

Xu Jia Wang, A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J. 43 (1) (1994) 25-54.

Xu-Jia Wang, The k-Hessian equation, in: Geometric Analysis and PDES, in: Lecture Notes in Math., Vol. 1977, Springer, Dordrecht, 2009, pp. 177-252.
Wei Wei, Uniqueness theorems for negative radial solutions of k-Hessian equations in a ball, J. Differential Equations 261 (6) (2016) 3756-3771.

Wei Wei, Existence and multiplicity for negative solutions of k-Hessian equations, J. Differential Equations 263 (1) (2017) 615-640.

Eiji Yanagida, Uniqueness of positive radial solutions of Au + g(r)u + h(r)u? =0 in R", Arch. Ration. Mech. Anal. 115 (3) (1991) 257-274.

Li Qun Zhang, Uniqueness of positive solutions of Au+u+u” =0 in a ball, Comm. Partial Differential Equations 17 (7-8) (1992) 1141-1164.

Li Qun Zhang, Uniqueness of positive solutions of semilinear elliptic equations, J. Differential Equations 115 (1) (1995) 1-23.

Xuemei Zhang, Yuyao Yang, Necessary and sufficient conditions for the existence of entire subsolutions to p-k-Hessian equations, Nonlinear Anal. 233
(2023) 113299, 23.

13


http://refhub.elsevier.com/S0362-546X(24)00014-2/sb34
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb35
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb36
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb37
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb38
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb39
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb40
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb41
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb42
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb43
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb44
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb45
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb46
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb46
http://refhub.elsevier.com/S0362-546X(24)00014-2/sb46

	Uniqueness theorem for negative solutions of fully nonlinear elliptic equations in a ball
	Introduction
	Preliminary results
	Sublinear case
	A Pohozaev type identity for radial solutions
	Superlinear case
	Acknowledgements
	References


