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behavior of the solutions). Then we present a trichotomy 
result on the convergence of the solutions as well as its 
criterion: when A|Ω| +

∫
∂Ω cos θ(x)dσ > 0 (resp. = 0, < 0), 

the solution converges as t → ∞ to a translating solution 
with positive speed (resp. stationary solution, a translating 
solution with negative speed).
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1. Introduction

Let Ω be a bounded domain containing the origin in Rn with C3 boundary ∂Ω, and 
let θ(x) be a C2 function over Ω with 0 < θ(x) < π. We consider a mean curvature flow 
in the cylinder Ω ×R with prescribed contact angles θ(x) on ∂Ω ×R:

{
V = H + A on Γt ⊂ Ω ×R,

n · (γ, 0) = cos θ(x) on Γt ∩ (∂Ω ×R),
(1.1)

where Γt (t ≥ 0) is a family of hypersurfaces moving in the cylinder Ω × R, V and H
denote the normal velocity and the mean curvature of Γt, respectively, A is a real number 
denoting a driving force, n denotes the upward unit normal vector to Γt and γ denotes 
the inner unit normal to ∂Ω. Then H = −divn. In the case that Γt is the graph of a 
function y = u(x, t), the problem (1.1) can be converted into the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = aij(Du)Diju + A
√

1 + |Du|2, (x, t) ∈ Ω × [0,∞),
∂u

∂γ
= − cos θ(x)

√
1 + |Du|2, (x, t) ∈ ∂Ω × [0,∞),

∂u0

∂γ
= − cos θ(x)

√
1 + |Du0|2, x ∈ ∂Ω,

(1.2)

where Du = (D1u, · · · , Dnu),

aij(p) := δij −
pipj

1 + |p|2 for p ∈ Rn,

and u0 ∈ C∞(Ω) denotes the initial data. The problem (1.1) or (1.2) describes the 
evolution of the graph of u(·, t) by its mean curvature (together with a driving force A) 
in the normal direction with prescribed contact angle θ on the boundary.

The problem (1.2) without driving force (i.e. A = 0) has been studied by many authors 
since 1980s. To name only a few, Altschuler and Wu [2] considered the case n = 2 and 
proved that when Ω is strictly convex and |DT θ| ≤ min κ(x), where κ(x) denotes the 
curvature of ∂Ω at x, the solution either converges as t → ∞ to a minimal surface (when ∫
∂Ω cos θ(x)dσ = 0), or to a translating solution. For higher dimensional cases, Huisken 

[9] considered the case θ(x) ≡ π
2 , and proved that the solution remains smooth, and 

converges as t → ∞ to a minimal surface. Gao, Ma, Wang and Weng [5] considered 
the problem with nearly vertical contact angle condition and proved that when Ω is 
strictly convex, the solution converges to a translating solution. Recently, Ma, Wang 
and Wei [12] derived the uniform gradient estimates for the problem without the driving 
force and with Neumann boundary condition ∂u

∂γ = φ(x), and proved that when Ω is 
strictly convex, the solution converges to a translating solution. Wang, Wei and Xu [15]
generalized the results in [12] to a kind of general capillarity-type boundary conditions 
which does not include the prescribed contact angle case. In a recent long paper, Giga, 
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Onoue and Takasao [6] even derived a mean curvature flow with an interesting type of 
dynamic boundary conditions by taking limit for the Allen-Cahn equation.

Mean curvature flows with driving forces arise in the fields of geometry analysis (cf. 
[3,4] etc.), and in the singular limit problems for reaction diffusion equations such as 
Allen-Cahn equation (cf. [1,8], where the driving force describes the slight difference 
between two stable phases). The asymptotic behavior for the solutions to such equations 
has also been studied by some authors. For example, in case n = 1, Angenent [3], 
Chou and Zhu [4] studied the shrinking plane curves driven by V = a(n)H + b(n). 
Nara, Ninomiya and Taniguchi [13,14] considered the existence and stability of the V-
shaped translating solutions to V = H +A. Matano, Nakamura and Lou [10,11] studied 
the translating solutions to the same equation in two dimensional periodic or almost 
periodic band domains. In higher dimensional case, Guan [7] considered the following 
general equation

ut = aij(Du)Diju− ψ(u,Du), (x, t) ∈ Ω × [0,∞). (1.3)

He gave time-dependent gradient estimates for the solutions. In the special case where 
ψ(u, p) = ku

√
1 + |p|2 with k > 0, or ψ(u, p) = −n/u with u > 0, he showed that the C1

estimates of the solutions are independent of the time (that is, the solutions are bounded 
ones), and then proved the convergence of such solutions to stationary ones.

In this paper we study the asymptotic behavior for the solutions to (1.2). Note that 
in our problem, the equation involves a driving force term, the cross section Ω of the 
cylinder can be convex or non-convex, and the solutions can be bounded or unbounded.

To study the quasilinear equation in (1.2), a crucial step is to give a priori bounds 
like

‖u‖C(Ω×[0,T ]) ≤ C0(T ), ‖Du‖C(Ω×[0,T ]) ≤ C1(T ).

In many cases, when the C0 bound is dependent on (resp. independent of) T , the gradient 
bound is also dependent on (resp. independent of) T . To guarantee the well-posedness 
on the time interval [0, T ], the time-dependent bounds C0(T ) and C1(T ) are sufficient. 
However, to study the asymptotic behavior for the solutions, one generally needs uniform-
in-time bounds. More precisely, in order to study the convergence of u(x, t) − u(0, t)
(no matter u is bounded or not), one usually establishes the C2+α bounds by using 
the gradient bounds. The important thing is that, to derive a convergence result these 
bounds must be independent of the time, or uniform-in-time. In this sense, we say that 
the uniform-in-time gradient bounds are of special importance in the qualitative study for 
(1.2), which are generally not easy, especially for unbounded solutions in high dimensional 
cylinder with a general cross section. The following theorem gives such a result for the 
problem (1.2).

Theorem 1 (Uniform-in-time gradient bound). Assume Ω ⊂ Rn is a bounded domain 
with ∂Ω ∈ C3, θ(x) ∈ C2(Ω) with 0 < θ(x) < π. Let u be a classical solution to (1.2)



4 Z. Gao et al. / Journal of Functional Analysis 286 (2024) 110283
in the time interval [0, T ) for some T ∈ (0, ∞]. Then there exists a positive number C1
depending only on u0 such that

sup
Ω×[0,T )

|ut| ≤ C1.

Moreover, there exists a positive number C2 independent of t and T such that

sup
Ω×[0,T )

|Du| ≤ C2, (1.4)

if one of the following conditions holds:

(i) n = 2 and the positive curvature κ(x) of ∂Ω satisfies κ(x) > |A| + ‖Dθ‖C(Ω);
(ii) n ≥ 2, Ω is strictly convex and ‖ cos θ‖C2(Ω) � 1;
(iii) n ≥ 2 and |A| � 1.

Remark 1.1. Note that the gradient bound in (1.4) is a uniform-in-time one, which, as 
we have mentioned above, is crucial in the study of the convergence of the solutions. Such 
uniform gradient bounds were also obtained in [2,5,12] etc. for unbounded solutions to 
equations without driving force and in convex cylinders. However, in (iii) of the previous 
theorem, we do not need the convexity for the cylinder. As far as we know, there are 
no relevant results on the uniform gradient bounds for unbounded solutions in non-
convex cylinders. In [7, Theorem 4], Guan considered a general equation (1.3) without 
the convexity assumption for Ω, but the gradient bounds he obtained for unbounded 
solutions are time-dependent ones, which are not applied to the qualitative study for 
unbounded solutions (see (1.4) and the beginning of Section 3 in [7]).

The gradient bound in the above theorem not only guarantees the global well-
posedness, but also helps us to derive the convergence for the solutions. Denote

I := A|Ω| +
∫
∂Ω

cos θ(x)dσ. (1.5)

According to the sign of I, we will prove a trichotomy result on the asymptotic behavior 
of the solutions.

Theorem 2 (Trichotomy and its criterion on the asymptotic behavior). Assume the hy-
potheses in the previous theorem hold.

(i) If I = 0, then the problem (1.2) has a (unique up to a shift) stationary solution V (x). 
Any solution u to (1.2) converges as t → ∞ to this stationary solution (with suitable 
shift);
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(ii) If I > 0, then the problem (1.2) has a (unique up to a shift) translating solution 
Φ(x) + ct with c > 0. Any solution u to the problem (1.2) converges as t → ∞ to this 
translating solution (with suitable shift);

(iii) If I < 0, then the problem (1.2) has a (unique up to a shift) translating solution 
Φ(x) + ct with c < 0. Any solution u to (1.2) converges as t → ∞ to this translating 
solution (with suitable shift).

Remark 1.2. From the above theorems we see that (a) the cross section Ω of the cylinder 
in our problem can be a non-convex one; (b) our equation involves a driving force term 
A; (c) the gradient bounds we obtained are uniform-in-time ones; (d) the trichotomy of 
the asymptotic behavior for the solutions is characterized simply by the sign of I.

The proof of Theorem 1 needs very careful calculations and is rather technical, we 
postpone it to Section 3. In Section 2 we study the asymptotic behavior for the solutions 
to (1.2). In the first subsection we consider bounded solutions and their convergence 
to stationary ones, in the second subsection we consider unbounded solutions and their 
convergence to translating solutions, and finally, in the last subsection we complete the 
proof of Theorem 2.

2. Asymptotic behavior for the solutions to (1.2)

In this section we always assume that the hypotheses in Theorem 1 hold. Then the 
problem (1.2) with any smooth initial data has a classical global solution, which has the 
uniform-in-time gradient bound as in (1.4). We will study the asymptotic behavior for 
such solutions and prove Theorem 2.

Clearly, there are exactly three possibilities for the solutions to (1.2):

(A1) all the global solutions to (1.2) are bounded;
(B1) there is a global solution to (1.2) which is unbounded from above;
(C1) there is a global solution to (1.2) which is unbounded from below.

We will show that these possibilities correspond respectively to the following statements:

(A2) the problem (1.2) has a unique (up to a shift) stationary solution V (x);
(B2) the problem (1.2) has a unique (up to a shift) translating solution Φ(x) + ct with 

c > 0;
(C2) the problem (1.2) has a unique (up to a shift) translating solution Φ(x) + ct with 

c < 0.

Moreover, each possibility can be characterized simply by the sign of I.
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In the first subsection we consider bounded solutions, in the second subsection we 
consider unbounded solutions, and in the last subsection we complete the proof for 
Theorem 2.

2.1. Bounded solutions converge to stationary solutions

We first prove a lemma.

Lemma 2.1. Assume the hypotheses in Theorem 1 hold. If the problem (1.2) has a bounded 
classical solution u, then (1.2) has a unique (up to a shift) stationary solution V (x).

Proof. We first use the Lyapunov functional to derive a quasi-convergence result, that 
is, any ω-limit of u(·, t) is a stationary solution to (1.2). Precisely, for any ψ ∈ H1(Ω), 
define

E[ψ] :=
∫
Ω

(√
1 + |Dψ|2 −Aψ

)
dx +

∫
∂Ω

ψ(x) cos θ(x)dσ.

By our assumption, u is a bounded classical solution to (1.2). So E[u(·, t)] is well-defined 
and bounded from below for all t > 0. A direct calculation shows that

d

dt
E[u(·, t)] = −

∫
Ω

u2
t√

1 + |Du|2
dx ≤ 0.

Using this fact one can show in a standard way that

sup
t≥1

‖u(·, t)‖H2(Ω) ≤ C, lim
t→∞

‖ut(·, t)‖L2(Ω) = 0,

for some C > 0. Thus, u has ω-limits in H1(Ω). Suppose that V (x) is one of them, then

‖u(·, tn) − V (x)‖H1(Ω) → 0, n → ∞

for some time sequence {tn}. Taking t = tn in the following equality

∫
Ω

ut√
1 + |Du|2

ρ(x)dx =
∫
Ω

[
− Dρ ·Du√

1 + |Du|2
+ Aρ

]
dx, ρ ∈ H1

0 (Ω),

and then sending n → ∞ we have

0 =
∫ [

− Dρ ·DV√
1 + |DV |2

+ Aρ

]
dx.
Ω
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This implies that V ∈ H1(Ω) is weak stationary solution. Finally, by the regularity 
theory of elliptic equations, we see that V is actually a classical stationary solution. This 
proves the quasi-convergence result.

We now show the uniqueness (up to a shift) for the stationary solution. By contradic-
tion, we assume that both V1(x) and V2(x) are stationary solutions to (1.2). Since the 
equation as well as the boundary condition in (1.2) is invariant in vertical spatial shift, 
V1(x) + h, for any h ∈ R, is also a stationary solution. Now we take a suitable h such 
that

V2(x) ≤ V1(x) + h, x ∈ Ω,

and the “equality” holds at some point x0 ∈ Ω. Then the maximum principle implies 
that V2(x) ≡ V1(x) + h. This proves the uniqueness. �

For convenience, in the rest of the paper, we denote by V (x) the unique stationary 
solution to (1.2) satisfying V (0) = 0.

Now we can prove the main result for bounded solutions.

Theorem 2.2. Assume the hypotheses in Theorem 1 hold. Then the statements (A1), (A2) 
and (A3) are equivalent, where
(A3) any solution u to (1.2) converges as t → ∞ to a stationary solution.

Moreover, in any of the above cases, I = 0.

Proof. (A1) ⇒ (A2). This is proved in the previous lemma.
(A2) ⇒ (A1). For any initial function u0 we take a large h > 0 such that

V (x) − h ≤ u0(x) ≤ V (x) + h, x ∈ Ω.

By comparison, u(x, t; u0), the solution to (1.2) with initial data u0, remains bounded 
between V + h and V − h. This proves (A1).

(A1) ⇒ (A3). Let u be a bounded solution to (1.2). From the proof of the previous 
lemma we see that any ω-limit of u(·, t) is V (·) + h for some h ∈ R. To prove (A3) we 
only need to show that such h is unique. By contradiction, we assume both V (x) + h1
and V (x) + h2 with h1 < h2 are ω-limits of u(·, t). Then there exists sufficiently large T
such that

‖u(·, T ) − V (·) − h1‖C(Ω) <
h2 − h1

2 .

Hence, u(x, T ) is smaller than the stationary solution V (x) + h1+h2
2 , so is u(x, t) for all 

t > T by comparison. This, however, contradicts the assumption that V (x) + h2 is also 
an ω-limit of u.

(A3) ⇒ (A1). This is obvious.
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Finally, we prove I = 0. Denote by H(V ) and n the mean curvature and the upward 
unit normal vector of the graph of V (x), respectively. Then

n = (−DV, 1)√
1 + |DV |2

and H(V ) = −div(x,y)n = divx
DV√

1 + |DV |2
.

Integrating the equation of V : 0 = H(V ) + A over Ω and using the boundary condition 
in (1.2) we have

0 =
∫
Ω

divx
DV√

1 + |DV |2
dx + A|Ω| = I :=

∫
∂Ω

cos θ(x)dσ + A|Ω|.

This proves the theorem. �
2.2. Unbounded solutions converge to translating solutions

In this subsection we consider the asymptotic behavior for unbounded solutions. Since 
the discussion for solutions unbounded from below is similar as that for solutions un-
bounded from above. We only study the latter case.

Lemma 2.3. Assume the hypotheses in Theorem 1 hold. If the problem (1.2) has a classical 
global solution u which is unbounded from above, then (1.2) has a unique (up to a spatial 
shift) translating solution moving upward.

Proof. We divide the proof into four steps.
Step 1. Convergence to +∞. By Theorem 1, |Du| has a uniform-in-time bound C.
Since u is assumed to be unbounded from above, there exists T > 0 such that

u(x, T ) ≥ u(x, 0) + 1 = u0(x) + 1, x ∈ Ω.

By the comparison principle we have

u(x, t + T ) ≥ u(x, t) + 1, x ∈ Ω, t ≥ 0. (2.1)

In particular, for any positive integer k, we have

u(x, t + kT ) ≥ u(x, t) + k, x ∈ Ω, t ≥ 0.

Together with the boundedness of ut in Theorem 1 we conclude that u actually tends to 
+∞ as t → ∞.

Step 2. Construction of an entire solution. Set

uk(x, t) := u(x, t + kT ) − u(0, kT ), x ∈ Ω, t > −kT. (2.2)
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Then we have

|ukt(x, t)|, |Duk(x, t)| ≤ C, x ∈ Ω, t > −kT, (2.3)

by the a priori bounds in Theorem 1. Thus, for any T1 > 0 and any α ∈ (0, 1), when 
k � 1, by the parabolic theory we have

‖uk‖C2+α,1+α/2(Ω×[−T1,T1]) ≤ C1

for some positive C1 depending on T1 but independent of k. Then, there is a subsequence 
{ukj

} of {uk} and a function U1(x, t) ∈ C2+α,1+α/2(Ω× [−T1, T1]) such that ukj
→ U1 as 

j → ∞ in C2,1(Ω× [−T1, T1]) norm. Using the Cantor’s diagonal argument, we can find a 
subsequence of {ukj

}, denoted it again by {ukj
}, and a function U ∈ C2+α,1+α/2(Ω×R)

such that

ukj
(x, t) → U(x, t) as j → ∞, in the C2,1

loc (Ω ×R) topology.

Clearly, U is an entire solution to (1.2), that is, a solution defined for all t ∈ R. Moreover, 
by (2.3) and (2.1) we have

|Ut(x, t)|, |DU(x, t)| ≤ C and U(x, t + T ) ≥ U(x, t) + 1, x ∈ Ω, t ∈ R. (2.4)

Step 3. Uniqueness (up to a shift) of the entire solution. We show that the entire 
solution U is unique up to a shift in the sense that, for any entire solution W (x, t) to 
(1.2) satisfying similar estimates as in (2.4), there exists a unique l ∈ R such that

W (x, t) ≡ U(x, t) + l. (2.5)

We apply a similar approach as that in [11]. For simplicity, we use the notation 
w1 � w2 if w1(x) ≤ w2(x) and the “equality” holds at some points in Ω. Define

L(t) := max{l ∈ R | U(x, t) + l ≤ W (x, t), x ∈ Ω}

and

D(t) := min{d̄ ∈ R | W (x, t) ≤ U(x, t) + L(t) + d̃, x ∈ Ω}.

Then,

U(x, t) + L(t) � W (x, t) � U(x, t) + L(t) + D(t). (2.6)

Moreover, we have the following properties:
Claims. (1) D(t) ≥ 0 for all t ∈ R;
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(2) if D(t0) = 0 for some t0 ∈ R, then L(t) = L(t0) and D(t) = 0 for all t > t0;
(3) if D(t0) > 0 for some t0 ∈ R, then for all t < t0, L(t) is strictly increasing, 

L(t) + D(t) and D(t) are strictly decreasing. Both D and L are bounded in t < t0.
We only prove the boundedness for L and D in Claim (3) since other conclusions 

follow from the maximum principle easily. Since |DU |, |DW | ≤ C by our assumption, 
we see that the oscillations of U and W are bounded by C · φ(Ω), where φ(Ω) denotes 
the diameter of Ω. Hence, by (2.6) we have

D(t) ≤ 3C · φ(Ω), t ∈ R.

Since L(t) is strictly increasing and D(t) + L(t) is strictly decreasing in t < t0 we have

L(t0) > L(t) > [D(t0) + L(t0)] −D(t) ≥ [D(t0) + L(t0)] − 3C · φ(Ω), t < t0.

This proves the boundedness for L and D. Hence, in case (3) holds, there exist D >

0, L ∈ R such that

D(t) → D, L(t) → L as t → −∞. (2.7)

Clearly, in order to prove (2.5) we only need to show that D(t) ≡ 0. Assume by 
contradiction that D(t0) > 0, then Claim (3) holds. For all x ∈ Ω, t ∈ R and k ∈ N, set

Uk(x, t) := U(x, t− k) − U(0,−k) and Wk(x, t) := W (x, t− k) − U(0,−k).

Since Uk(0, 0) = 0 and Wk(0, 0) ∈ [L(−k), L(−k) +D(−k)] are bounded, we have similar 
C1 bounds for Uk and Wk as above. Hence, we can take limit as k → ∞ (if necessary, 
we take a subsequence) to obtain

Uk → U and Wk → W as k → ∞, in the topology of C2,1
loc (Ω ×R),

for some entire solutions U and W. By (2.6) and (2.7) we then have

U(x, t) + L � W(x, t) � U(x, t) + L + D.

This, however, contradicts Claim (3) for the entire solutions U and W instead of the 
entire solutions U and W . Therefore, D(t) ≡ 0 holds, and so L(t) ≡ l ∈ R. This proves 
(2.5).

In what follows, we use U(x, t) to denote the unique entire solution satisfying the 
normalized condition U(0, 0) = 0. (For, otherwise, we just use U(x, t) −U(0, 0) to replace 
the original U). By the definition we see that uk also satisfies the normalized condition 
uk(0, 0) = 0. Hence, due to the uniqueness of U , the whole sequence {uk} converges to 
U :

uk(x, t) = u(x, t + kT ) − u(0, kT ) → U(x, t), as k → ∞.
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Since T can be any large number by Step 1, we actually have

u(x, t + s) − u(0, s) → U(x, t), as s → ∞, (2.8)

that is, u(x, t) converges to the unique entire solution in a moving frame.
Step 4. The existence and uniqueness of the translating solution. Let U(x, t) be the 

unique entire solution obtained above. Then, for any τ ∈ R, U(x, t + τ) is also an entire 
solution to (1.2). We can regard this solution as W in Step 3 to conclude that, there 
exists a unique l = l(τ) such that U(x, t + τ) ≡ U(x, t) + l(τ). Therefore,

lim
τ→0

l(τ)
τ

= lim
τ→0

U(x, t + τ) − U(x, t)
τ

= c := Ut(x, t).

Hence U(x, t) is nothing but a translating solution with the form Φ(x) + ct for some 
function Φ(x) (Φ satisfies Φ(0) = 0 by the normalized condition). The sign c > 0 can be 
determined directly by the second inequality in (2.4). The uniqueness (up to a spatial 
shift) of this translating solution follows from the uniqueness of the entire solution in 
Step 3. �

Now we prove some equivalent statements for solutions unbounded from above.

Theorem 2.4. Assume the hypotheses in Theorem 1 hold. Then the statements (B1), (B2) 
and (B3) are equivalent, where
(B3) any solution u to (1.2) converges as t → ∞ in a moving frame to an upward moving 
translating solution.

Moreover, in any of the above cases, I > 0.

Proof. (B1) ⇒ (B2). This is proved in the previous lemma.
(B2) ⇒ (B3). Let Φ(x) + ct with Φ(0) = 0, c > 0 be a translating solution. For any 

initial function u0 we take a large h > 0 such that

u0(x) ≥ Φ(x) − h, x ∈ Ω.

By comparison we know that u(x, t; u0) ≥ Φ(x) + ct − h, and so u(x, t; u0) is a solution 
unbounded from above. Using Lemma 2.3 and its proof we see that u converges in a 
moving frame to the translating solution, that is,

u(x, t + s;u0) − u(0, s;u0) → Φ(x) + ct, as s → ∞.

(B3) ⇒ (B1). This is obvious.
Finally, we prove I > 0. The equation for Φ(x) + ct is

c = aij(DΦ)DijΦ + A
√

1 + |DΦ|2,
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or, equivalently,

c√
1 + |DΦ|2

= divx
DΦ√

1 + |DΦ|2
+ A.

Integrating this equation over Ω and using the fact c > 0 and the boundary condition in 
(1.2) we have

0 <

∫
Ω

divx
DΦ√

1 + |DΦ|2
dx + A|Ω| =

∫
∂Ω

cos θ(x)dσ + A|Ω| = I.

This proves the theorem. �
2.3. Proof of Theorem 2

Now we can complete the proof of Theorem 2. Note that the statements (A1), (B1)
and (C1) give all the possible cases and they are independent to each other. When (B1)
holds, it follows from Theorem 2.4 that I > 0. When (C1) holds we have I < 0 in a 
similar way. Therefore, when I = 0, the only possible case is (A1), and so the conclusions 
in Theorem 2 (i) follow from Theorem 2.2. Similarly, when I > 0, only the case (B1) is 
possible and so Theorem 2 (ii) follows from Theorem 2.4. This completes the proof of 
Theorem 2. �
3. A priori bounds

Let u ∈ C3,2(Ω × [0, T ]) be a classical solution to (1.2) in the time interval [0, T ] for 
some T ∈ (0, ∞]. In this section we will derive some a priori bounds for ut and Du. The 
bounds are uniform ones, that is, they are independent of t and T . For simplicity, we use 
the following notations:

ui := Diu, uij := Diju, v :=
√

1 + |Du|2.

In addition, we will follow the Einstein’s sum convention: all the repeated indices denote 
summation from 1 to n.

On the contact angles, we assume θ(x) ∈ C2(Ω) with 0 < θ(x) < π, and so

S0 := max
Ω

| cos θ(x)| < 1. (3.1)

In the first subsection we derive a bound for ut, and in the rest parts we derive the 
bounds for Du, including the case Ω ⊂ R2 being convex in Subsection 3.2, the case 
Ω ⊂ Rn being convex in Subsection 3.3, and the case Ω ⊂ Rn being a general domain in 
Subsection 3.4. Since non-convex results are rarely seen, we give a more detailed proof 
of this situation. In the paper, for convenience, we will use subscript indices to denote 
derivatives for functions and follow the summation convention.
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3.1. A priori bound for ut

Lemma 3.1. Let u ∈ C3,2(Ω × [0, T ]) (for some T > 0) be a solution to (1.2). Then

max
Ω×[0,T ]

|ut| = max
Ω

|ut(·, 0)|.

Proof. Following the method in [2, Lemma 2.2], it suffices to prove the following fact: 
For any fixed T0 ∈ (0, T ], if ut admits a positive local maximum at some point (x0, t0) ∈
Ω × [0, T0], that is,

ut(x0, t0) = max
Ω×[0,T0]

ut ≥ 0,

then t0 = 0.
Suppose by contradiction that t0 > 0. It is easy to calculate that ut satisfies the 

equation

d

dt
ut =aij(ut)ij −

2
v
aijviutj + A

v
ujutj . (3.2)

This implies that ut satisfies the parabolic maximum principle, and so x0 can be taken 
on ∂Ω. Choose the coordinates in Rn such that the positive xn-axis is the interior normal 
direction to ∂Ω at x0. Then at the point (x0, t0),

utk =0, k = 1, . . . , n− 1, (3.3)

and

vt = ukukt

v
= ununt

v
= − cos θ · unt. (3.4)

Differentiating the boundary condition in t, we have

unt(x0, t0) = − cos θ(x0) · vt(x0, t0) = cos2 θ(x0) · unt(x0, t0). (3.5)

Therefore,

unt(x0, t0) =0. (3.6)

This however, contradicts the Hopf lemma at (x0, t0). �
3.2. Uniform |Du|-bounds when Ω ⊂ R2 is convex

Theorem 3.2. Assume Ω ⊂ R2 is a strictly convex bounded domain with C3 boundary 
∂Ω. Let u ∈ C3,2(Ω× [0, T ]) be a solution to the problem (1.2) in the time interval [0, T ]
for some T ∈ (0, ∞]. If the curvature κ(x) of ∂Ω satisfies
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κ(x) − |A| − max
Ω

|Dθ| ≥ δ1,

for some δ1 > 0, then

sup
Ω×[0,T ]

|Du| ≤ C1(Ω, S0, ‖θ‖C1(Ω), δ1, u0).

Proof. We first show that the maximum of |Du|2 is attained on Ω ×{0} or on ∂Ω × [0, T ]. 
A direct calculation shows that

(|Du|2)t =2ukukt. (3.7)

From the first equation in (1.2), we have

2ukutk =2aijuijkuk + 2aijpm
umkuijuk + 2Aukvk

=aij(|Du|2)ij − 2aijuikujk + 2aijpm
umkuijuk + Auk

v
(|Du|2)k,

(3.8)

where

aijpm
=2uiujum

v4 − δimuj + δjmui

v2 . (3.9)

Substituting (3.9) into (3.8) we have

2ukutk =aij(|Du|2)ij − 2aijuikujk − 4
v2 a

ijukjuimumuk + Auk

v
(|Du|2)k

=aij |Du|2ij − 2aijuikujk − 1
v2 a

ij(|Du|2)i(|Du|2)j + Auk

v
(|Du|2)k.

(3.10)

Hence (3.7) becomes

(|Du|2)t =aij |Du|2ij − 2aijuikujk − 1
v2 a

ij(|Du|2)i(|Du|2)j + Auk

v
(|Du|2)k. (3.11)

Since aij is a semi-positive definite matrix, we have aijuikujk ≥ 0. It follows that

(|Du|2)t ≤aij |Du|2ij −
1
v2 a

ij(|Du|2)i(|Du|2)j + Auk

v
(|Du|2)k. (3.12)

Now we can use the maximum principle to conclude that the maximum of |Du|2 is 
attained on Ω × {0} or ∂Ω × [0, T ].

Next we assume that |Du|2 attains its maximum at the point (x0, t0) ∈ ∂Ω × [0, T ]. 
Following the idea of Altschuler and Wu [2], denote the unit inner normal vector and 
the unit tangential vector by N and T , respectively. On ∂Ω, we define aT N = aijTiNj , 
aT T = aijTiTj , aNN = aijNiNj . As did in [2], we can give a smooth extension of N
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and T to a thin neighborhood of ∂Ω. Consider the set of coordinate vectors { ∂
∂r , 

∂
∂θ}, 

∂
∂r is orthogonal to the level sets of the distance function d(x) = dist(x, ∂Ω) such that 
| ∂
∂r |2 = 1 and ∂

∂r |∂Ω= N , ∂
∂θ is taken such that 〈 ∂

∂r , 
∂
∂θ 〉 = 0 and ∂

∂θ |∂Ω= T . Let φ be 
a function such that |φ−1 ∂

∂θ |2 = 1. Now we can extend N and T by { ∂
∂r , φ

−1 ∂
∂θ}. By 

Lemma 2.1 in [2], we have

∇T T =κN , ∇T N = −κT , ∇NT = 0, ∇NN = 0,

uT N =uNT + κuT .
(3.13)

We shall deal with the second order derivatives uNN and uT N . For the term uT N , we 
will use the boundary condition to obtain the following equalities.

uN = − cos θ · v, (3.14)

u2
N = cos2 θ · v2, (3.15)

u2
T = sin2 θ · v2 − 1. (3.16)

Assume, without loss of generality, that |uT (x0, t0)| ≥ 1. Otherwise, by the boundary 
condition we obtain the bound

|Du|2(x0, t0) <
2

1 − S2
0
− 1. (3.17)

Hence, at (x0, t0),

(|Du|2)T = 0 = vT , uNuNT + uT uT T = 0, (3.18)

and

(|Du|2)N ≤ 0, uNuNN + uT uT N ≤ 0. (3.19)

Differentiating the equalities (3.14)-(3.16) in the tangential direction, we have

uNT =sin θθT v − cos θvT , (3.20)

uT N =sin θθT v − cos θvT + κuT , (3.21)

uT T =cos θ sin θθT
v2

uT
+ sin2 θvvT

uT
. (3.22)

In particular, at (x0, t0), by (3.18) we have

uNT = sin θθT v, (3.23)

uT N = sin θθT v + κuT , (3.24)

uT T = cos θ sin θθT
v2

uT
. (3.25)
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For the term uNN , we will rewrite ut in the equation (1.2) under the N , T directions.

∂i =T i∂T + N i∂N ,

∂ij =(T j∂T + N j∂N )(T i∂T + N i∂N )

=T jT i∂T ∂T + T jN i∂T ∂N + N jT i∂N∂T + N jN i∂N∂N + κT jN i∂T − κT jT i∂N .

(3.26)

Since

aT T =aijT iT j = 1 + u2
N

v2 ,

aT N =aijT iN j = −uT uN
v2 ,

aNN =aijN iN j = 1 + u2
T

v2 = sin2 θ,

(3.27)

by (3.23)-(3.25), we can rewrite ut at (x0, t0) as the following.

ut = aijuij + Av

= aT T uT T + aNT uNT + aT NuT N + aNNuNN + κaNT uT − κaT T uN + Av

= aT T uT T + 2aNT uNT + aNNuNN + 2κaNT uT − κaT T uN + Av

= sin2 θuNN + 1 + u2
N

v2 cos θ sin θθT
v2

uT
− 2uT uN

v2 sin θθT v

− 2κuT uN
v2 uT − κ

1 + u2
N

v2 uN + Av

= sin2 θuNN + 2u2
T + 1 + u2

N
uT

cos θ sin θθT + κ
2u2

T + 1 + u2
N

v
cos θ + Av

= sin2 θuNN + u2
T + v2

uT
cos θ sin θθT + κ

u2
T + v2

v
cos θ + Av. (3.28)

Hence, we have

sin2 θuNN =ut −Av − κ cos θ v
2 + u2

T
v

− u2
T + v2

uT
cos θ sin θθT . (3.29)

Multiplying sin2 θ at both sides of (3.19), and using (3.24) and (3.29), we have

0 ≥ uN sin2 θuNN + uT sin2 θuT N

= − cos θv
[
ut −Av − κ cos θ v

2 + u2
T

v
− u2

T + v2

uT
cos θ sin θθT

]
+ uT sin2 θ

[
sin θθT v + κuT

]
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= − cos θutv + A cos θv2 + κ(cos2 θv2 + u2
T ) + sin θθT

v(v2 − 1)
uT

= κ|Du|2 + A cos θv2 − cos θutv + vθT
sin θuT

[
u2
T + cos2 θ

]

≥ (κ− |A cos θ| − |θT |)v2 − |ut|v −
v|θT |
sin θ

− κ. (3.30)

By our assumption κ − |A| − |θT | ≥ δ1 > 0, we obtain

sup
Ω×[0,T ]

|Du| ≤ C1(Ω, S0, ‖θ‖C1(Ω), δ1, u0).

This proves the theorem. �
3.3. Uniform |Du|-bounds when Ω ⊂ Rn is convex

When Ω is a strictly convex smooth domain in high dimensions, we firstly state the 
result as follows.

Theorem 3.3. Assume Ω ⊂ Rn (n ≥ 2) is a strictly convex bounded domain with ∂Ω ∈ C3. 
Let u ∈ C3,2(Ω × [0, T ]) be a solution to the problem (1.2) in the time interval [0, T ] for 
some T ∈ (0, ∞]. If θ ∈ C2(Ω) and

‖ cos θ‖C2(Ω) � 1, (3.31)

then

sup
Ω×[0,T ]

|Du| ≤ C2(n,Ω, u0, ‖ cos θ‖C2(Ω)).

Remark 3.4. The proof of Theorem 3.3 is based on the maximum principle method by 
choosing a suitable auxiliary function. Though many auxiliary functions can be seen to 
get the gradient bound for such problems in the article or the references therein, the key 
point for us is to get the uniform gradient bound (independent of the time t). Ma, Wang 
and Wei in [12] initially gave the uniform gradient bound for Neumann boundary value 
problem, which depends on the strict convexity of the domain Ω. Here we follow the idea 
of [12] by choosing the auxiliary function (slightly different from theirs)

ϕ(x, t) := logw + αh̃,

where w := v − ukh̃k cos θ, α is a positive constant and h̃ is a function defined over Ω. 
As the detailed proof is similar to theirs or can be seen in our arXiv :2210 .16475 version, 
we omit it here.
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3.4. Uniform |Du|-bounds when Ω ⊂ Rn is a general domain

Let Ω be a bounded smooth domain in Rn with ∂Ω ∈ C3. Recall that the distance 
function

d(x) := dist(x, ∂Ω)

is smooth near ∂Ω and Dd = γ on ∂Ω. Moreover, we assume that d is extended to be a 
smooth function over Ω satisfying d ≥ 0 and |Dd| ≤ 1 in Ω.

Our next theorem gives a uniform gradient bound for the solutions to (1.2) when Ω
is not a convex domain. Though its proof is also to use the maximum principle, the 
auxiliary function we will construct is different from the previous one and so the proofs 
are independent of each other. Compared to the convex case, the non-convex one is more 
novel. Hence we will give a more detailed proof in the following.

Theorem 3.5. Assume Ω ⊂ Rn (n ≥ 2) is a bounded domain (does not have to be convex) 
with ∂Ω ∈ C3. Let u ∈ C3,2(Ω × [0, T ]) be a solution to the problem (1.2) in the time 
interval [0, T ] for some T ∈ (0, ∞]. If θ ∈ C2(Ω) and |A| � 1, then

sup
Ω×[0,T ]

|Du| ≤ C3(n,Ω, u0, S0, ‖θ‖C2(Ω)).

Proof. Choosing the auxiliary function

ϕ(x, t) := logw + α0d,

where w := v + ukdk cos θ and α0 is a positive constant to be determined later. We will 
derive the uniform bound for |Du|.

As above, we assume ϕ(x, t) attains its maximum at (x0, t0) ∈ ΩT := Ω × [0, T ], and 
divide the proof into three cases.

Case (i): x0 ∈ ∂Ω.
At (x0, t0), we choose the coordinate in Rn so that the positive xn-axis is the inner 

normal direction to ∂Ω, which is exactly equal to γ. We denote by D′u = (u1, . . . , un−1)
and un the tangential and normal part of Du on the boundary by the choice of the 
coordinate. Let ∂

∂xβ
be the tangential directions, β = 1, · · · , n −1. Let β, η = 1, · · · , n −1

be numbered corresponding to the coordinates of the tangential space.
Then on the boundary ∂Ω,

dβ =0, dn = 1, dβn = 0, dβη = 0, β, η = 1, 2, · · · , n− 1. (3.32)

First by the boundary condition in (1.2), we have

w =v + un cos θ = v sin2 θ, on ∂Ω, (3.33)

u2
n = cot2 θ(1 + |D′u|2), on ∂Ω. (3.34)
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Then at x0 ∈ ∂Ω, by the Hopf lemma and the boundary condition, we can compute 
directly to derive

0 ≥ ϕn =wn

w
+ α0

= 1
w

[
vn + (ukdk)n cos θ + (cos θ)nukdk

]
+ α0

= 1
w

[ukukn

v
+ ukndk cos θ + ukdkn cos θ + un(cos θ)n

]
+ α0

= 1
w

[1
v

n−1∑
β=1

uβuβn + 1
v
ununn + unn cos θ + undnn cos θ + un(cos θ)n

]
+ α0

= 1
w

[1
v

n−1∑
β=1

uβuβn + undnn cos θ + un(cos θ)n
]
+ α0

= 1
w

[1
v

n−1∑
β=1

uβunβ + 1
v

n−1∑
β,η=1

κβηuβuη + undnn cos θ + un(cos θ)n
]
+ α0.

(3.35)

By the definition of w, we obtain

0 =ϕβ = wβ

w
= [v + (ukdk) cos θ]β

w
,

0 =wβ = vβ + unβ cos θ + un(cos θ)β ,
(3.36)

which implies that

vβ = − unβ cos θ − un(cos θ)β . (3.37)

Differentiating the boundary condition un = − cos θv along the tangential directions, 
then

unβ =(− cos θv)β = −(cos θ)βv − cos θvβ . (3.38)

From (3.37), (3.38) and the boundary condition in (1.2), we deduce that

unβ = − csc2 θ(cos θ)βv + un csc2 θ cos θ(cos θ)β = v csc θ(1 + cos2 θ)θβ . (3.39)

Inserting (3.39) into (3.35), we have
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0 ≥ ϕn = 1
w

[
csc θ(1 + cos2 θ)

n−1∑
β=1

uβθβ + 1
v

n−1∑
β,η=1

κβηuβuη

+ undnn cos θ + (cos θ)nun

]
+ α0

=csc θ(1 + cos2 θ)
w

n−1∑
β=1

uβθβ + 1
wv

n−1∑
β,η=1

κβηuβuη − dnn cot2 θ + cot θθn + α0

≥α0 −
2(n− 1)|Du|

w
csc θ‖θ‖C1(∂Ω) − | cot θ||θn| −

1
wv

|κ0||D′u|2 − |dnn| cot2 θ

≥α0 −
(2n− 1)
sin3 θ

‖θ‖C1(∂Ω) −
1
wv

|κ0||D′u|2 − |dnn| cot2 θ

≥α0 −
(2n− 1)
sin3 θ

‖θ‖C1(∂Ω) −
κ0

sin2 θ
− |D2d|

sin2 θ
≥1,

(3.40)

where we have chosen κ0 > 0 satisfying −κ0δβη ≤ κβη ≤ κ0δβη and

α0

2 = 1 + 2n− 1
inf
∂Ω

sin3 θ
‖θ‖C1(∂Ω) + κ0

inf
∂Ω

sin2 θ
+ |D2d|

inf
∂Ω

sin2 θ
.

Therefore, ϕ cannot attain its maximum on ∂Ω.
Case (ii): x0 ∈ Ω and t0 = 0, then we have

ϕ(x, t) ≤ ϕ(x0, 0) = log(
√

1 + |Du0|2 + (u0)kdk cos θ) + α0d ≤ C(n,Ω, u0, S0),

and

sup
Ω×[0,T ]

|Du| ≤ C(n,Ω, u0, S0). (3.41)

Case (iii): x0 ∈ Ω and T ≥ t0 > 0. Then at (x0, t0), we have

0 =ϕi = wi

w
+ α0di,

0 ≤ϕt = wt

w
.

(3.42)

Thus

wi = − α0diw, for 1 ≤ i ≤ n, (3.43)

and
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0 ≥aijϕij − ϕt

= 1
w

(aijwij − wt) −
aijwiwj

w2 + α0a
ijdij

= 1
w

(aijwij − wt) + α0a
ijdij − α2

0a
ijdidj .

(3.44)

At (x0, t0), rotating the coordinate (x1, x2, . . . , xn) such that

|Du| = u1 > 0, and {uαβ}2≤α,β≤n is diagonal.

(If u1(x0, t0) = 0, then the gradient bound is easily to be obtained. As we can see 
∀(x, t) ∈ Ω × (0, T ], ϕ(x, t) ≤ ϕ(x0, t0) = α0d(x0), we have

logw + α0d ≤ α0d(x0), and w ≤ eα0d(x0).

By the definition of w, we observe that (1 − S0)v ≤ w ≤ 2v. So v is bounded.)
Then it follows that at (x0, t0),

a11 = 1
v2 ; aii = 1, for i ≥ 2; aij = 0, for i �= j. (3.45)

By (3.43), for i ≥ 1 we have

−α0diw = wi =vi + ukidk cos θ + (dk cos θ)iuk

=ukuki

v
+ cos θdkuki + u1(d1 cos θ)i

=Skuki + u1(d1 cos θ)i,

(3.46)

where we set

Sk := uk

v
+ cos θdk, 1 ≤ k ≤ n. (3.47)

Then, by (3.46) we have

Skuki = − u1(d1 cos θ)i − wα0di. (3.48)

For i = 1, it follows that

Skuk1 = − u1(d1 cos θ)1 − wα0d1, (3.49)

and for i ≥ 2, we replace i by β ≥ 2 to obtain

Skukβ = − u1(d1 cos θ)β − wα0dβ , (3.50)

S1u1β = − Sβuββ − u1(d1 cos θ)β − wα0dβ . (3.51)
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Next we shall calculate 1
w (aijwij − wt). Firstly we differentiate w to obtain

wi =ukuki

v
+ ukidk cos θ + uk(dk cos θ)i = Skuki + uk(dk cos θ)i,

wt =ukukt

v
+ cos θdkukt = Skukt,

(3.52)

and

wij =Skukij

v
+ ukiukj

v
− ukukiumumj

v3 + ukj(dk cos θ)i + uki(dk cos θ)j + uk(dk cos θ)ij

=Skukij + ukiukj

v
− u2

1u1iu1j

v3 + ukj(dk cos θ)i + uki(dk cos θ)j + u1(d1 cos θ)ij .

(3.53)

Thus from (3.52) and (3.53) we have

aijwij − wt =Sk(aijuijk − ukt) + aijukiukj

v
− u2

1
v3 a

iju1iu1j

+ 2aij(dk cos θ)iukj + u1a
ij(d1 cos θ)ij .

(3.54)

Since

aijuij + Av = ut, (3.55)

we have

u11

v2 = −
n∑

β=2

uββ + ut −Av. (3.56)

Differentiating (3.55) in xk for k ≥ 1, we have

aijuijk − utk = − aijpm
umkuij −

Au1

v
u1k. (3.57)

Therefore, by (3.9), (3.57) becomes

aijuijk − utk = 2
v2 a

ijukjuimum − Au1

v
u1k

=2u1

v2 aijukju1i −
Au1

v
u1k.

(3.58)

Inserting (3.58) into (3.54), we have

aijwij − wt =2u1

v2 aijSkukju1i + aijukiukj

v
− u2

1
v3 a

iju1iu1j + 2aij(dk cos θ)iukj

− Au1
Skuk1 + u1a

ij(d1 cos θ)ij .
(3.59)
v
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By (3.48), (3.51) and (3.55), we have

aijwij − wt =1
v

n∑
β=2

u2
ββ + 2

n∑
β=2

(dβ cos θ)βuββ − Au1

v
Skuk1 + u1a

ij(d1 cos θ)ij

+ 2
v3

n∑
β=2

u2
1β + 2

n∑
β=2

[
(d1 cos θ)β + (dβ cos θ)1

v2

]
u1β

+ 1
v
(u11

v2 )2 +
[2u1

v2 Skuk1 + 2(d1 cos θ)1
]u11

v2 + 2u1

v2

n∑
β=2

Skukβu1β .

(3.60)

In the following, we need to calculate the last three formulas in (3.60). By (3.56), (3.51)
and (3.49), we have

1
v
(u11

v2 )2 +
[2u1

v2 Skuk1 + 2(d1 cos θ)1
]u11

v2 + 2u1

v2

n∑
β=2

Skukβu1β

=1
v

[ n∑
β=2

uββ + Av − ut

]2 +
[2u1

v2 Skuk1 + 2(d1 cos θ)1
][
ut −Av −

n∑
β=2

uββ

]

− 2u1

v2

n∑
β=2

[
u1(d1 cos θ)β + wα0dβ

]
u1β

=1
v

[ n∑
β=2

uββ

]2 +
[
2A− 2ut

v
+ 2u1w

v2 α0d1 −
2
v2 (d1 cos θ)1

] n∑
β=2

uββ

+ 2α0u1w

S1v2

n∑
β=2

dβSβuββ − 2u2
1

v2

n∑
β=2

(d1 cos θ)βu1β

+
[ 2
v2 (d1 cos θ)1 −

2u1w

v2 α0d1
][
ut −Av

]
+ 1

v

[
Av − ut

]2
+ 2α0u1w

S1v2

n∑
β=2

dβ
[
u1(d1 cos θ)β + wα0dβ

]
.

(3.61)

Inserting (3.61) into (3.60), we have

aijwij − wt = 1
v

[ n∑
β=2

uββ

]2 + 1
v

n∑
β=2

u2
ββ + 2

n∑
β=2

[
(dβ cos θ)β + α0u1w

S1v2 dβSβ

]
uββ

+
[
2A− 2ut

v
+ 2u1w

v2 α0d1 −
2
v2 (d1 cos θ)1

] n∑
β=2

uββ

+ 2
v3

n∑
u2

1β + 2
v2

n∑[
(dβ cos θ)1 + (d1 cos θ)β

]
u1β + 1

v

[
Av − ut

]2

β=2 β=2
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+
[ 2
v2 (d1 cos θ)1 −

2u1w

v2 α0d1
][
ut −Av

]
+ Au1

v

[
u1(d1 cos θ)1 + wα0d1

]

+ 2α0u1w

S1v2

n∑
β=2

dβ
[
u1(d1 cos θ)β + wα0dβ

]
+ u1a

ij(d1 cos θ)ij . (3.62)

Then inserting (3.62) into (3.44), we have

0 ≥aijϕij − ϕt

≥ 1
w

{
1
v

[ n∑
β=2

uββ

]2 + 1
v

n∑
β=2

u2
ββ + 2

n∑
β=2

[
(dβ cos θ)β + α0u1w

S1v2 dβSβ

]
uββ

+
[
2A− 2ut

v
+ 2u1w

v2 α0d1 −
2
v2 (d1 cos θ)1

] n∑
β=2

uββ + 2
v3

n∑
β=2

u2
1β

+ 2
v2

n∑
β=2

[
(dβ cos θ)1 + (d1 cos θ)β

]
u1β + 1

v

[
Av − ut

]2

+
[ 2
v2 (d1 cos θ)1 −

2u1w

v2 α0d1
][
ut −Av

]
+ Au1

v

[
u1(d1 cos θ)1 + wα0d1

]
+ 2α0u1w

S1v2

n∑
β=2

dβ
[
u1(d1 cos θ)β + wα0dβ

]
+ u1a

ij(d1 cos θ)ij + α0wa
ijdij

− α2
0wa

ijdidj

}

:= 1
w

{
I + II + III

}
,

(3.63)

where

I :=1
v

[ n∑
β=2

uββ

]2 + 1
v

n∑
β=2

u2
ββ + 2

n∑
β=2

bβuββ , (3.64)

and

bβ =
[
A− ut

v
+ u1w

v2 α0d1 −
1
v2 (d1 cos θ)1

]
+
[
(dβ cos θ)β + α0u1w

S1v2 dβSβ

]
; (3.65)

II := 2
v3

n∑
β=2

u2
1β + 2

v2

n∑
β=2

[
(dβ cos θ)1 + (d1 cos θ)β

]
u1β

≥− 1
2v

n∑
β=2

[(dβ cos θ)1 + (d1 cos θ)β ]2

≥− C(n, |D2d|, ‖θ‖ 2 )v−1;

(3.66)
C (Ω)
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and

III :=1
v

[
Av − ut

]2 +
[ 2
v2 (d1 cos θ)1 −

2u1w

v2 α0d1
][
ut −Av

]
+ Au1

v

[
u1(d1 cos θ)1 − wα0d1

]
+ 2α0u1w

S1v2

n∑
β=2

dβ
[
u1(d1 cos θ)β + wα0dβ

]
+ u1a

ij(d1 cos θ)ij + α0wa
ijdij − α2

0wa
ijdidj

≥1
v

[
Av − ut

]2 +
[ 2
v2 (d1 cos θ)1 −

2u1w

v2 α0d1
][
ut −Av

]
+ Au1

v

[
u1(d1 cos θ)1 + wα0d1

]
− C(n, S0, |D3d|, ‖θ‖C2(Ω))v

≥A2v + A
[u2

1 − 2
v

(d1 cos θ)1 + 3u1w

v
α0d1 − 2ut

]
− C(n, S0, u0, |D3d|, ‖θ‖C2(Ω))v.

(3.67)

Next we will estimate the term I. It is easy to see that I is a quadratic polynomial of 
uββ , 2 ≤ β ≤ n. We will calculate the minimum of I. Consider the function Ĩ : Rn−1 →
R defined by

Ĩ(p) = 1
v

( n∑
i=2

pi
)2 + 1

v

n∑
i=2

p2
i + 2

n∑
i=2

bipi, p = (p2, · · · , pn) ∈ Rn−1. (3.68)

At the minimum point of I, we have

0 = ∂Ĩ

∂pi
= 2

v

n∑
j=2

pj + 2
v
pi + 2bi, 2 ≤ i ≤ n. (3.69)

It follows that

n∑
j=2

pj = − v

n

n∑
j=2

bj , (3.70)

pi = −
n∑

j=2
pj − vbi = v

n

n∑
j=2

bj − vbi, 2 ≤ i ≤ n. (3.71)

So inserting (3.70) and (3.71) into (3.68), we have

Ĩmin =1
v

[ v
n

n∑
β=2

bβ
]2 + 1

v

n∑
β=2

[ v
n

n∑
β=2

bβ − vbβ
]2 +

n∑
β=2

2bβ
[ v
n

n∑
β=2

bβ − vbβ
]

= v

n

[ n∑
bβ
]2 − v

n∑
b2β .

(3.72)
β=2 β=2
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From (3.65), we have

n∑
β=2

bβ =(n− 1)
[
A− ut

v
+ u1w

v2 α0d1 −
(d1 cos θ)1

v2

]

+
[ n∑
β=2

(dβ cos θ)β + α0u1w

S1v2

n∑
β=2

dβSβ

]
.

(3.73)

Then combining (3.65), (3.73) and (3.72), it follows that

Imin = − (n− 1)v
n

[A− ut

v
+ u1w

v2 α0d1 −
1
v2 (d1 cos θ)1]2

− 2v
n

[A− ut

v
+ u1w

v2 α0d1 −
1
v2 (d1 cos θ)1]

n∑
β=2

[(dβ cos θ)β + α0u1w

S1v2 dβSβ ]

+ v

n
[

n∑
β=2

(
(dβ cos θ)β + α0u1w

S1v2 dβSβ

)
]2 − v

n∑
β=2

[(dβ cos θ)β + α0u1w

S1v2 dβSβ ]2

≥− (n− 1)v
n

A2 − 2A(n− 1)v
n

[u1w

v2 α0d1 −
1
v2 (d1 cos θ)1 −

ut

v

]
− 2Av

n

n∑
β=2

[
(dβ cos θ)β + α0u1w

S1v2 dβSβ

]
− C(n, u0, S0, |D2d|, ‖θ‖C2(Ω))v.

(3.74)

Inserting (3.74), (3.66) and (3.67) into (3.63), we have

0 ≥ aijϕij − ϕt

≥ 1
w

{
− (n− 1)v

n
A2 − 2A(n− 1)v

n

[u1w

v2 α0d1 −
1
v2 (d1 cos θ)1 −

ut

v

]

− 2Av

n

n∑
β=2

[
(dβ cos θ)β + α0u1w

S1v2 dβSβ

]
+ A2v

+ A
[u2

1 − 2
v

(d1 cos θ)1 + u1w

v
α0d1 − 2ut

]
− C(n, u0, S0, |D3d|, ‖θ‖C2(Ω))v − C(n, |D2d|, ‖θ‖C2(Ω))v

−1
}

≥ 1
w

{
A2v

n
− 2Av

n

n∑
β=2

[
(dβ cos θ)β + α0u1w

S1v2 dβSβ

]

+ A
[
(u

2
1
v

− 2
nv

)(d1 cos θ)1 + n + 2
n

u1w

v
α0d1 −

2
n
ut

]
− C(n, u0, S0, |D3d|, ‖θ‖C2(Ω))v − C(n, |D2d|, ‖θ‖C2(Ω))v

−1
}
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≥ 1
w

{
A2v

2n − C7(n, u0, S0, |D3d|, ‖θ‖C2(Ω))v − C8(n, |D2d|, ‖θ‖C2(Ω))
}

≥ 1
w

{
A2v

4n − C9(n, |D2d|, ‖θ‖C2(Ω))
}
, (3.75)

where we have chosen A
2

4n = C7(n, u0, S0, |D3d|, ‖θ‖C2(Ω)) and have used the inequality 
(1 − S0)v ≤ w ≤ 2v. Thus we obtain the gradient bound.

Thus we complete the proof of Theorem 3.5. �
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