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1 Introduction

Let u be a real C? function in C" and A = (A, ...,A,) be the eigenvalues of the complex Hessian (%), the
)

complex k-Hessian operator is defined by

Hw= Y A A, (1.1)

1<ij<---k<n
where 1 < k < n. Using the operators d = 9 + 0 and d° = +/-1(d — 9), such that dd® = 24/-130, one obtains
(ddw* A wk = 4k!(n - k)!Hi(u)dA,

where w = dd|z|? is the fundamental Kihler form and dA is the volume form. When k = 1, Hy(u) = %Au.
When k = n, Hy(u) = detuy is the complex Monge-Ampére operator.

Let Q be a bounded smooth domain in C", the Dirichlet problem for the complex k-Hessian equation is
as follows:

{Hk(u) -f inQ, 12

u=¢ on 0Q,

where f and ¢ are given smooth functions. When k = 1, the k-Hessian equation is the Poisson equation.
When k = n, it is the well-known complex Monge-Ampére equation.
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1.1 Some previous results

We briefly give some studies on the Dirichlet problem for the k-Hessian equation and the complex
k-Hessian equation in the nondegenerate case, i.e., f> 0, and in the degenerate cases, i.e., f> 0.
In general, the k-Hessian equation (the complex k-Hessian equation) is a fully nonlinear equation.

1.1.1 Results on bounded domains

For the k-Hessian equation in R", if f > 0, Caffarelli et al. [7] solved the Dirichlet problem in a bounded
(k = 1)-convex domain. Guan [13] solved the Dirichlet problem by only assuming the existence of a sub-
solution. For the complex k-Hessian equation in C", Li [30] solved (1.2) in a bounded (k — 1)-pseudoconvex
domain.

There are lots of studies on the Dirichlet problem in bounded domains in R" of degenerate fully nonlinear
equations. Caffarelli et al. [8] showed the Cb! regularity of the homogeneous Monge-Ampére equation, i.e.,
f=0.If fir € C¥, Guan et al. [20] proved the optimal C1! regularity result due to the counterexample by
Wang [36]. The k-Hessian equation case was proved by Krylov [23,24] and Ivochina et al. [22] by assuming
fx € C¥1. Dong [11] proved the C!! regularity for some degenerate mixed-type Hessian equations.

For the Dirichlet problem of the degenerate complex Monge-Ampére equation, Lempert [25] showed
that (ddu)" = 0 in a punched strictly convex domain Q\{z} with logarithm growth near z admits a unique
real analytic solution. Zeriahi [39] studied the viscosity solution to the Dirichlet problem of degenerate
complex Monge-Ampére equation.

1.1.2 Results on unbounded domains

There are lots of results on the exterior Dirichlet problem for viscosity solutions of nondegenerate fully
nonlinear equations. The C° viscosity solution for the Monge-Ampére equation: detD?u = 1 with prescribed
asymptotic behavior at infinity was obtained by Caffarelli and Li [6]. The k-Hessian equation case was
showed by Bao et al. [4]. For the related results on other types of nondegenerate fully nonlinear equations,
one can see [3,27,28,31].

The global Ck+2 regularity of the homogeneous Monge-Ampére equation in a strip region was proved
by Li and Wang [29] by assuming that the boundary functions are locally uniformly convex and C*%. They
showed that the uniform convexity of the boundary functions is necessary.

For1<k< g, the CV! regularity of the Dirichlet problem for the homogeneous k-Hessian equation in

R™ Q was proved by Xiao [38] by assuming that the domain Q is (k — 1)-convex and star-shaped. For
1 < k < n, Ma and Zhang [33] proved the C! regularity of the k-Hessian equation when Q is convex and
strictly (k — 1) convex. The prescribed asymptotic behavior is log|x| + O(1) if k = % and [x[*"k + O(1) ifk > 2.

1.2 Motivation

Our research is motivated by the study of regularity of extremal function. For the smoothly strictly convex
domain Q, Lempert [26] proved the pluricomplex Green function in C"\Q is smooth (analytic). In [17,18],
Guan proved the C%! regularity of the solution to the homogeneous complex Monge-Ampére equation in a
ring domain. Then, he solved a conjecture of Chern-Levine-Nirenberg on the extended intrinsic norms. For
the smoothly strongly pseudoconvex domain Q, Guan [15] proved the C%! regularity and decay estimates of
pluricomplex Green function in C"\Q by considering the exterior Dirichlet problem for the homogeneous
complex Monge-Ampére equation.
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Another motivation is on the proof of geometric inequalities by considering the exterior problems of
certain elliptic partial differential equations. When Q is (k — 1)-convex and star-shaped, Guan and Li [19]
proved Alexandrov-Fenchel inequalities by the inverse curvature flows. If Q is k-convex, Chang and Wang
[9] and Qiu [34] proved Alexandrov-Fenchel inequalities by the optimal transport method. Whether Alex-
androv-Fenchel inequalities hold for (k — 1)-convex domain is still open. Recently, Agostiniani and Maz-
zieri [2] proved some geometric inequalities, such as Willmore inequality by considering the exterior
Dirichlet problem of the Laplace equation. Fogagnolo et al. [12] showed the volumetric Minkowski
inequality by considering the exterior Dirichlet problem of the p-Laplacian equation. Agostiniani et al. [1]
removed the convexity assumption in [12] for the domain.

1.3 Our main result

In this article, we consider the following exterior Dirichlet problem for the complex k-Hessian equation.
For 1 < k < n, since the Green function in this case is —|z |*~¥, we consider the k-Hessian equation as
follows:

(ddw* Aw™k=0 in Q= C"\Q,
u=-1 on 9Q, (1.3)
u(iz) - 0 as |z| — oo.

Theorem 1.1. Assume1 < k < n. Let Q be a smoothly strongly pseudoconvex domain in C" such that 0 € Q and
Q is holomorphically convex in ball centered at 0. There exists a unique k-subharmonic solutionu € C%(Q°) of
equation (1.3). Moreover, there exists uniform constant C such that, for any z € QF, the following holds

CYz¥ < —u(z) < Clz]* %,
IDul(z) < Clz'- ¥,

Au(z) < Clz[ %,

[Du]corgey < C.

(1.4)

Here, the k-subharmonic function is defined in Section 2 and we use the notation Q¢ = C™\ Q. Letry be
the constant such that B, cc Q and R, and S, be constants such that Q is holomorphically convex in Bg,
and Q cc Bg, cc Bs,, where B, , Bg,, and Bg, are balls centered at 0 with radius ry, Ry, and Sy, respectively.

To prove Theorem 1.1, we consider the following approximating equation:

Hw®) =f*  in QF,
ué = -1 on 0Q,
ué(z) - 0 as |z| — oo,

where f€ = ¢, €%(1 + )" (x> + £?)™! (see Section 4).

u? will be obtained by approximating solutions u&® defined on bounded domains: X := Bz\Q (see
Section 4). The existence and uniqueness of the smooth k-subharmonic solution of u®® follows from Li
[30] if we can construct a subsolution. The key point is to establish the uniform C? estimates for u®~.

In Section 2, we give some preliminaries. In Section 3, we solve the Dirichlet problem of the degenerate
complex k-Hessian equation in a ring domain. Section 4 is the main part of this article. We show a uniform
CU1 estimate of the solution which is the limit of the solutions of the nondegenerate complex k-Hessian
equation. The key ingredient is to establish uniform gradient estimates and uniform second-order esti-
mates. We use the idea of Hou et al. [21] (see also the real case by Chou and Wang [10]) to establish uniform
second-order estimates. Theorem 1.1 will be proved in Section 5.
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2 Preliminaries
2.1 k-Subharmonic solutions

In this section, we provide the definition of k-subharmonic functions and definition of k-subharmonic
solutions.
The I-cone is defined by

= eRIS;A) >0, 1<i<kh 1)

Recall Sy(A) = Zlg.l <_“<ikgn/1,‘1 -+ Ay, and Si(4) = 6if%jj'iikAil j, -+ Ayj,» Where 6ifl_jf'l-£k is the Kronecker symbol,
which has the value +1 (respectively, -1) if i, i, --- i are distinct and (j, j, -:- ji) is an even permutation
(respectively, an odd permutation) of (iji, --- i) and has the value 0 in any other cases. We use the con-
vention that So(A) = 1. It is clear that Si(A) = Sx(A(A)), where A(A) are the eigenvalues of A.

1
One can find the concavity property of Sk in [7].
1
Lemma 2.1. S,Z‘ is a concave function in Iy. In particular, 1ogSy is concave in Iy.
The following facts about elementary symmetric polynomials are useful in proving gradient estimates.

Proposition 2.2. We have the following two inequalities:
(a) If A € Iy, then

SN | k+1 n-k

> Sr1(AD);
SAD >k no koo dd
(b) If A € Iy, then
SD - In-Kg o,
Sl - kn—1

Proof. Since A € [, we have S;_;(A]i) > 0. The first inequality follows from Newton inequality. Now,
we prove (b). Since A € I}, we have S(Ali) >0, Vh=0,1,..., k — 1. If S;(A]i) < 0, (b) holds naturally.
If Sx(Ali) > 0, the second inequality follows from the generalized Newton-MacLaurin inequality. O

The following two propositions enable us to adopt a case-wise argument to deal with the third-order
terms as in [10] and [21].

Proposition 2.3. Let A = (A;,...,A,) € Iy, and Ay > Ay>---= A,. Then, there exists 6 = 6(n, k) > 0 such that
Sk-1(Alk) = OASk_2(A1k),
from which it follows

Sk—l(/ui) > 9/11A2 Ak—ly Vi > k. (2.2)

The following proposition was proven in [10]. In [21], Hou et al. provided a sharp constant § = % in (2.3).

Proposition 2.4. Let A = (Ay,...,A,) € Ty, and Ay = A, >---> A,. Then, there exists § = 8(n, k) > O such that
MSi-1(A]i) = 6Sk(A). (2.3)
Moreover, for any 6 € (0, 1), there exists K > 0 such that if
ScA) <KAF or Al <KA foranyi=k+1,k+2,...,n,
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we have
ASi-1(AD) = (A - 8)S (D). (2.4)

One can see the Lecture notes by Wang [37] for more properties of the k-Hessian operator and the study
of Blocki [5] for those of the complex k-Hessian operator. We follow the definition by Blocki [5] to give the
definition of k-subharmonic functions.

Definition 2.5. Let a be a real (1, 1)-form in U, a domain of C". We say that a is k-positive in U if the
following inequalities hold:

dAwT20, Vji=1,..,k
Definition 2.6. Let U be a domain in C".

(1) A functionu : U —» R U {-o0} is called k-subharmonic if it is subharmonic, and for all k-positive real
@1, 1)-form ay, ..., ay_1 in U,

ddunag A - A A wK > 0.
The class of all k-subharmonic functions in U will be denoted by SH(U).
(2) A function u € C3(U) is called k-subharmonic (strictly k-subharmonic) if A(00u) € Ty (A (3du) € I).

Ifu € SH(U) n C(U), (ddu)* A w"* is well defined in pluripotential theory by Blocki [5]. We need the
following comparison principle by Blocki [5] to prove the uniqueness of the continuous solution of the
problem (1.3).

Lemma 2.7. Let U be a bounded domain in C", u, v € SH(U) n C(U) satisfy

k —k k -k
{(ddcu) AW 2 (ddV) AW in U, (2.5)

u<v on oU.

Then,u <vinU.

2.2 The existence of the subsolution
Definition 2.8. p is called a defining function of C! domain U, if U = {z : p(z) < 0} and |Dp| # 0 on dU.

Definition 2.9. A C?> domain U is called pseudoconvex (strictly pseudoconvex) if it is Levi pseudoconvex
(strictly Levi pseudoconvex). That is, for a C2 defining function of U defined in a neighborhood of U, the Levi
form at every point z € oU defined by

L) = —— 5 9P ge gerr
00z Dp(@)| 5% dzjoz oz

is nonnegative (positive). hTaU,z ={&e C"|Zj%¢’j = 0} is the holomorphic tangent space to oU at z.
/)

Definition 2.10. A C?> domain U is called k-pseudoconvex (strictly k-pseudoconvex) if for a C? defining
function of U defined in a neighborhood of U,

2
A{ 9 p_ } e I} (eI), Vz e dU,
aziazj 1<i,j<n-1

where (z1,...,2,_1) is @ holomorphic coordinate system of hTaU,z near z.
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We need the following lemmas by Guan [17] to construct the subsolution of the k-Hessian equation in a ring.

Lemma 2.11. Suppose that U is a bounded smooth domain in C". For h, g € C™(U), m > 2, for all § > 0, there
exists H € C™(U) such that
(1) H > max{h, g} and

_[h@), i h) - 5@ > 6,
e = {g(z>, if 82) - ) > 5

(2) There exists |t(z)| < 1 such that

1+t 1-t
{H ()} > { +2(Z)gii N 2(Z)

h,-;}, for all z € {|g — h| < 6}.

By Lemma 2.1, we see H is k-subharmonic if h and g are both k-subharmonic.
The following lemma was proved by Guan [17].

Lemma 2.12. Let Qq and Q; be smooth, strongly pseudoconvex domain in R™ with Q; cc Qq. Assume that Q, is
holomorphically convex in Q. Then, there exists a strictly plurisubharmonic function u € C®°(Q) with
Q = Qo\Q; satisfying

Hi(u) = &, in Q,
u=1p, near 0Q, (2.6)
u=1+Kp,, near 0Qo,

where p, and p, are defining functions of Qg and Q, and T and K are uniform constants.
In [17], Guan considered the Dirichlet problem of homogeneous complex Monge-Ampére equation in a

smooth ring as follows:

(ddcu)" =0 in Q= Qo\ﬁl,
u=0 on 0Q, 2.7)
u=1 on 90Q.

Guan [17] proved the following.

Theorem 2.13. Let Q, and Q; be smooth, strongly pseudoconvex domains and assume that Q, is holomor-
phically convex in Qq. There exists a unique solution u € C>'(Q) of equation (2.7).

3 The Dirichlet problem for the homogeneous complex k-Hessian
equations in the ring in C"

In this section, we consider the Dirichlet problem of the homogeneous complex k-Hessian equation in a
smooth ring as follows:

(ddw* Aw k=0, in Q= Qy\Qy,
u=0, on 9Q, (3.1
u=1, on 90Q.
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We assume that Q; cc Qg are smooth, strongly pseudoconvex domains and Q, is holomorphically convex in
Qp. Using Lemma 2.12, there exists a smooth, strictly plurisubharmonic subsolution u satisfying

Hk(l_'l) > €0, in Q’
u=1p, near 00, (3.2)
u=1+Kp,, near 0Qo,

where T and K are positive constants and p; are defining functions of Q;.

Theorem 3.1. Let Qy and Q, be smooth, strongly pseudoconvex domains and assume that Q, is holomorphi-
cally convex in Qq. There exists a unique solution u € C>'(Q) of equation (3.1).

The uniqueness follows from Lemma 2.7, the comparison principle for k-subharmonic solutions to
complex k-Hessian equations. Next, we prove the existence and regularity of k-subharmonic solution by
approximation. Indeed, for every O < € < gy, we consider the following problem:

H(u) = ¢ in Q,
ut =0 on 0Qy, (3.3)
ué =1 on 0Q.

Since u in (3.2) is a subsolution to (3.3), by Li [30], the above problem has a unique smooth solution u¢.

Next, we want to show the CU! estimates of u¢ are independent of €. First, by a maximum principal,
utt > u for any g < &. Thus, u® = lim,_,.u¢ exists. If we could prove uniform C»! estimates, then u° is the
CU1 solution of equation (3.1).

Theorem 3.2. Let u¢ be the smooth k-subharmonic solution of (3.3). Then, there exists a uniform constant C
independent of € such that

|u€ |C1'1(§) < C.

In the following subsections, for simplicity, we use u instead of u®.

3.1 Cl-estimates

Lemma 3.3. There exists a uniform constant C such that

|U|C1(U) < C. (3.4)

Proof. Let h be the unique solution of the problem

Au=0 in Q,
h=0 on 0Q, (3.5)
h=1 on 0Q.

By the maximal principle, we have u < u < h. This gives uniform C° estimates.
Let Fi = %ﬁlong(u) = %Sk(aéu).

n a a n
Dr=Y|a— + b— | with Ya?+ b? =1.
’ zl( "o 'ayi) 2.0+ h

Then,
FU(D;u)ij =0.
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Thus, we have
max|Du| = max|Du].
U oU
Since u < uf® < hin Q and u = u¢ = h on 0Q, we have
h, <uf < u,,

where v is the unit outer normal to dQ (unit inner normal to 0Q; and unit outer normal to 0Qg). Thus,
we have

max|Du| = max|Du| < C.
2 |Du| aQ| | (3.8

3.2 Second-order estimates
Lemma 3.4. There exists a uniform constant C such that

ml_:;1x|D2u| <C. 3.7
Proof. Denote by D;u = u;. Then,

1
NSk (2du)

Llug) = ——
( {E) auﬂ;aul,ﬁ

UikeUpmg = 0.

Hence,

ug(z) < sup|D%ul.
0

This implies Vi, j = 1,..., n,

Uxgs Uyy, < SUPID?U,  Usgayy Uxiayy Uyay, < 25Up|Dul.
20 20
On the other hand, Au(z) > 0 implies
U Uyy, = —(2n - 1)(sup|D2u|).
)

Then,

I+

Uxpyg = Uxexg — Uxg — Uxg < (4n - 1)(Sup|D2u|);
oQ
+ ux,-yj = uXiJ_ryj = Uy — uyjy,- < (4?’1 - 1)(S§)p|D2u|)’
— 2
Flyy = Uysy — Uy, — Uy, < (4n - 1)(5§)p|D ul).

Thus, we have
max|D%u| < C, max|D?u|.
Q 20
So we need to prove the second-order estimate on the boundary 0Q. Here, we use the method by Guan

[13,16,17] and Li [30].
Tangential derivative estimates on 0Q
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Consider a point p € 0Q. Without loss of generality, let p be the origin. Choose the coordinate z,..., z,
such that the x,, axis is the inner normal direction to dQ at 0. Suppose

b=y, b=V, =Yy t1=Xx, bLu2=X..., bn=Xn.

Denote by t’ = (t,,...,b,_1). Then, around the origin, 0Q can be represented as a graph

tn = Xn = p(t') = Bagtaty + O(It'P).
Since

(u - w(t', pt)) =0,
we have
(u - y)tatﬁ(o) =—-(u - w(0)By, a,f=1,...,2n-1.

It follows by gradient estimate that

|utatﬂ(0)| <C, afB=1..,2n-1. (3.8)

Tangential-normal derivative estimates on 0Q)

We use Guan’s method [13,14,16]. Our barrier function here is simpler than before since u is constant on
the boundary and the right-hand side of the approximating equation is a sufficiently small constant .

To estimate uy,, (0) fora = 1,..., 2n - 1 and u;;,(0), we consider the auxiliary function

v=u—l_1+td—gd2

on Qs = Q N Bs(0) with constants N, t, and 6 to be determined later. The following lemma proven in [14] is
needed.

Lemma 3.5. For N sufficiently large and t and 6 sufficiently small, there holds

Lv < —%(1 + P in Qs
v>0 on 0Q,

where € > 0 is a uniform constant depending only on subsolution u restricted in a small neighborhood of o).
The following three lemmas were proven by Guan in [16].

. 1
Lemma 3.6. Let Fi = %S,f (00u). Then, there is an index r such that
J

n-1 1

1 1, .
Y Fluguy > EZS,f NSk AIDA?, (3.9)
=1 i#r

where A = (A, ...,A,) are the eigenvalues of u;.
Lemma 3.7. Suppose A € T;.. If A, < 0, then

1 . 1! .
>Sk (A)skflwz)/lfz;zskk DSk ADA?

i+r i=1
Lemma 3.8. Suppose A € T. Then, foranyr=1,...,nand € > 0,

no1 1_ no1_
Y SE WSCADIAL < €Y' SE DS AIDAZ + %Zs,f WSl + Q) (3.10)

i=1 i#r i=1

1
where Q(r) = SK(A) - (CK)x if A, = 0 and Q(r) = 0 if A, < O.
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At any boundary point p € 0Q, we may choose coordinates z,..., z, with the origin p such that the
positive x,, axis is the interior normal direction to 0Q at p. Let p be a defining function of Q, thatis,p < 0in Q,

o = 0, Dvp = 1, on 0Q, where v is a unit outer normal to 0Q. We may assume that, %(O) =0forl<i<n-1
)
and 2—5(0) =0 for all 1 < i < n. Moreover, around the origin, we can write
' n n
0(2) = X, + Re Y 0;(0)ziz + Y 0;(0)z:5 + Q2),
i,j=1 i,j=1
where |Q(2)| < C|zP. Let

=y, i=1..,n tyi=x, i=1..,n.

Let
9
Bty
aa(z):—w, l1<a<2n-1.
En
Then,
a,(0) = 0.

SoT = a% + a“a% is a tangential vector to dQ near the origin. We write

2n-1

au(z) = ) bagts + baxn + O(|tR + X7), z € Q near 0.
B=1
Let
Ty=—+ 2n_lb 1y 9
oty o
Then,
T=T,+ b,,(xni + O(|z|2)i.
Xy Xy
So
To(u — w) = O(|t), on 0Q.
Note that
—E&-ﬁ, 1< ﬁ <n,
dits = 2
itg 1
—b6ig_n, >n
5 iB-n B
and
=N

a]’tﬁ =

We then have
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2n-1
LT,(u - W) =T f - LTu + ) baﬁFif(tﬁ,iuX"; + tﬁ,;uxni)
po1
2n-1 . 2n-1 i
=T, f-LTu + 2 Z baBFU(tﬁ,iunj' + tﬁju,-n-) + /-1 Z baﬁF"(tp,,-uyn; - t;;,;uyn,-)
p=1 p=1

n . .
Sia@l) | Sa@DIAL 1 s
” _C(l ' R -)- ZFU(“W' = tty) (uy - y7)

o S S (D)
and
n-1
L((uyn —uy P+ Y | - El'z)
=1
n-1
= 2P (uy; — ) (w5 — uy) + 2 FI(Qu — un)(uy - wiy) + (wy — ) (wi - i)
=1
n-1
+ 2(uy, = uy, JFT (w5 — uyg) + Y (= udFI (wig - i) + (wr - ) F9 (wij — wy))
=1
(. - Sl Sc@AIDIA;
> 2F (uy; — uyi) (w5 — uyj) + ;Fl]uliul'i - C(l + ; ’fg,:((/\)ll) + =X ;i(;;l 'l).
Let

n-1
¥ =Av+ A2|Z|2 - A3((“Yn - l_lyn)z + Zlul - l_'ll|2].

I=1
By Lemmas 3.5, 3.6, and 3.8, we see that
LW+ T(u-u)<0 in Qs
and
Y+ T(u-u =0 on dQs,
when 4; > A, > A; > 1. Therefore,
[ugx,| < C.
In particular, from (4.30), we know
uy,, | < C.

Double normal derivative estimates on 0Q
For any fixed p € 9Q, we choose the coordinate such that p = 0, 9Q[B,(0) = (¢', ¢(t")), and V¢(0) = 0.
Case 1: xo € 0Qo.

Let p, be a defining function of Q,, which is strictly plurisubharmonic in a neighborhood of Q,. So
Po(t', (")) =0 on 0Q,.
Then, we have
po,tatﬁ(o) = —po,bn(O)(ptmﬁ(O) l<a,f<2n-1.
On the other hand, we have
Uap(0) = ~up,, (0)(0) 1<a,f<2n-1.

Thus,
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ul’zn(o)
Up e, (0) = —22 2 0) 1<a,B<2n-1
w(0) Po,bn(o)po’mﬁ © p
and
U,,(0)
u;(0) = —2"p, +(0) = cp, (0) > 0.
K pO,tzn(O) o >

Since p, is strictly plurisubharmonic in Q,, we have
Se-1({us(O hsijen-1) = K 1Sa({po 5 (O hsijen-1) = @ > 0. 3.11)

Case 2: x; € 00);.
Note that u > u near 0Q;, u = u, and O < u, < u, on 9Q;, v is the unit outer normal to 0Q;, there exists a
smooth function g such that u = gu near 9Q;, and g > 1 outside of Q nearby 0Q;. SoV1<i,j<n-1,

u;7(0) = g7(0)u(0) + g(0)u;(0) + g;(0)ui(0) + g(0)u;(0).
Note that u = 7p, near 0Q;, where p, is a given strictly plurisubharmonic function in a neighborhood Q and t
a constant independent of € and R as taken in Lemma 2.12. We also have
k1
Se-i({ui(Ohizijen-1) = 78" O ({pr5 (O hisijen1) = 7' ' CITHEN Y min S, K (@3py) 612

=0 > 0.

Let co = min{q, ¢} (see (3.11) and (3.12)), we have
Una(0)Co < Una(0)Si-1({us(0) hizijen-1)

n-1
= Sc({us@ hzijen) = S({us@ hizijen-1) + Y luin PSi-o({ui(0)}rsijen1) < C.
i-1

Then, we obtain
unﬁ(o) < C,

where C is a uniform constant. On the other hand, u,;(0) > Z?;llum(o) > -C. In conclusion, we have
[unn(0)| < C.
In conclusion, we obtain the uniform C? estimate. |

3.3 Proof of Theorem 3.1

The uniqueness follows from the comparison principle for k-subharmonic solutions of complex k-Hessian
equations in Lemma 2.7 by Blocki [5].

For the existence part, since u® is increasing on &, u® := lim,_,ou® exists. Since [u? |2y < C, there exists
a subsequence ué that converges to u® in C>® on Q and u° € C*(Q).

4 Solving the approximating equation in Xz := Bg\ Q

We always assume Q is a smooth, strongly pseudoconvex domain containing the origin and Q is holomor-
phically convex in a ball. Recall that we always assume B, cc Q cc Bg, cc Bs, and Q is holomorphically
convex in Bg,.
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Since the Green function in this case is —|z |2‘2;? , we want to solve the following complex k-Hessian
equation:

(ddwk A w™ =0 in Q°=C"\Q,
u=-1 on 0Q,

(4.1)
u(z) - 0 as |z| — oo.

= -1

By scaling of z, we consider (4.1) with B cc Q cc B; cc By, Where t = ;—0, s = ;0
0

4.1 Construction of the approximating equation

Let wé be an approximation of the Green function —|z %,

wi(z) = _(|Z|2 + & )12.

1+ &2
We have

k
fe = H(w®) = Si(wg) = ck(% - 1) 21 + e K|z + e L,

It is clear that p, = |z|> — (1 + s)? is a plurisubharmonic defining function of B;,. Let p, be a defining
function of Q such that p, is plurisubharmonic in a neighborhood U of Q.
By Lemma 2.12, there is a smooth plurisubharmonic function p solving

Hi(p) = €o, in By,5\Q,
p =10, near 0Q,
p=1+Kp,, near 0By,s.

2 \% s
Letp =11- (1 + m) -1.In BHS\BH%, Ve<eEy <=,

(4.2)

n

I (EHA RS (o)

1+¢&8 8 + 52

So

2 \k 2 ko
weé — @ > (1 + m) - (1 + m) m B1+S\B1+%.

Let V be a neighborhood of Q, Q cc V, then

2 \k
wé< -1 and >(1-]1+ infp -1 in B)\V.
¢ ( ( 16 + 52) )Bl\Vp A

So

2 \k
E—p<|1-]1 inf in B\V.
v (p<( ( * 16+52) )élr\lvp in By

1-2 1-n 1-n
Apply Lemma 2.11 with w?, ¢, and § < min (1 + 5—22) - (1 + -5 2) 11 - (1 - ) “linfp!,
16 +s 8+s B\V

16 + s2
we obtain a smooth k-subharmonic function uf such that uf = w¢ in C"\BH%, u¢ = ¢ in B;\Q, and

1
u¢ > max{p, wé} in Q°. Moreover, by the concavity of Sk,
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1+ t(z)

% £ % 1—t(Z) % £ : €
Hk(E)ZTHk(‘P)‘FTHk(W) in {lp - w¥ < 8}

k 1-n
If we take gy < min{l, 2"‘”t‘2(”+1)(C,’,‘)‘1<% - 1) (1 - (1 + %) k)eo}, then for any ¢ < &g, f¢ < &. So we
obtain

Hu(u) > f¢ in Q°.

In conclusion, for sufficient small €, we can construct a smooth, strictly k-subharmonic function u® as
follows:

Lemma 4.1. For any € € (0, &), & < %2, there exists a strictly k-subharmonic function uf € C®(C"\Q)
satisfying

wé in C"\BH;,

ué = 52 1-%
1- (1 + m) -1 in Bl\Q,

1-n
s? k .
ué¢ > max{wé, |1 -1+ —— — 1} in By;s\By,
u { ( ( 16+Sz) )p } 1+2\1

and
H(u®) = f¢ in Q¢,

where p is a function satisfying (4.2).

By the aforementioned preliminaries in this section, we are able to construct the approximation equa-
tions for € € (0,&9) and R > 1 + s.

{Hk(ue’% =f¢  in Zpe=BR\Q, “3)

usR =yt on 0Zp.

Since u¢ is a subsolution, by Li [30], (4.3) has a strictly k-subharmonic solution u® € C*(Zg). Our goal is to
establish uniform C? estimates of u®®, which is independent of € and R. We prove the following.

Theorem 4.2. For sufficient small € and sufficient large R, ue® satisfies

ClzP % < —usR(z) < ClzP ¥,
IDusR(2)| < Clz- %,
|00usR(2)| < Clz[ %,

IDu*R(z)| < C,

where C is a uniform constant that is independent of € and R.

In subsections 4.2, 4.3 and 4.4, we will prove uniform C2-estimates of solutions to equation (4.3). The
key point is that these estimates are independent of € and R.

4.2 C° estimates

Since u¢ is a subsolution to (4.3), we obtain that

_n
|z]? + 2 )1 k

e > —(1+ iz %.
+e

us,R > ys > _(
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Forany R’ >R >1 + s, let u®® and u®®’ be solutions to (4.3) on Zg and X/, respectively. We have

!
ue,R — l_ls < uE,R

on aBR
By Lemma 2.7,

! .
usR < u®*®  in %

te
On the other hand, choose R, = max{l + S, \/ﬁ } Then, for any R > Ry,

H(~t% 2z~ %) = 0 < f€ = H(us®)  in g,

2 2
usR = -1 < —t¥ 2z ¥ on 3Q,
1_n
RZ + &2 k 2 2
usR = _( 7 < —t% 2R% on 0Bg.
+e

Using Lemma 2.7 again, we have
utR < —t¥-2zP-%  in .
So we have, for any R’ > R > Ry,

(1 + &)Yz ¥ < utR(z) <utR(2) < —t¥ 2%, ze 3R

4.3 Gradient estimates

In this subsection, we prove the global gradient estimate. The key point is that the estimate here does not
depend on € and R. We also prove that the positive lower bound of the gradient of the solution.

4.3.1 Reducing global gradient estimates to boundary gradient estimates

This part is the key part of gradient estimates. The point in here is that the gradient estimate is independent
of the approximating process. This estimates is motivated by Guan [15].

Theorem 4.3. Let u be the solution of the approximating equation (4.3). Denote by

P = |DuP(-u) =. (4.4)
Then, we have the following gradient estimate:

2An - k)
k(2n - k)

max P < max{maxP,
R A%g

2
) (-u)w%|D logf® |2}. (4.5)

Proof. For simplicity, we use f instead of f¢ during the proof.
2n-k
n-k°*

Leta = Select the auxiliary function
@ = logP = log|Duf* - alog(-u).

Suppose ¢ obtain its maximum at z, € Zg. We can choose the holomorphic coordinate such that {u;}(2o) is
diagonal. Denote by A; = u;;(zo). The following computations are at zg:

P ) ) ]
_ |Duf; Ui Uug + Ui U Wik + uglg u;

" |Dup u |Duf? u |Du? u’
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Then, we have the observation

2 2 n s
U; Ui |°A; UiUU;
al 1| _ | 1| i + Z LU U

= ’ Vi:L'--yns 4.6
u [Du* & |Duf (4.6)

which implies Z?zluliufu; is real at zy. Denote by F¥ = %Sk(aéu). By direct computation, we can obtain
Ul

0> Fi i |Dul% |DU|12|DU|% w Uil
> e = . — —a— +a
s |Du? |Dul|* u u?
Fi |Du|5r (1 )|Du|1 |Du|2 Ui
= o — — - —a—
|Du/? a) |Dul* u
2Re{u f1} |Dul? < SciADul | < Seca(ADA?
=D2—akf +Z D21+ZD21
|Du| ‘o 1Dyl o Dy
no R
|u1 o n . |Zl=1u1uli| Zl 1 ujuruy
_1ADAS - _1(Ai - S (ADA————.
w— 2\ Duft Sk-1(AIDA; 2n—ki:1k1(|) Duf’ _kal(D Duf’
We claim

n(n 2 IS
Z(Zsk ADGP + SaAlAZ - L'“' SaMA? = — Ty =l

) — k |Duf? n -k |Dul?
5" 4.7)
2n . 1= HLUu;
- SeciADA=—"——120
m_k k-1(AlDA; |Du|2 ]
Then,
2
0> |Du|2F'qu > 2Re{ulf1} - akf——— |Du| > —2|Du||Df| - aIf|Du| .
It follows that
2 2(n - k)
Du| < —(-w)|D1 =——*(-u)|Dl .
IDul < — (-w)ID logf] k(2n_k)( w)D logf]
Thus,
w (2n-0 Y,
D 2 a < _17)2 apli 2_
|Dul*(-u) (k(z k))( u)*~¢|D logf]

Now, we prove Claim (4.7). Since

Y Sic1AIDA? = Sif = (k + 1)Se
i=1
2

|ui
= |Duf?
|ui?
= |Duf?

(S1f = (k + 1)S.1)

_ Sk(Ali) | skouz) .
(Msl(/ul) (k+ D Mm) Z|Du|2( s D (<+1)sk+1(A|z)),

1l
i M:

=

we have
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il (5 . Sk(/l|1) w2 Sk(/l|1) ~ .
- |2(A’+SM“) s 1(A|)) Z|Du|2( S (k”)sk”“"))
|Z;l:1ul_uli|2

n
St (A|D|uy 2 S_}l'/\-z— Sic1 Y (Ali
+ ilz1 e-1(AD) i 2. 1D |2 i-1(A1DA; L 1;( ) Dup
uiuru;
Si_1(A|DA;
aleven 1121 e-1(Al1) \Dup
ieG ieH
in which
G ={ilA; = 0} H ={i|A; < 0},
and
|ui? . Sk(AlD) Jui Se(Ali) .
Ti= A+ SiAJD) - (k+1 k+1 - (k + DS1(A
= o SID) = G DR | e DA = ok DSl
n 1> gyl ugUU;
A 2 n |u| AZ S, (Ali 1=1 S( A /\ llll.
g -1 (A1) || n — k \Dul \Dup? Si-1(Al1). kX 1(A]) \Duf? T ok Z -1(AlD) \Dup?
We will prove in the following that Vi, T; > O.
Case1.i € H. Let
T, = A +B,
where
|ui] . Sk(A[i) |ui? Se(Ali) ;
A= A+ SAID - (k+1 k+ D/ — (k + DS,.1(A
~fp |2(1+ i) = (o DEEE | | G DA = (o DS
n o |uf Ny 2
- Si_1(AJDA;
n—k|Du|2 -1(A|DA;
and
n no iy X . n A gl
B:= - Si—1(AJDA; Si1(A il - Seo1(Aj)————
(555 - 3 s Secain - XDl ~ 3 S
uiujui
Si_1(A|DA; .
-5 _kam) DU
Since
f=SA) = SieaADA; + Se(AlD),
we have
o P S S A SN fSAAlD
OSSR SEAD Sa@ID  SEAID SEAl)
Then,

.12 .12 ; 12 2013
_ n |ul| Sk—l(A“)/‘[z :f |ul| _ n Ai + n Sk(/‘ll) + |ul| _ n Sk(/lll) .
n — k |Dul? [Dul2\ n-k n -k Si.1(AJ) [Dul2\ n -k Si_1(A)

By (a) and (b) of Proposition 2.2, we have
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A= plul (}ti+Sl(/1|i)—(k+1) S _n_y, _n S"“'i))

|Dup S n— kT RS kS
P S L S
" Iuf ((k MR B A oy
B LTl G SPY N _ __n ) S
- f|Du|2( o SiAD = ke 1= o k)Sk_l()lli))
P Cn S .
+ Dup ((k +1 — k)Sk,l(/\Ii) (k + 1)Sk+1(}l|l))
wP [ k K

> - A; SiAli)| = 0,
IDuP\ n-k 1+n—1 L |1))>

where the last inequality is due to the assumption of Case 1. Note that

n n _ 2 n
, | n-k ,
S D — ——8,_(AJi)-EEL > S A|D |ug?
;klu)m kA= o 2n_k§kl(|)|h|
and
2n oYM 1 2 P ) Y vl
Sr_1(A|DA; <= Skc1ADAS + €S 1A ————
S EED = < e DS lAIDA? + Sl
n-k 1 n? n n
Take(tizm, then gm:ﬂ— m-k' It fOHOWS thatBZO.

Case 2.1 € G. Then, let

T, =E +F,
where
|wi* . Sk(Al7) Jwi[* Se(AlD) . Jwi? 12
E = A + SiAA)D) = (k+ 1) k+1)———= - (k + DS.1AD) | - Sk-1(A|DA;
Fopup i SIAD = e+ DL < (s DEE R = (e DS | = < S AIDA
and
n |u;]? N ) n X
F=|1- Sk1(A|DA; Sic1AID|ug)? - Sko1AlH)———
(1= 5 )k Secsn - LSDP 5 s
n v o UjUTUS
- SiciAIDA——=E.
o kl; MDA o
Since i € G, we have A; > 0, it follows from (4.6) that
n
> uupu; < 0.
I=1
Then,
, nok P AIDAZ + is WD — —"—s, (A|i)7|27=1”[””‘ i >
“on—«k |Du|2 k-1 i & k-1 li m-k k-1 |Du|2 =

Using (b) of Proposition 2.2, we obtain

|wi* : Si(A[i) i, SEAl) .
E= Si(Ali) - k k - (k + 1S4
leulz( A Sk—l(Ali)) " [Dul?\" Si-1(AlD) (DSl
_ 12 RS2l
> k 1 |ul| Sl(/lll) + k |ul| Sk(All) >
n -1 |Duf? n — k |Dul?® Si_1(Ali)

Hence, we complete the proof of claim (4.7). a
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We always assume R > >Ry. To prove the boundary gradient estimates, we will construct upper barriers on
0Q and 0Bg, respectively.

Let hy € C*(Zg,) be the solution of the following equation:

ARy =0

in ZRp
hy = -1

on 0Q,

on 0Bg.

2n 2n
h1 =—t« _2|Z|2_ k
u&R is k-subharmonic in Xz, thus is subharmonic in Zz. Note that

2n

w2
h=uR=-1 ondQ and h =-t¥ 2R, k >usk

on 0Bg,.
By comparison theorem for the Laplace equation, we obtain

utR < h1

in ZRl'
Let v be the unit outer normal to 0Q, then

(1—(1+

where p is defined in (4.2). So, there is a constant C independent of € and R such that

n

k

)pv = 1_15 < u];a,R < hl,v <C(h)=C(Q,t,R) on 0Q,

)’

16 + s2

IDusR| < C,

on 0Q.
Let h, € C°°(FR\B§) be a solution to the following equations:
Ahy =0 in BR\E;,
h, = uf on 0By,
hy = -(20)% 2|z ¥  on 3Bx.
For any C? function g, set
g =RV %R ).
Then, hy(z) = R¥% ~2hy(Rz) satisfies
Ahy =0 in B\Bi,
1+ 2 Tk
Thy = @i = - R? on 0B,
207 1+ ¢&? !
hy = —(2t)% 2 on 3B
Note that
h, =R on dB; and h, >R on 0B1.
By comparison theorem, we obtain

usR < h, in B;\B:.

Let v be the unit outer normal to B;. Then,

Note that

hz,v < a‘f,R < _ﬁ\f on aB1
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2\1-
. 1+5
k> — >

2|l o (1 )"
1+¢? 1+¢2) °

then h, is uniformly bounded on aBl\F;. Since the gradient estimate of harmonic function depends only on

the domain and C° norm of boundary value, there is a positive constant independent of € and R, such that

|hy,| < C, on 0B
On the other hand, since
P+ 5)
~ 2 . .
7€ = — - f , inaneighborhood of 0B,
s
we have
~€_(n 1) 1+%22 Lz on 0B
vk 1+ | 1+¢2 v
Hence,

|Dii#®| < C, on 0B; independentof ¢ and R.
So, we have the (¢, R)-independent estimate as follows:

|DuéR| < CR'-%, on 0Bg.
Seta = 2:__: , from C° estimate, we have
(-utR)a < (t'R)"™, on Bg.
So we have
|Du&RR(-usR)y2 < C, on 0Z,
where C is a constant independent of € and R.
Since
k
2\ n-k
(uskp-e < (e ¥) " = e (4.8)
and
V4
Dlogfe = —(n + 1)m (4.9)
We have

1 z|*
(-uRR-a|D logfe < Cry—2

—————— < C(n, t).
tz (|Z|2 + 82)2 ( )
By Theorem 4.3,

|Dus,R|2(_u5,R)—a < C,
where C is independent of € and R. Use the C° estimate once more, we drive that

IDusRPR < C(-usR)@ < Clz|i-%.
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4.4 Second-order estimates

We will prove the second-order estimate of the approximating equations.

4.4.1 The global second-order estimate can be reduced to the boundary second-order estimate

We use the idea of Hou et al. [21] (see also the real case by Chou and Wang [10]) to prove the following
estimate.

Theorem 4.4. Let u be the k-subharmonic solution to (4.3) and consider H = ugg(—u)*ﬁlp(P). If (~u)
|D logf¢|?> and (—u)*ﬁlD2 logf¢| are uniformly bounded, which is independent of € and R, then we have

maxH < C + maxH,
o o (4.10)

2n-k

where P = |Du(—w) " nx,P(t) = (M - t)°,0 < L and M = 2maxyP + 1,a = - k

, Cis a positive constant

depending only on n, k, sups,P, sups,(-u)” ik |D logfs |2, and supgR(—u)‘ﬂ|D2 logf8|.

B+ |z
1+¢?

1-n
Theorem 4.5. Let u be the k-subharmonic solution to (4.3). Let w := —( ) £, Then, for sufficient small

and b, for any unit vector & € R?", there holds
max(W — u + bug) < max(w — u + bug).
b 3k
Proof of Theorem 4.4. For simplicity, we write f instead of f¢ during the proof.
Suppose the maximum of H is attained at an interior point z, € X along the direction ¢, = % We can
1

choose the holomorphic coordinate such that {u;} is diagonal at zo and A; := uz with A > ,>---> A,. The
following calculations are at z,. Then, we have

Ui B,
0=¢=— - —+0
(pl ui ( ) M - P
Denote by Fi = —logSk(aau) = ?k: and FU7s = —1ogsk(aau) - S" ¢ Si;k'g, ST = - 5(00u), I =
g au —2__5,(00u). Then by direct calculation, we have ‘ '
0> Fii(pi]r
iy 2 Fiys: i)y, 12 Fip: ii| p.|2
= APl — il quuzl +(@a-1)—=+(a- 1)F ll;'l ey UP + 1\1; |P;|) -
i (-0 wo M-P - (M-P) (4.11)
| y4,7: 2 _ ii[y,.12 Fip: ii|p.2
— Al_lFUuliij_ _ F |u111| + (a 1)k + (a _ 1)F |ul| + 0 ) + O F |Pl|
u (-w u? M-P (M - P)?
=1+II+.-+ VL

Take the first, and second-order derivatives to P, we have
= [Duff(-w)* + |DuP((-u)™*);
and
Py = |Dul(-w) + |Dulf (-w))j + IDuR((-uy); + |Dul((-wy )y
= (wury + wiur + wggy + wui)(~u) + a(-w) (g + gy
+ (uuis + wiupuy) + a(-w) Y DuPu; + a(a + D(-u)*2|Dufuu;.

So,
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FiPy = Fi (g + wiup + ugugy + wiup)(—w) @ + a(-u) " (g + wupuj + (g + uu)u;)
+ a(-w) | Duluy + a(a + 1)(-u)*?|Dufu;u;)
= 2Re{u,j~fj}(—u)‘” + FiijuP(~u) @ + FiA2(-u) @ + 2a(-u) 2 'FiNju;? + 2a(-u)*Fiuguju;
+ ka(-u)y* Y Dul? + a(a + 1)(-u) 92| Du2Fi|u;]?

(4.12)

and

Fifl%; > 2Re{u1f1-}(—u)*a + ka(—u) Y Du + a(a + 1)(-u)*2|DuPFiju;? + %F"‘T|uli|2(—u)*“

- - 4.13
+ %F”Aiz(—u)*a - 2a2(—u) *2Fi|y; 2| Duf? — 2a?(—u) @ 2F " |y (4.13)

=+t a.

We divide the rest of the computation into two cases: A; > 6A; and A, < 6A;.
Case 1. A; > 8A;. Then,

FilJuyg 2
2
U

B ) , 2 12
- _Fija - DY o B 25 opi(q - el o IRE )
u M-P w2 (M - PY

I =

So,

it|y.-.|2 ii|y;.12 i | p.|2
_F |u111| +((1—1)F |ul| + 0 F |Pl|
u u? (M - P)?
if[y,.12 ii| p.|2
F |ul| +(O__20.2) F |Pl|
u? (M - P)?
Fiiy,?
u

II+1IV+ Vl=

>((a-1-2a-1?
>((a-1-2a-1?

where the last inequality holds since ¢ <
1
By the concavity of S¥, we have

1
>

[:= /lleiiuliij = A7 ((logf )i - Fi]r’rs_uij’lurs‘i) > A;'(logf)si.
By (2.2), we have
FiAZ > FOAZ > 6FAL > 6%0FA7, (4.14)
where ¥ = ZLF i 9= 0(n, k), and we use the assumption of Case 1 in the last inequality. Based on (4.14),
we have the following calculation:
%a5 +ag + a7 = %F"{/\iz(—u)‘“ ~ 2a2(~u) @ 2F iy 2|Duf — 2a%(~u) @ 2Fi|y;|*

> épif/\,?(—u)fa _ 4a@(~u)y " 2F|Dul*

) 626 —a+1\2 2p2
> (-u)* ?(Al(_u) @)% — 4a°P
>0,

where the last inequality holds if we suppose

32a2
A(—u) )2 > ——_p2, 4.15
M(—u)y 1) > 50 (4.15)

By Newton-MacLaurin inequality, we have

i<n—k+1

< Si.
Sk—l nk
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So,
n
- Skt
F = —z"igkk L (n-k+ 1)S§—I:1 > nkS;! > m
1
Combined with (4.14), we have
FiAZ > k620),. (4.16)

By (4.16),
1 1 iy 2 _ T _
Zas +ay = —F“/li (—u)y @ + 2Ref{u; fi}(-u)

"5 92&1( ) — 2|Dul|DF (-

> (-uy (@A( -+t - 2PHiDf |(—u)‘%+1)
>0,
where last inequality holds if we assume

M(-u)y ! > ——|Df |(-u) 5 *1Pa. (4.17)

k629
Note thata — 1 = — > 1, it follows from (4.14) that
F"|u |2

o 1 o 1 .-
cZas + I+ IV + VI -—F”A-Z—u‘”+ a-1) - - 1)2
M_P 2% AP G (« ) - 2(a - D)) ——

2, 2
o ﬁﬁl( Wt (@-1) - 2a )W'D“'

=(-w)* 2?( M P ?(/ll(—u)"“l)2 -(a-17%-(a- 1))P)

where the last inequality holds if we suppose

M(~u)y 21?2 > ﬂ(Z(a -1)2 - (a - 1))P. (4.18)
0620
By (4.16), we have
o 1 o 520 _
M_P-Za5+IZM_P-—7'7((u)‘ All(logf)ﬁ
o k620 . _

245 g M '(—u)y® - A4|D?logf]|
- (—u)a%l(ﬁ ﬁm( w1 — |D? logfl(—u)‘”z)
>0,

where the last inequality holds if we suppose

16M

T, ——~|D*logf|(-u)y 2. (4.19)

M(~u)y1)? >
From assumptions (4.15), (4.17), (4.18), and (4.19), we have
0> Fig: >0,

which leads to a contradiction. Since P, |Dlogf|(-u)"z*! and |D?logf|(-u)?*? are uniformly bounded,
we finish the proof of Case 1.
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Case 2. A < 6A;. By the first-order derivatives condition, we have

il p.|2 - P 2 2
GziF 1P > = lZF" M _ (a- 1)& > EZF” Wi |1 £ (a - 1)2ZF“—|u’2| .
i>2 (M - P) 0> Ui u i>2 Ui - i>2 u
Putting the above inequality into (4.11), we have
0> Fii<pi]r
_ Fip; 1,12 1, 2 11 p |2
= L( 1))k + A g + OM UP _E |l42111| + (a - 1)F ll;ll + 0(]\1;[ |P;|)2
-u - ug u -
it|y,.-.|2 ii|y,.12 it | p.|2
_ ZF |l42111| +(a_1)ZF |lzlz| +UZ FURy .
i>2 11 2 U i>2 (M - P) (4.20)
_ Fip;: 1)y, |2 1, 2 11 p |2
, (a-Dk A Flugg + o0 Fluml (a- 1)F | FUIP|
(-w) M-P u2 u? (M P)?
it 2 it|y;.
_Z( )M+((a_1)_l. € (0_1)2)2%
i>2 uj o 1-¢ =2 4
=1"+1I" +..-+ VIIT'.
We take
£ < min 1 4 (4.21)
4’ 8(a - l)
then
_ it|y.12
v > -1y FLE
=2 4
Note that
1,12 i 2 12 2
IV = _F |usi - _F1|(q- 1)ﬂ P Py > -2a - 1)2F11|u12| _ 202 |Py] -
u? u M-P u (M- P)
By the choice of o, we have
2
W +V +Vl'>(a-1-2a- 1)2)F11%.
u
Putting the above inequalities into (4.20),
i), 12 _ Fip;: _ 2
0> A" Fliuy; - z 1- LA Rl U] + (@- Dk o0 (a1 2(a - 1)? F“—lu1|
/ 5 o) uz (-u) M-P 2 u?
. F:’ , (4.22)
A Z# =T1" 4.+ VI".
i>2 u
We have
_ if|y,.12
VI + Mo P(a6 +a)="2 > 1 ZF l'f:' - MU P(Zaz(—u)f’kzF“|ui|2|Du|2 + 2a%(—u) " 2Fi ")
- i>2 -
X |2 —
- ypiltl (“ L% oapup-uye - -2 za2|ui|2(—u)*“)
5 u 2 M-P M-P
M P(2a2( u)—a 2F11|u1|2|Du|2 + 2(12( u) a- 2F11|u |4)
> Yy Fi s (a “1_ P 4a2) - 4a2iFﬁ@
> M-P M-P u?

1i|u1|
> —((1 - 1)F 7,
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where the last inequality holds if we take o < %=}
g (1(15 + ag + a7) sV a2 F“/lz( u® - (a -1 + 2a - I)Z)Fﬂﬂ

M-P M-P 8 u?

> Fl(_y)a-2 o S ar1y2 _ ()(gq — 1)

> P 37 O - - 2+ 2hp)

>0,
where the last inequality holds if we assume

e CCERE 13
By
_ . Sea1(A
SESAADA? = i) - (k+ DD > Ksi 5 K,
SO n

we have

%as +a = éFi’T/liz(—u)*“ — 2Re{y; logf;}
k
> §A1(—u)*“ = 2|Du||D logf|(-u)y“

= (—u)‘l(;—</tl(—u)‘“+1 - 2P3|D logf|(—u)‘§+1)
n
>0,

where the last inequality holds if we assume
Aot > BLPUD logfl(-uyE .

By Proposition 2.4, when § is small enough (depending on € and o),
it)y,.-.|2

I+ 10" = A lF}ullu _ Z(l _ E)M

i>2 o uj

> FIA2 Y |2(Alsk,z,n- —a- §>sk,1,i) + A (logfn

i>2

> -A;'|D?logf],

where we use the concavity of logSy in the first inequality.
Substituting (4.23), (4.25), and (4.27) into (4.22), we obtain
(a - Dk

0> - A7YD?1ogf].

Then,
A(—=u) 1! < (a — Dk|D? logf|(—u)-+2.

—_ 25

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Since P, |D logf|(-u)"2*!, and |D? logf|(-u)~*2 are uniformly bounded, we finish the proof of Case 2. [

Proof of Theorem 4.5. Observe that the equation is equivalent to

1 1
Flu] = Sk@du) = (fo)i.

ii _ OF[u] i,k _ O%F[u]
y - 2 i,
Denote by F ouj and F au a

equation above twice with respect to f we obtain

. Now, we consider any unit vector £ € R?, Differentiating the
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2+ k) (for

Fiuggj = DgFlul - FM'Mujeugs = (F)g = —=———~ 2

Consider the function

1_Yl

« o+ |z )k

W= — .
1+ &2

1
By the concavity of S¥, we have

) k ¥
FI (i — uy) = FI#) - Flu] = (ck(% -1)as e2>"-k) (G202 + 2k = 2P + e2y<-m).
If € and b are sufficiently small, we have
FIGW - u + bug)j >0, in Zp.
Maximum principle leads that

max(W — u + bug) < max(W — u + bug). O
2R oZp

4.4.2 Second-order estimate on the boundary 32,

Step 1: Tangential derivative estimates
Consider a point p € 0Q. Without loss of generality, let p be the origin. Choose the coordinate z, ..., z,
such that the x, axis is the inner normal direction to 0Q at 0. Suppose

b=y, bL=Yys =Yy btu1=%X, th2=X%, bn=Xs
Denote by t’ = (¢, ...,tn-1). Then, around the origin, 0Q can be represented as a graph
tin = Xn = @(t') = Bugtatg + O(|t'P).

Since

u(t', (")) =0 on 0Q,
we have

Utt(0) = —Up,, (0)Bgg, a,f=1,...,2n - 1.

It follows that for any a, 8 = 1,..., 2n — 1, we ahve

|ut¢,(0)] < C, on 0Q. (4.30)

Note that u > u® near 0Q, u = u¢, and 0 < u} < u, on 0Q, there exists a smooth function g such that
u = gu near 0Q, and g > 1 outside of Q nearby dQ. SovV1<i,j<n-1,

u;(0) = g5(0)u*(0) + g(O)u£(0) + g;(0)uf(0) + g(0)uE(0).

Note that u® = cop, near 0Q, where p, is a given strictly plurisubharmonic function in a neighborhood Q,

1-n
Co = (1 - (1 + %) k)r, T is a constant independent of € and R as taken in Lemma 2.12. We also have

ket
Sea({ui(@hisijen1) = 878 OSe1({pr, 5O hisijen1) 2§ G CHY minS * (33py) > 0. (4.3D)
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Set R > R, > R, R, is to be determined later. Consider a harmonic function hs, which is a solution to

Ah; =0 in Bg\B,,
hs=—(1+ &) (R + €)'k on 0Bg, (4.32)
hy = —t% 2z % on 0B,.

Set

h(z) = h3(z) = R% 2h3(Rz).
By maximum principle, we know,

€ <ii<h,
where ii(z) = R% ~2u(Rz). Note that
2 \1-}
) 1+5) " 3 -7
h=- R? on dB;, and h-= —(i) “ on 9B..
1+¢&? Rt R

If we choose R? > (Ry)? = max{(R,)?, 4t 24(1 + &2), 16}, then

R [op, > h |5

EEIDS)

Similarly, as in gradient estimates, there is a positive constant C, independent of € and R, such that

h, <, <id; <C on 0B,.
In fact, we can prove that

h, > co> 0,

where ¢y is also independent of € and R. In fact, we can solve (4.32) as follows:

|Z |27N ~ (i)zﬁ N 1+ %22 % . (i)zx (%)Z—N |
RS W o
Then,

1+‘€—2 i
h ol

R @) G ) (G e[

1-¢
2N-2 _ 1)1 0,
1+£§) ( )

It follows that there exists a (¢, R)-independent constant C, such that

C'R-¥ <u, < CR"%

on 0B,,
where Vv is the unit outer normal to 0B;.

For any p € dBg, we choose the coordinate such that p = (0,...,—R). Then, near p, 0By is locally
represented by 6, = x, = @(t') = —/R? - Zl.zfl' 't?. Since

2 2\1-%
u(t', (")) = —(Ii - ) on 3By,

we have

%ty _

ut,xtﬁ(P) = —Upy,(p) R'ug, (p )64p = Ru,(p )Bag-
al’aatﬁ
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Hence,

luggl < CR¥, a,B=1,..,2n-1, (4.33)
1 n .
uj = Z(”lmﬁw + Uy — V=L, + V-1 u[m.tj) > CR*ZT(SU, i,j=1,...,n. (4.34)

Step 2: Tangential-normal derivative estimates 0Zy

Follow the approach by Guan in [16], we estimate the tangential-normal derivatives on boundary.
We first prove the tangential-normal derivatives estimate on dQ. Suppose 0 € 0Q, to estimate u;, (0) for
a=1,...,2n - 1, we consider the auxiliary function

v=u—y+td—¥d2

on Qs = Q N Bs(0) with constant N, t, § to be determined later. Define a linear operator
Lv = Fiy;,
- 1
where Fi = %S,{‘ (30u). Then,
Y
no 1, 1,4
F=YFi=8k S Ali)=m-k+1DSF Se1 2 Cpy > 0.
i=1
By Lemma 3.5, for N sufficiently large and ¢ and § sufficiently small, there holds
Lv < —%(1 +F) in Qs,
v>0 on 0Q,

where € > 0 is a uniform constant depending only on subsolution u restricted in a small neighborhood
of 0Q).
In our setting, € can be taken independent of € and R, since u® = cqp, near 0Q, where p, is a given

1-n
strictly plurisubharmonic function in a neighborhood Q, ¢, = (1 - (1 + 165—;2) k)‘r, T is a constant inde-

pendent of € and R as taken in Lemma 2.12.
We use a similar notation as in subsection 3.2. Let

n-1
Y= Av + Az - A3((uyn - L‘yn)2 + Z|ul - U |2)-
1=1

After a similar computation to the boundary tangential-normal derivatives estimate on the pseudoconvex
boundary in 3.2, we see that

LYW+ T,(u-u)<0 in Qs
and
¥+ T(u—-u) =0 on dQs,
when 4; > A, > A; > 1. Therefore,
[ugx,| < C  on 0Q. (4.35)
Next, we prove the tangential-normal derivatives estimate on dBg. Let
fi(z) = R 2u(Rz) and @(z) = R% 2u®(R2).

Consider the boundary tangential-normal derivatives estimate on dB;. Let p = (O, ...,—1) € 0B;. Write a
defining function p of B; near p by
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1
n-1 2
0(2) = Xy - (RZ - Yzl - y,f] .

i=1
Then,
|T,(@ — %) < C. in By(0) n B;(p).

Let w = |z]?> - 1, then

n

L(—W) = —ZFii_ < —Cn,k(l + ?—)

i=1
Let

n-1

® =-Bw + Byz - p? - (

@ - af P + (@, - _yn)Z)

I=1
Similarly, we obtain

L@+ T,(0i - 14f)) <0 in Qs
and

O+ T(ii — 4¥) >0 on 0Qs,
when B; > B, > B3 > 1. So, we have

liitx,| < C on 0B.
Therefore,
[uex,| < CR¥  on 3Bg. (4.36)

Step 3: Double normal derivative estimates dXy
By pure tangential derivative estimates (4.30) and (4.33), we have

luy,|<C ondQ and |u,,|<CR% on 3B

To estimate the double normal derivative u,,,, it suffices to estimate u,;. By rotation of (zi, ...,z,_1), we may
assume that {u}1<;j<n-1 is diagonal. Then,

n-1
£2 = $i(d3u) = unaSic1({ui hr<ijen-1) + Sc({usfrsijen-1) = X [ugnPSi-o({us hrcijenr)-
p-1

It suffices to give a uniform lower positive bound for Si_;({ti}1<ijen-1)-
By (4.30), (4.31), and (4.35), we obtain

u,7(0) < C on 0Q.
On the other hand,

n-1

Un7(0) > _Z;“if > —C.
-
By (4.33), (4.34), and (4.36), we obtain
CttnaR™"% " < Una0)Si1( {ut <t jen1)
= 5i(3u) — Si({us(O) heijen-1) + ;zi|uﬁn<0>|zsk_z({u,-;(0>}1<1-,,~<n_1)

< CR™2,
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Therefore,
|una(0)| < CR™¥  on 3Bg.

Step 4: Second-order derivative estimates in X
As in Theorem 4.4, let H = Q(M - P)°, Q = uz(-u)*!, and P = |Duf*(-u)~®. Suppose the maximum of
H is to obtain at a boundary point zy € 0Xg. Then,

Q= (M - P)°H < M°H(zg) < M"Q(zo)(M - maxP) < M"nalax Q(M - maXP) . (4.37)
% Tr A

Note that P is bounded (uniformly in € and R). By (4.8) and (4.9),
(~w)*9Dlogfé|? < C(n, k,t) and (-u)>9D?logfé|? < C(n,k, t).

By Theorem 4.4, if the maximum of H is obtained at a interior point, there is a positive constant C
independent of € and R such that Q < C. Combined with (4.37), there is a positive constant C independent
of € and R such that

Q<C in Zp.
Then, we obtain
Au < C(-u)*' < Clz['¥  in Zg. (4.38)

By boundary second-order derivative estimates and C° estimate, we obtain that for any unit vector
é’ c [R2n’

max(W — u + bug) < C.
%k

Hence,
ug <C, in Zp.
u is subharmonic since u is k-admissible, then
-C<ug <C in Zp
In conclusion, we obtain

|D?u| < C, in Z. (4.39)

5 Proof of Theorem 1.1

5.1 Uniqueness

The uniqueness follows from the comparison principle for k-subharmonic solutions of the complex
k-Hessian equation in bounded domains in Lemma 2.7 by Blocki [5].

Suppose u and v are two solutions to (1.3). For any z, € C"\ Q, there exists Ry such that z, € Bg,(0)\Q.
Since u(z) — 0, v(z) — 0 as|z| — oo, V € > 0, there exists R > R, such that

v-eg<u<v+e in C"\Bg.
By the comparison principle Lemma 2.7,
v—eg<u<v+e in Bg\Q.

Note that zo € Bg,(0)\Q c Bg(0)\Q, we have
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v(zo) — € < u(zg) < v(zp) + €.

Let £ — 0, we obtain that u(zy) = v(zy). Since z, is arbitrary, u = v in C"\Q.

5.2 The existence and C'!-estimates

The existence follows from the uniform C?-estimates for u®R. The proof is similar to that in [15] by Guan.
For any fixed My > R,, for the solution to (4.3), by the C? estimates, we have

IIMS’RIICz(fMO) < C; independent of &, R, and M,

for all R > M,. By the Evans-Krylov theory, we obtain, for 0 < a < 1,
||u5’R||Cz,a(§MO) < G(e, Mp) independent of R.

By compactness, we can find a sequence R; — oo such that

usR > uf  in CZ(EMO),
where u¢ satisfies

Hu®) = f*  in Zy,,
u=-1 on 90Q

and
CYz % < —uf(z) < ClzP%, |Dut(z)| < Clz|"%, [|00ut(z)| < Clz|'%, |D2ué(z)| < C.
Moreover,

ullc2a(5,,) < Go(e, Mo)  forany Mo > Ry.

By the classical Schauder theory, uf is smooth.

By the above decay estimates for u¢, for any sequence & — 0, there is a subsequence of {u%} converging
to a function u in C* norm on any compact subset of C"\Q ( for any 0 < a < 1). Thus, u € C*¥(C"\Q) and
satisfies the desired estimates (1.4). By the convergence theorem of the complex k-Hessian operator proved
by Trudinger and Zhang in [35] (see also Lu [32]), u is a solution to (1.3).
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