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Abstract
We consider overdetermined problems for Hessian quotient equations and Hessian
quotient curvature equations, which are fully nonlinear elliptic equations.We establish
Rellich–Pohozaev-type identities for Hessian quotient equations and Hessian quotient
curvature equations. Based on these identities and the maximum principle for P func-
tions, the symmetry of solutions can be proved in the Euclidean space. We also prove
the related result for Hessian quotient equations in the hyperbolic space. Our results
generalize the overdetermined problems for k-Hessian equations and k-curvature
equations.
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1 Introduction

Serrin [20] considered the following symmetry problem:

⎧
⎪⎨

⎪⎩

�u = n in �,

u = 0 on ∂�,
∂u
∂γ

= 1 on ∂�,

(1.1)
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where � is C2 bounded domain in R
n and γ is the unit outer normal to ∂�. If

u ∈ C2(�) solves (1.1), Serrin [20] proved that up to a translation u = |x |2−1
2 and� is

the unit ball. Serrin’s proof was based on the moving plane method and it was applied
to more general uniformly elliptic equations. Based on the maximum principle for the
P function and a Rellich–Pohozaev type identity, Weinberger [23] gave another proof.

There were lots of generalizations of Serrin and Weinberger’s work to quasilinear
elliptic equations (see e.g. [6, 7, 9] and references therein) and fully nonlinear equa-
tions such as the k-Hessian equation and Weingarten curvature equations (see e.g.
[1, 12, 22]). In the Euclidean space, Brandolini–Nitsch–Salani–Trombetti [1] solved
the overdetermined problem for the k-Hessian equation i.e. Sk(D2u) = Ck

n using a
Rellich–Pohozaev type identity and Newton inequalities. The same problem was later
proved by Bao–Wang [22] where they used the method of moving planes.

P functions are very useful in the study of elliptic partial differential equations. For
example,Ma [13] gave the P function for 2-dimensionalMonge–Ampère equation. For
k-Hessian equations and k-curvature equations, P functions were given by Philippin
and Safoui [15].

Let � be a bounded C2 domain and γ be the unit outer normal to ∂�. Let k, l
be integers such that 0 ≤ l < k ≤ n. In the first part of this paper, we consider the
following overdetermined problem for Hessian quotient equations in the Euclidean
space Rn ,

⎧
⎪⎪⎨

⎪⎪⎩

Sk(D2u) = Ck
n

Cl
n
Sl(D2u) in �,

u = 0 on ∂�,
∂u
∂γ

= 1 on ∂�,

(1.2)

where Sk(D2u) is the k-th elementary symmetric function of D2u (see Sect. 2).
Our first result is the following.

Theorem 1.1 Let� be a C2 bounded domain inRn, u ∈ C3(�)∩C2(�) be a solution
to (1.2) with the integer k, l satisfying 0 ≤ l < k ≤ n and Sl(D2u) > 0 in �. Then

up to a translation u = |x |2−1
2 and � is the unit ball with the center at 0.

Since Sl(D2u) > 0, similar as the argument in [1], we can prove that u is k-convex
which means Si (D2u) > 0, 1 ≤ i ≤ k in �. Then by maximum principle, u < 0 in

�, and the solution to Dirichlet problem of Sk(D2u) = Ck
n

Cl
n
Sl(D2u) is unique.

In the second part, we consider the following Hessian quotient type equations in
the hyperbolic space Hn ,

⎧
⎪⎪⎨

⎪⎪⎩

Sk(D2u − uI ) = Ck
n

Cl
n
Sl(D2u − uI ) in �,

u = 0 on ∂�,
∂u
∂γ

= 1 on ∂�.

(1.3)

Our result is as follows.
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Theorem 1.2 Let� be a C2 bounded domain inHn, u ∈ C3(�)∩C2(�) be a solution
to (1.3) with the integer k, l satisfying 0 ≤ l < k ≤ n and Sl(D2u − uI ) > 0 in �.
Then, up to a translation u = cosh r

cosh R − 1 and � is the ball of radius tanh−1 1 with the
center at 0.

In the third part, we consider Hessian quotient curvature equations in the Euclidean
space Rn ,

⎧
⎪⎪⎨

⎪⎪⎩

Sk(D( Du
w

)) = Ck
n

Cl
n
Sl(D( Du

w
)) in �,

u = 0 on ∂�,
∂u
∂γ

= 1 on ∂�.

(1.4)

where w = √
1 + |Du|2.

Our result is as follows.

Theorem 1.3 Let� be a C2 bounded domain inRn, u ∈ C3(�)∩C2(�) be a solution
to (1.4) with the integer k, l satisfying 0 ≤ l < k ≤ n and Sl(D( Du

w
)) > 0 in �. Then

up to a translation u = −√
1 − |x |2 + 1√

2
and � is the ball of radius 1√

2
.

The organization of this paper is as follows. In Sect. 2, we recall some preliminaries
for the Hessian operator in the Euclidean space and the hyperbolic space and some
known facts about Weingarten hypersurfaces in the Euclidean space. In Sect. 3, we
first prove a Rellich–Pohozae-type identity for Problem (1.2) in the Euclidean space.
Then by the Rellich–Pohozaev-type identity and theP function, we prove the Theorem
1.1. In Sect. 4, we derive the Rellich–Pohozaev-type identity for Problem (1.3) in the
hyperbolic space, then combing with a P function, we give the proof of Theorem 1.2.
In the last section, we prove Theorem 1.3.

2 Preliminaries

2.1 Elementary Symmetric Functions

We denote by A = (ai j ) a matrix in R
n×n . Recall the definition of k-th elementary

symmetric functions of A,

Sk(A) = 1

k!
∑

1≤i1,...,ik , j1,..., jk≤n

δ
j1... jk
i1...ik

Ai1 j1 . . . Aik jk .

where δ
j1... jk
i1...ik

is the Kronecker symbol. For λ = (λ1, . . . , λn) ∈ R
n ,

Sk(λ) = Sk(λ1, . . . , λn) =
∑

1≤i1<···<ik≤n

λi1 . . . λik .

It is clear that §k(A) = §k(λ(A)) provided that the eigenvalues λ(A) of A are all
real.
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Denote by

Si jk (A) := ∂Sk(A)

∂ai j
,

then it is easy to see from the definition above that

n∑

i, j=1

Si jk (A)ai j = kSk(A), and
n∑

i=1

Siik (A) = (n − k + 1)Sk−1(A). (2.1)

For 1 ≤ k ≤ n − 1, we have the following Newton’s inequality

(n − k + 1)(k + 1)Sk−1(A)Sk+1(A) ≤ k(n − k)S2k (A). (2.2)

For 1 ≤ k ≤ n, recall that the Gårding cone is defined as

�k = {λ ∈ R
n : S1(λ) > 0, . . . , Sk(λ) > 0}.

For λ(A) ∈ �k and k > l ≥ 0, r > s ≥ 0, k ≥ r , l ≥ s, we have the following
Maclaurin’s inequality.

(
Sk(A)/Ck

n

Sl(A)/Cl
n

) 1
k−l ≤

(
Sr (A)/Cr

n

Ss(A)/Cs
n

) 1
r−s

. (2.3)

In particular,

(
Sk(A)

Ck
n

) 1
k ≤

(
Sl(A)

Cl
n

) 1
l

, ∀ k ≥ l ≥ 1, (2.4)

and

Sk(A)/Ck
n

Sk−1(A)/Ck−1
n

≤ Sl(A)/Cl
n

Sl−1(A)/Cl−1
n

, ∀ k ≥ l ≥ 1. (2.5)

By (2.3), we also have

Sk+1(A)/Ck+1
n

Sk(A)/Ck
n

≤
(
Sk(A)/Ck

n

Sl(A)/Cl
n

) 1
k−l ≤ Sl+1(A)/Cl+1

n

Sl(A)/Cl
n

. (2.6)

The equalities in (2.3), (2.4), (2.5) and (2.6) hold if the eigenvalues λ1, . . . , λn of
A are equal to each other. The following proposition in [17] is very useful.

Proposition 2.1 For any n × n symmetric matrix A, we have

Si jk (A) = Sk−1(A)δi j −
n∑

l=1

Silk−1(A)a jl . (2.7)
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In the following, we write D, D2 and � for the gradient, Hessian and Laplacian on
R
n . We also follow Einstein’s summation convention.

2.2 Hessian Operators

2.2.1 Hessian Operators in Euclidean Space

Let � be an open subset of Rn and let u ∈ C2(�). The k-Hessian operator Sk(D2u)

is defined as the k-th elementary symmetric function of D2u. Notice that

S1(D
2u) = �u and Sn(D

2u) = detD2u. (2.8)

A function u is called k-convex in �, if D2u(x) ∈ �k for any x ∈ �. A direct
computation yields that (S1 jk (D2u), . . . , Snjk (D2u)) is divergence free, that is

∂

∂xi
Si jk (D2u) = 0. (2.9)

By using (2.7), it is easy to see that

Si jk (D2u)uil = Silk (D2u)ui j . (2.10)

2.2.2 Hessian Operators in Hyperbolic Space

Let � be an open subset of Hn and let u ∈ C2(�). The k-Hessian operator Sk[u] is
defined as the k-th elementary symmetric function Sk(D2u−uI ) of D2u−uI . Notice
that

S1[u] = �u − nu and Sn[u] = det(D2u − uI ). (2.11)

A function u is called k-admissible in� if λ(D2u(x)−u(x)I ) ∈ �k for any x ∈ �.
We list the following propositions proven in [8], which will be used in Sect. 4.

Proposition 2.2 Suppose u ∈ C3(�), then

Di (S
i j
k (D2u − uI )) = 0.

Proposition 2.3 Let u ∈ C2(�), then

Si jk (D2u − uI )uil = Silk (D2u − uI )ui j .

2.3 Weingarten Hypersurfaces

LetM be a hypersurface inRn+1, which is locally represented as a graph xn+1 = u(x),
x = (x1, . . . , xn) ∈ �, where � ⊂ R

n . Then ν = (−Du,1)√
1+|Du|2 is the unit outer normal
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of M. Recall that w = √
1 + |Du|2. The first and second fundamental forms can be

respectively expressed as

gi j = δi j + uiu j , and bi j = ui j
w

.

Then, the principal curvatures λ1, . . . , λn of M are the eigenvalues of the second
fundamental form with respect to the first fundamental form i.e. ai j := gikbk j , where
gi j = δi j − ui u j

w2 is the inverse matrix to gi j . Hence

ai j = gikbk j = ui j
w

− uiukuk j
w3 =

(ui
w

)

j
.

We say u is k-admissible if λ(ai j ) ∈ �k .
The following divergence free property is due to Reilly [17].

Proposition 2.4 Suppose u ∈ C3(�), Ai j = (
ui
w

) j . Then,

D j S
i j
k (A) = 0.

For general (non-symmetric) matrices, we need the following formula proved by
Pietra–Gavitone–Xia [5].

Proposition 2.5 For any n × n matrix A = (ai j ), we have

Si jk (A) = Sk−1(A)δi j −
n∑

l=1

Silk−1(A)a jl .

The following proposition can be inferred from above proposition, we omit the
proof.

Proposition 2.6 For any n × n matrix A = (ai j ), we have

Silk (A)a jl = Sl jk (A)ali .

2.4 Minkowskian Integral Formulas

Let � be a C2 bounded domain, and ∂� is the boundary of �. Denote the principle
curvatures of ∂� by κ = (κ1, . . . , κn−1). For 1 ≤ k ≤ n− 1, the k-th curvature of ∂�

is defined as
Hk := Sk(κ).

� is called k-convex, if Hi > 0 for all 1 ≤ i ≤ k. In particular, (n − 1)-convex is
strictly convex, 1-convex is also called mean convex.
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We refer to [10, 11, 19] for Minkowskian integral formula in Rn and Hn . Suppose
� is a bounded C2 domain of Rn , then the Minkowskian integral formula says

∫

∂�

Hk

Ck
n−1

x · γ dσ =
∫

∂�

Hk−1

Ck−1
n−1

dσ. (2.12)

Suppose � is a domain of Hn . Let p ∈ �, r be the distance from p. Let V (x) =
cosh(r(x)). Then the Minkowskian integral formula says

∫

∂�

Hk

Ck
n−1

Vγ dσ =
∫

∂�

Hk−1

Ck−1
n−1

V dσ. (2.13)

2.5 Curvatures of Level Sets

Let u be a smooth function in Rn or Hn , for any regular c ∈ R of u (that is, Du(x) 	=
0 for any x ∈ R

n such that u(x) = c), the level set �c := u−1(c) is a smooth
hypersurface by the implicit function theorem. The k-th order curvature Hk of the
level set �c is given by

Hk−1 = Si jk ui u j

|Du|k+1 , (2.14)

which can be found in [14, 17].
At the last of this section, we introduce some notations. For convenience, we use Sm

and Si jm insteadof Sm(D2u) and Si jm (D2u) in Sect. 3, insteadof insteadof Sm(D2u−uI )
and Si jm (D2u − uI ) in Sect. 4, instead of Sm(D( Du

w
)) and Si jm (D( Du

w
)) in Sect. 5.

3 Overdetermined Problem for Hessian Quotient Equations in
Euclidean Space

In this section, we present a Rellich–Pohozaev type identity for Hessian quotient
equations in Rn with zero Dirichlet boundary condition, and use a P-function to give
a proof of Theorem 1.1.

The following type lemma was proven in [1] for k-Hessian equation, which implies
the solution to overdetermined problem for k-Hessian equation is k-convex. We also
have the following lemma for Hessian quotient equation, which ensures MacLaurin
inequalities (2.4) can be applied.

Lemma 3.1 Let � ⊂ R
n be a bounded C2 domain and u ∈ C2(�) is a solution to

(1.2) with Sl > 0 on �, then u is k-convex in �.
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Remark 3.2 The proof is almost the same as that in [1], except that a key inequality
turns into

0 <
1

Sl
(unnHk−1 + Hk).

So we need Sl > 0 to ensure that unn ≥ − Hk
Hk−1

.

Based on Lemma 3.1, we are able to derive the lemma below, which was proved in
[15]. So we can apply the maximum principle on the P function. For completeness,
we present the proof.

Lemma 3.3 ([15]) Let u ∈ C3(�) be an admissible (i.e. u is k-convex ) solution of

Sk = Ck
n

Cl
n
Sl in � ⊂ R

n, (3.1)

with 0 ≤ l < k ≤ n. Then, the maximum of P := |Du|2 − 2u is attained only on the
boundary ∂� unless P is constant.

Proof Denote by

Fi j := ∂

∂ui j

Sk
Sl

= 1

S2l
(Si jk Sl − Sk S

i j
l ).

By (2.1), we have

Fi j ui j = (k − l)
Sk
Sl

,

Fi j usi us j = 1

S2l

(
(l + 1)Sl+1Sk − (k + 1)Sk+1Sl

)
.

Differentiating the Eq. (3.1), we have

Fi j ui js = 0.

Then, we have

Fi j Pi j = 2Fi j (usi us j + ususi j − ui j )

= 2Fi j usi us j − 2Fi j ui j

= 2Sk
Sl

(
(l + 1)

Sl+1

Sl
− (k + 1)

Sk+1

Sk
− (k − l)

)
. (3.2)

By (2.6) and (3.1), we have

Sl+1/Cl+1
n

Sl/Cl
n

≥
(
Sk/Ck

n

Sl/Cl
n

) 1
k−l = 1, (3.3)

123
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and

Sk+1/Ck+1
n

Sk/Ck
n

≤
(
Sk/Ck

n

Sl/Cl
n

) 1
k−l = 1. (3.4)

That is

(l + 1)
Sl+1

Sl
≥ n − l, (3.5)

and

(k + 1)
Sk+1

Sk
≤ n − k. (3.6)

Plugging (3.5) and (3.6) into (3.2), we obtain

Fi j Pi j ≥ 0.

By maximum principle, the maximum of P is attained on ∂�. 
�
The Rellich–Pohozaev type identity for k-Hessian equation has already been found

[1, 21]. Brandolini–Nitsch–Salani–Trombetti [1] gave the Rellich–Pohozaev type
identity for Sk = f (u) in �, with u = 0 on ∂�,

n − 2k

k(k + 1)

∫

�

Si jk ui u jdx + 1

k + 1

∫

∂�

x · γ |Du|k+1Hk−1dσ = n
∫

�

F(u)dx,

where F(u) =
0∫

u
f (s)ds.

For Hessian quotient equations, we first prove identities for
∫

�

Sku and
∫

�

Slu in

which the bad terms
∫

�

∂s(Sk)xsu and
∫

�

∂s(Sl)xsu arise. By differentiating the Hessian

quotient equation, these two terms can be cancelled. Then we can prove the following
Rellich-Pohozaev type identity.

Lemma 3.4 Let � ⊂ R
n be a bounded C2 domain, 0 ≤ l < k ≤ n. If u ∈ C3(�) ∩

C2(�) is a solution to the problem

{
Sk = Ck

n
Cl
n
Sl in�,

u = 0 on ∂�.
(3.7)

Suppose Sl > 0 on �, then

(n − k + 1)Cl
n

∫

�

Sk−1|Du|2dx − (n − l + 1)Ck
n

∫

�

Sl−1|Du|2dx
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− Cl
n

∫

∂�

Si jk |Du|2xiγ jdσ + Ck
n

∫

∂�

Si jl |Du|2xiγ jdσ − 2(k − l)Cl
n

∫

�

Sku = 0.

(3.8)

Proof By direct computation,

kSku = Si jk ui j = Si jk uisu(xs) j = (
Si jk uisuxs

)

j − xs∂s Sku − Si jk uisu j xs . (3.9)

By (2.10), we have

Si jk uisu j xs = Sisk ui j u j xs = 1

2
Si jk (|Du|2)i x j . (3.10)

Using (2.1) and (2.9), we get

Si jk (|Du|2)i x j = (Si jk |Du|2x j )i − (n − k + 1)Sk−1|Du|2. (3.11)

Putting (3.9), (3.10) and (3.11) together, we find

2xs∂s Sku = (Si jk uisu(|x |2)s) j − (Si jk |Du|2x j )i + (n − k + 1)Sk−1|Du|2 − 2kSku.

(3.12)

Similarly, we obtain

2xs∂s Slu = (Si jl uisu(|x |2)s) j − (Si jl |Du|2x j )i + (n − l + 1)2Sl−1|Du|2 − 2l Slu.

(3.13)

Differentiating the Eq. (3.7), we have

Cl
n∂s Sk = Ck

n∂s Sl . (3.14)

By (3.7), (3.12), (3.13) and (3.14), we obtain

(n − k + 1)Cl
n

∫

�

Sk−1|Du|2dx − (n − l + 1)Ck
n

∫

�

Sl−1|Du|2dx

− Cl
n

∫

∂�

Si jk |Du|2xiγ jdσ + Ck
n

∫

∂�

Si jl |Du|2xiγ jdσ − 2(k − l)Cl
n

∫

�

Sku = 0


�
The following two lemmas in [8] help us to handle with boundary term arise in

(3.8).
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Lemma 3.5 Let � ⊂ R
n be a C2 bounded domain, u ∈ C2(�) satisfies u = 0 and

uγ = 1 and ∂�, then

Si jk x jγi |Du|2 = Si jk ui u j x · γ on ∂�.

Lemma 3.6 Let � ⊂ R
n be a C2 bounded domain, u ∈ C2(�) satisfies u = 0 and

uγ = 1 and ∂�, then

∫

∂�

Si jk ui u j x · γ dσ = (n − k + 1)
∫

�

Sk−1dx .

Proof of Theorem 1.1. By Lemmas 3.4, 3.5 and 3.6, we obtain

2(k − l)Cl
n

∫

�

uSkdx = (n − k + 1)Cl
n

∫

�

Sk−1
(|Du|2 − 1

)
dx

− (n − l + 1)Ck
n

∫

�

Sl−1
(|Du|2 − 1

)
dx,

or equivalently,

2(k − l)
∫

�

(−u)Skdx = (n − k + 1)
∫

�

(
1 − |Du|2)Sk−1

(
1 − l

k

Sl−1/Cl−1
n

Sk−1/C
k−1
n

)
dx .

(3.15)

By (1.2) and (2.3), we have

(
Sk−1/Ck−1

n

Sl−1/C
l−1
n

) 1
k−l ≥

(
Sk/Ck

n

Sl/Cl
n

) 1
k−l = 1 ≥ Sk/Ck

n

Sk−1/C
k−1
n

.

So

Sl−1

Sk−1

(n − l + 1)Ck
n

(n − k + 1)Cl
n

≤ l

k
and Sk ≤ n − k + 1

k
Sk−1. (3.16)

By Lemma 3.3,

1 − |Du|2 ≥ −2u > 0 in �.

Then, substituting (3.16) into (3.15), we get

∫

�

Sk−1(|Du|2 − 2u − 1)dx ≥ 0.

123
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By Lemma 3.3,

P ≤ max
∂�

P = 1.

It follows that

P = |Du|2 − 2u ≡ 1 in �.

Since the derivatives vanish, by (3.2) and (3.3), we obtain

0 ≥ n − k − (k + 1)
Sk+1

Sk
. (3.17)

Hence, Sk+1 > 0 and the equality in (3.4) holds. By (2.3), the eigenvalues of D2u

are equal to 1. Using the boundary condition in (1.2), we derive that u = |x |2−1
2 .

Hence, we complete the proof of Theorem 1.1 
�

4 Overdetermined Problem for Hessian Quotient Equations on the
Hyperbolic Space

In this section, we present a Rellich–Pohozaev type identity for Hessian quotient
equations inHn with zero Dirichlet boundary condition, and use a P-function to give
a proof of Theorem 1.2.

The following lemma can be proved almost the same as [8], which implies the
solution to (1.3) is k-admissible.

Lemma 4.1 Let � ⊂ H
n be a bounded C2 domain and u ∈ C2(�) is a solution to the

problem (1.2) with Sl > 0 on ∂�, then u is k-admissible in �.

P = |Du|2 − u2 − 2u was proven to be a P function for the k-Hessian equation
on Hn in [8]. In the following lemma, we prove it is also a P function for the Hessian
quotient equation on Hn . By the appointment in Sect. 2, we use Sk and Si jk instead of

Sk(D2u − uI ) and Si jk (D2u − uI ) in this section.

Lemma 4.2 Let u ∈ C3(�) be a solution to

Sk = Ck
n

Cl
n
Sl in �, (4.1)

with 0 ≤ l < k ≤ n. Then the maximum of P = |Du|2 − u2 − 2u is attained on ∂�.

Proof Let Fi j = ∂
∂ui j

Sk
Sl
, then

Fi j = 1

S2l

(
Si jk Sl − Sk S

i j
l

)
.
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Let Ai j = ui j − uδi j for short. Then by direct calculations, we have

1

2
Pi j = Asi As j − Ai j + ur Ai j,r + u(Ai j − δi j ).

Contracting with Fi j , we obtain

1

2
Fi j Pi j = Fi j (Asi As j − Ai j + ur Ai j,r + u(Ai j − δi j ))

= Fi j (Asi As j − Ai j ) + (−u)Fi j (δi j − Ai j )

= 1

S2l

(
(S1Sk − (k + 1)Sk+1)Sl − (S1Sl − (l + 1)Sl+1)Sk − (k − l)Sk Sl

)

− u

S2l

(
(n − k + 1)Sk−1Sl − (n − l + 1)Sl−1Sk − (k − l)Sk Sl

)
.

(4.2)

The same argument as in Sect. 3 yields

1

S2l

((
S1Sk − (k + 1)Sk+1

)
Sl − (

S1Sl − (l + 1)Sl+1
)
Sk − (k − l)Sk Sl

)
≥ 0. (4.3)

By (2.3) and (4.1), we have

(
Sk−1/Ck−1

n

Sl/Cl
n

) 1
k−l−1 ≥

(
Sk/Ck

n

Sl/Cl
n

) 1
k−l = 1,

and

(
Sk/Ck

n

Sl−1/C
l−1
n

) 1
k−l−1 ≥

(
Sk/Ck

n

Sl/Cl
n

) 1
k−l = 1.

So

Sk−1

Sl
≥ Ck−1

n

Cl
n

and
Sl−1

Sk
≤ Cl−1

n

Ck
n

. (4.4)

Hence

− u

S2l

(
(n − k + 1)Sk−1Sl − (n − l + 1)Sl−1Sk − (k − l)Sk Sl

)

= (−u)
(
(n − k + 1)

Sk−1

Sl
− (n − l + 1)

Sl−1

Sk

(Ck
n

Cl
n

)2 − (k − l)
Ck
n

Cl
n

)

≥ (−u)
Ck
n

Cl
n

(
(n − k + 1)

Ck−1
n

Ck
n

− (n − l + 1)
Cl−1
n

Ck
n

− (k − l)
)

= 0, (4.5)
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where we use (4.1) in the second line and (4.4) in the third line. Substituting (4.3) and
(4.5) into (4.2), we finally have

Fi j Pi j ≥ 0. (4.6)

By maximum principle, the maximum of P is attained on ∂�. 
�
We will use the following Rellich–Pohozaev type identity.

Lemma 4.3 Let u ∈ C1(�) ∩ C3(�) be a solution of

{
Sk = Ck

n
Cl
n
Sl in�,

u = 0 on ∂�.
(4.7)

Then, there holds

n − k + 1

2
Cl
n

∫

�

Sk−1(|Du|2 − u2)V dx − n − l + 1

2
Ck
n

∫

�

Sl−1
(|Du|2 − u2

)
V dx

− 1

2
Cl
n

∫

∂�

Sisk |Du|2Vsγidσ

+ 1

2
Ck
n

∫

∂�

Sisl |Du|2Vsγidσ − (k − l)Cl
n

∫

�

SkuV dx = 0. (4.8)

Proof Multiplying the equation by uV , we obtain

kSkuV = Si jk (ui j − uδi j )uV = Si jk ui j uV − (n − k + 1)Sk−1u
2V . (4.9)

Since D2V = V I , we have

Si jk ui j uV = Si jk uir uVr j = (Si jk uir uVr ) j − Si jk uir j uVr − Si jk uir u j Vr .

Using uir j = ui jr − urδi j + u jδir = (ui j − uδi j )r + u jδir , we have

Si jk ui j uV = (Si jk uir uVr ) j − Si jk (ui j − uδi j )r uVr − Si jk u j uVi − Si jk uir u j Vr

= (Si jk uir uVr ) j − uVr Dr Sk − Si jk u j uVi − Si jk uir u j Vr . (4.10)

Furthermore, we have

Si jk u j uVi = 1

2
(Si jk u2Vi ) j − 1

2
Si jk u2Vi j = 1

2
(Si jk u2Vi ) j

− n − k + 1

2
Sk−1u

2V . (4.11)
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By Proposition 2.3, we obtain

Si jk uir u j Vr = Sirk ui j u j Vr = 1

2
Si jk (|Du|2)i V j = 1

2
(Si jk |Du|2Vj )i − n − k + 1

2
Sk−1|Du|2V .

(4.12)

Putting (4.9)–(4.12) together, we obtain

uVr Dr Sk = (Si jk uir uVr ) j − 1

2
(Si jk u2Vi ) j − 1

2
(Si jk |Du|2Vi ) j

+ n − k + 1

2
Sk−1(|Du|2 − u2)V − kSkuV . (4.13)

Similarly, we have

uVr Dr Sl = (Si jl uir uVr ) j − 1

2
(Si jl u2Vi ) j − 1

2
(Si jl |Du|2Vi ) j

+ n − l + 1

2
Sl−1(|Du|2 − u2)V − l SluV . (4.14)

By (4.7), we have

Cl
nDr Sk = Ck

n Dr Sl . (4.15)

Substituting (4.13) and (4.14) into (4.15), we have

Cl
n

(
(Si jk uir uVr ) j − 1

2

(
Si jk u2Vi

)

j − 1

2
(Si jk |Du|2Vi ) j

+ n − k + 1

2
Sk−1(|Du|2 − u2)V − kSkuV

)

= Ck
n

(
(Si jl uir uVr ) j − 1

2
(Si jl u2Vi ) j − 1

2
(Si jl |Du|2Vi ) j

+ n − l + 1

2
Sl−1(|Du|2 − u2)V − l SluV

)
. (4.16)

Integrating the above on � and use (4.7), we finally obtain (4.8), thus finish the
proof. 
�

The following two lemmas are from [8], we use them to deal with the boundary
terms appear in (4.8).

Lemma 4.4 Let u ∈ C2(�) satisfying u = 0 and uγ = 1 on ∂�, then

Si jk Vjγi |Du|2 = Si jk ui u j Vγ on ∂�.
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Lemma 4.5 Let u ∈ C2(�) satisfying u = 0 and uγ = 1 on ∂�, then

∫

∂�

Si jk ui u j Vγ dσ = (n − k + 1)
∫

�

Sk−1V dx .

Proof of Theorem 1.3. By Lemmas 4.3, 4.4 and 4.5 we obtain

(n − k + 1)Cl
n

∫

�

Sk−1(|Du|2 − u2 − 1)V dx

− (n − l + 1)Ck
n

∫

�

Sl−1
(|Du|2 − u2 − 1

)
V dx

= 2(k − l)Cl
n

∫

�

SkuV dx .

That is

(n − k + 1)
∫

�

Sk−1(|Du|2 − u2 − 1)
(
1 − (n − l + 1)Ck

n Sl−1

(n − k + 1)Cl
nSk−1

)
V dx

= 2(k − l)
∫

�

SkuV dx .

By (2.3) and (4.7), we have

(
Sk−1/Ck−1

n

Sl−1/C
l−1
n

) 1
k−l ≥

(
Sk/Ck

n

Sl/Cl
n

) 1
k−l = 1 ≥ Sk/Ck

n

Sk−1/C
k−1
n

.

So

Sl−1

Sk−1

(n − l + 1)Ck
n

(n − k + 1)Cl
n

≤ l

k
and Sk ≤ n − k + 1

k
Sk−1.

Note that by Lemma 4.2, we have

|Du|2 − u2 − 1 ≤ 2u in �.

So

(n − k + 1)
∫

�

Sk−1(|Du|2 − u2 − 1)
(
1 − (n − l + 1)Ck

n Sl−1

(n − k + 1)Cl
nSk−1

)
V dx

≤ 2(n − k + 1)(k − l)

k

∫

�

Sk−1uV dx .
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On the other hand,

2(k − l)
∫

�

SkuV dx ≥ 2(n − k + 1)(k − l)

k

∫

�

Sk−1uV dx .

So we have

n − k + 1

k
Sk−1 = Sk .

By (2.5), we infer the eigenvalues of D2u − uI are all equal to 1. Follows from an
Obata type result ([18], see also [2–4, 16]), � must be a ball BR and u depends only
on the distance from the center of BR , where R = tanh−1 1. It is easy to see that u is
of the form

u = cosh r

cosh R
− 1.


�

5 Overdetermined Problem for Quotient Curvature Equations

In this section, we present a Rellich–Pohozaev type identity for Hessian quotient
curvature equations with zero Dirichlet boundary condition, and use a P-function to
give a proof of Theorem 1.3.

The following lemma can be proved almost the same as [12], which implies the
solution to (1.4) is k-admissible.

Lemma 5.1 Let � be a C2 bounded domain of Rn and u ∈ C2(�) be a solution to
problem (1.4) with Sl > 0 on ∂�, then u is a k-admissible function in � and � is
(k − 1)-convex.

The following lemma is from [12].

Lemma 5.2 Let � ⊂ R
n be a C2 bounded domain, u ∈ C2(�) satisfies u = 0 and

uγ = 1 on ∂�, then

∫

∂�

Si jk xiγ j

w
dσ = n − k + 1√

2

∫

�

Sk−1dx .

In [12], Jia prove that P = 1
w

+ u is a P function to constant curvature equation

Sk = Ck
n . The following lemma implies it is also a P function for Sk = Ck

n
Cl
n
Sl . As

agreed in Sect. 2, we use Sk and Si jk instead of Sk(D( Du
w

)) and Si jk (D( Du
w

)) in this
section.

Lemma 5.3 Let � be a C2 bounded domain of Rn, u ∈ C2(�) ∩C3(�) be a solution
to problem (1.4), the minimum of 1

w
, −u and P = 1

w
+ u is attained on ∂�.
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Proof Let X = (x, u) ∈ M and en+1 = (0, . . . , 0, 1) ∈ R
n . Choose a local orthogo-

nal frame {e1, . . . .en} on M. The unit normal is N = (−Du,1)
w

. Then we have

1

w
= 〈N , en+1〉, u = 〈X , en+1〉, Xi = ei ,

and

ei j = hi j N , Ni = −hi j e j ,

where hi j is the coefficient of the second fundamental form. Thus

P = 1

w
+ u = 〈N , en+1〉 + 〈X , en+1〉.

By direct computation, we obtain

Pi j = −hi j,r 〈er , en+1〉 − 1

w
himhmj + 1

w
hi j .

Let Fi j = ∂
∂hi j

Sk ({hst })
Sl ({hrq }) , then

Fi j = 1

S2l ({hst })
(
Si jk ({hst })Sl({hst }) − Si jl ({hst })Sk({hst })

)
.

Note that Fi j hi j,r = 0, we have

Fi j Pi j = 1

wS2l ({hst })
(
(Si jk ({hst })Sl({hst }) − Sk({hst })Si jl ({hst }))(hi j − himhmj )

)

= 1

wS2l ({hst })
(
(k − l)Sk({hst })Sl({hst }) + (l + 1)Sl+1({hst })Sk({hst })

− (k + 1)Sk+1({hst })Sl({hst })
)

≤ 0,

where the last inequality can be derived similar as in Sects. 3 and 4. Bymaximum prin-
ciple, the minimum of P is attained on ∂�. The same argument leads the conclusion
for 1

w
and −u. 
�

We prove the following Rellich–Pohozaev identity.

Lemma 5.4 Let � ⊂ R
n be a C2 domain, u ∈ C2(�) ∩ C3(�) be a solution to the

following problem

{
Sk = Ck

n
Cl
n
Sl in�,

u = 0 on ∂�,
(5.1)
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with 0 ≤ l < k ≤ n. Then

Cl
n

∫

∂�

Ssik
xsγi
w

dσ − Ck
n

∫

∂�

Ssil
xsγi
w

dσ − (k − l)Cl
n

∫

�

uSkdx

− (n − k + 1)Cl
n

∫

�

Sk−1

w
+ (n − l + 1)Ck

n

∫

�

Sl−1

w
= 0. (5.2)

Proof By direct computation, we obtain

(
ui
w

)

j
ui = 1

2
w

( |Du|2
w2

)

j
= 1

2
w

(

1 − 1

w2

)

j
= −(

w−1)

i . (5.3)

Multiplying the equation with ku, we obtain

kSku = Si jk

(
ui
w

)

s
(xs) j u =

(

Si jk

(
ui
w

)

s
xsu

)

j
− uxs Ds Sk − Si jk

(
ui
w

)

s
xsu j .

(5.4)

By using (5.3), we obtain

Si jk

(
ui
w

)

s
xsu j = Ssik

(
u j

w

)

i
xsu j = −Ssik (w−1)i xs = −(

Ssik (w−1)xs
)

i + (n − k + 1)Sk−1

w
. (5.5)

Putting (5.4) and (5.5) together, we obtain

uxs Ds Sk =
(

Si jk

(
ui
w

)

s
xsu

)

j
+ (

Ssik
xs
w

)

i − (n − k + 1)
Sk−1

w
− kuSk . (5.6)

Note that from (5.2)

Cl
nDs Sk = Ck

n Ds Sl . (5.7)

By (5.6) and (5.2) we have

Cl
n

((

Si jk

(
ui
w

)

s
xsu

)

j
+ (Ssik

xs
w

)i − (n − k + 1)
Sk−1

w
− kuSk

)

= Ck
n

((

Si jl

(
ui
w

)

s
xsu

)

j
+ (Ssil

xs
w

)i − (n − l + 1)
Sl−1

w
− luSl

)

.

Integrate it on � and use (5.2), we obtain the identity we want. 
�
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Proof of Theorem 1.3. By Lemmas 5.2 and 5.4, we obtain

(n − k + 1)Cl
n

∫

�

Sk−1

(
1√
2

− 1

w

)

dx − (n − l + 1)Ck
n

∫

�

Sl−1

(
1√
2

− 1

w

)

dx

= (k − l)Cl
n

∫

�

uSkdx .

That is

(n − k + 1)
∫

�

Sk−1

(
1√
2

− 1

w

)(

1 − (n − l + 1)Ck
n Sl−1

(n − k + 1)Cl
nSk−1

)

dx = (k − l)
∫

�

uSk .

(5.8)

By (2.3) and (5.1), we have

(
Sk−1/Ck−1

n

Sl−1/C
l−1
n

) 1
k−l ≥

(
Sk/Ck

n

Sl/Cl
n

) 1
k−l = 1 ≥ Sk/Ck

n

Sk−1/C
k−1
n

.

So it follows

Sl−1

Sk−1

(n − l + 1)Ck
n

(n − k + 1)Cl
n

≤ l

k
, (5.9)

and

Sk ≤ n − k + 1

k
Sk−1. (5.10)

Note that by Lemma 5.3, we have

1√
2

− 1

w
≤ u in �. (5.11)

So by (5.9) and (5.11), we obtain

(n − k + 1)
∫

�

Sk−1

(
1√
2

− 1

w

)(

1 − (n − l + 1)Ck
n Sl−1

(n − k + 1)Cl
nSk−1

)

dx

≤ (n − k + 1)(k − l)

k

∫

�

Sk−1udx . (5.12)

On the other hand, by maximum principle, we have u < 0 in�, it follows by (5.10)

(k − l)
∫

�

SkuV dx ≥ 2(n − k + 1)(k − l)

k

∫

�

Sk−1uV dx . (5.13)
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So we have

n − k + 1

k
Sk−1 = Sk .

By (2.5), we infer the eigenvalues of D
( Du

w

)
are all equal to 1. Combining with the

boundary conditions in (1.4), we obtain

u = −
√
1 − |x |2 + 1√

2
,

and � is a ball with radius 1√
2
. 
�
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