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Abstract. In this paper, we establish global C2 a priori estimates for solutions

to the uniformly parabolic equations with Neumann boundary condition on
the smooth bounded domain in Rn by a blow-up argument. As a corollary, we

obtain that the solutions converge to ones which move by translation. This

generalizes the viscosity results derived before by Da Lio.

1. Introduction. In this paper, we consider the large time behavior of smooth so-
lutions to the following uniformly parabolic equations with linear Neumann bound-
ary value condition, 

ut − F (∇2u) = 0 in Ω× (0,∞),

u(x, 0) = u0(x) on Ω× {0},
G(x, ∇u) = 0 on ∂Ω× (0,∞),

(1)

where Ω ⊂ Rn is a smooth bounded domain, F is a smooth real function defined on
Sn, Sn denotes the space of n×n real symmetric matrices, G(x,∇u) = uν−ϕ(x), ν
is the inner unit normal vector of ∂Ω and u0, ϕ ∈ C∞(Ω) such that G(x, ∇u0) = 0.

Suppose F satisfies the following structure conditions:

(F1) λI ≤ Fr(r), |F (r)| ≤ µ0|r|;
(F2) |FX(r)| ≤ µ1|X|;
(F3) FXX(r) ≤ 0,

for all x ∈ Ω, r ∈ Sn, X ∈ Sn, where λ, µ0, µ1 are positive constants. In addition,
we assume
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(F4) There is a smooth function F∞, such that

s−1F (sr)→ F∞(r) locally uniformly in C1(Sn), as s→ +∞.

Our main result is the following global C2−estimates.

Theorem 1.1. Let Ω be a bounded domain in Rn with smooth boundary. Assume
F satisfies (F1)-(F4), ϕ ∈ C∞(Ω), then we have the uniform (in t) estimate for the
solution to (1),

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C, (2)

where C is independent of t.

In [6], Huang and Ye exhibited a convergence result under assumptions on a-priori
estimates,

Theorem 1.2 ([6]). Let Ω be a bounded domain in Rn with smooth boundary.
Assume F satisfies (F1) and (F3), ϕ ∈ C∞(Ω). For any T > 0, assume that

u ∈ C4+α, 4+α2 (Ω× (0, T )) is a unique solution to the nonlinear parabolic equation
(1) which satisfies

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C1,

and
n∑
k=1

Gpk(x,∇u)νk ≥
1

C2
, (3)

where C1 and C2 are positive constants independent of t > 1. Then u(·, t) converges

to a function U + τt in C1+ζ(Ω)∩C4+α′(D) as t→∞ for any D ⊂⊂ Ω, ζ < 1 and
α′ < α, that is

lim
t→+∞

‖u(·, t)−(U(·)+τt)‖C1+ζ(Ω) = 0, lim
t→+∞

‖u(·, t)−(U(·)+τt)‖C4+α(D) = 0. (4)

Joint with Theorem 1.2, we have the following convergence result.

Corollary 1. Let Ω be a bounded domain in Rn with smooth boundary. Assume
F satisfies (F1)-(F4), u0, ϕ ∈ C∞(Ω), such that G(x,∇u0) = 0, then the unique
smooth solution u(x, t) to equation (1) converges to τt + U in the sense of (4),
where (U, τ) is a suitable solution to{

F (∇2U) = τ in Ω,

G(x,∇U) = 0 on ∂Ω.
(5)

The constant τ depends only on Ω, ϕ and F . The solution to (5) is unique up to a
constant.

In the note, we deduce the estimate (2) for the problem (1).
Our work is motivated firstly by [3], where Da Lio studied the large time behavior

as t→ +∞ of the viscosity solution χ to the Neumann boundary value problem
χt + F (x,∇χ,∇2χ) = λ in Ω× (0,∞),

χ(x, 0) = χ0(x) on Ω× {0},
L(x,∇χ) = µ on ∂Ω× (0,∞),
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where F and L are at least continuous functions defined respectively on Ω×Rn×Sn
and Ω × Rn. The author got a convergence result χ → u∞, as t → +∞ uniformly
in Ω, where u∞ is a solution to{

F (x,∇u,∇2u) = λ in Ω× (0,∞),

L(x,∇u) = µ on ∂Ω× (0,∞),

under the assumption that F satisfies

(*F1) The function F is locally Lipschitz continuous on Ω × Rn × Sn and there
exists a constant K > 0 such that, for any x, y ∈ Ω, p, q ∈ Rn, M,N ∈ Sn,

|F (x, p,M)−F (y, q,N)| ≤ K{|x− y|(1 + |p|+ |q|+ |M |+ |N |) + |p− q|+ |M −N |}.
(*F2) There exists ε > 0 such that, for any x ∈ Ω, p ∈ Rn, M,N ∈ Sn with N ≥ 0,

F (x, p,M +N)− F (x, p,M) ≤ −εTr(N).

(*F3) There exists a continuous function F∞ such that

t−1F (x, tp, tM)→ F∞(x, p,M) locally uniformly, as t→ +∞,
and L satisfies

(*L1) There exists δ > 0 such that, for every (x, p) ∈ ∂Ω × Rn, and s > 0, such
that

L(x, p+ sn(x))− L(x, p) ≥ δs,
where n(x) denotes the unit outward normal vector to ∂Ω at x.

(*L2) There is a constant K > 0 such that, for all x, y ∈ ∂Ω, p, q ∈ Rn, such that

|L(x, p)− L(y, q)| ≤ K[(1 + |p|+ |q|)|x− y|+ |p− q|].
(*3) There exists a continuous function L∞ such that

t−1L(x, tp)→ L∞ locally uniformly, as t→ +∞.
More relative work can be found in [2].

Another motivation of the paper comes from [7] in which Kahane considered
the heat equation subject to a homogeneous Neumann boundary condition on the
smooth and convex domain as follows

ut −∆u = 0 in Ω× (0, +∞),

u(x, 0) = u0(x) on Ω× {0},
uν = 0 on ∂Ω× (0, +∞).

He got an estimate for the spatial gradient of solutions in terms of the gradient of
the initial data. However, the zero Neumann boundary condition and the convexity
of the domain play important roles in the proof of the estimate of the gradient. We
will in this paper get rid of these two restrictions to obtain the gradient estimate to
the solutions of the diffusion equations and generalize the result of [7] to uniformly
parabolic differential equations.

For the smooth solutions case, Schnürer [12] studied a class of curvature flow in
Rn+1 with second boundary condition

Ẋ = −(lnF − ln f)ν,

ν(M) = ν(M0),

M
∣∣
t=0

= M0,

(6)

where X is the embedding vector of a smooth strictly convex hypersurface with
boundary, M = graph(−u) |Ω, u : Ω → R, ν is the upwards pointing unit normal
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vector, Ẋ is its total time derivative and Ω ⊂ Rn, n ≥ 2 is a smooth strictly convex
domain, f : Ω → R is a given smooth function, and F is a curvature function.
Schnürer transformed the curvature flow into some sort of (1) and then he showed
the boundary condition is strictly oblique and derived the C2-a priori estimates.
Finally he proved that there is a smooth solution M(t) = graph(−u(·, t)) |Ω to (6)
for all times t ≥ 0 which exists for all positive time and converges smoothly to a
translating solution M∞ = graph(u∞) |Ω of the flow (6). Huang-Ye [6] established
a generalization of Schnürer convergence result as we state in Theorem 1.2.

A similar convergence result was obtained by Ma-Wang-Wei [11] for graphic mean
curvature flow with Neumann boundary condition.

ut =
n∑

i,j=1

(δij − uiuj
1+|∇u|2 )uij in Ω× (0,∞),

uν = ϕ(x) on ∂Ω× (0,∞),

u(x, 0) = u0(x) on Ω,

where Ω is a strictly convex bounded domain in Rn with smooth boundary for
n ≥ 2, u0 and ϕ are smooth functions satisfying u0,ν = ϕ on ∂Ω. They proved that
up to a constant the solutions converge to a translating solution λt + w. In other
words, (w, λ) is a solution to

n∑
i,j=1

(δij − uiuj
1+|∇u|2 )uij = λ in Ω,

uν = ϕ(x) on ∂Ω.

In fact, [11] provides a good approach to convergence result under assumption of
uniform (in t) ‖ut(·, t)‖C(Ω), ‖∇u(·, t)‖C(Ω) estimate to quasi-linear equation which

is inspired by [1]. However, the strict convexity of the domain plays an essential
role in the proof of the result. After we establish the estimate for ‖ut(·, t)‖C(Ω),

‖∇u(·, t)‖C(Ω), ‖∇2u(·, t)‖C(Ω), we could apply the proceeding in [6] or [11] to obtain

the convergence result. Specifically in this paper, we will apply Theorem 1.2 to
obtain the Corollary 1 after we obtain the estimate (2).

In the rest of this paper, we use a blow-up technique to bound the oscillation
of u(·, t) and then obtain the estimate of ‖∇u(·, t)‖C(Ω) and ‖∇2u(·, t)‖C(Ω). All

a priori estimates are based on the computation of equations satisfied by some
function for the solution and the distance, this kind of auxiliary function method
is usually adopted to get the a priori estimate to the solutions, on can refer to [10],
[11] etc. In Section 2, we deal with the special case with F (∇2u) = ∆u. In Section
3, we deal with general F satisfying (F1)− (F4).

2. Asymptotic behavior for the diffusion equations. In this section, we study
the asymptotic behavior of the following diffusion equation with Neumann boundary
value. As we all know, the diffusion equation is the most typical one among the
uniformly parabolic equations and we treat it firstly.

ut −∆u = 0 in Ω× [0, T ),

u(x, 0) = u0(x) on Ω× {0},
uν = ϕ on ∂Ω× [0, T ),

(7)

where Ω is a bounded smooth domain in Rn, ϕ, u0 ∈ C∞(Ω) and u0,ν = ϕ on ∂Ω .
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Lemma 2.1. Let Ω be a bounded domain in Rn with smooth boundary, n ≥ 2. If
u(x, t) is a smooth solution to (7), then sup

Ω×[0,T )

|ut|2 = sup
Ω
|ut(x, 0)|2, so there is a

constant C depending only on ‖∇2u0‖C0(Ω) such that

‖ut‖L∞(Ω×[0,T )) ≤ C.

Proof. A direct computation gives

(
∂

∂t
−∆)(u2

t ) = 2ututt − 2ut∆ut − 2|∇ut|2 = −2|∇ut|2 ≤ 0.

We apply the weak maximum principle to get

sup
Ω×(0,T )

|ut|2 = sup
(Ω×{0})∪(∂Ω×(0,T ))

|ut|2.

On the other hand, (u2
t )ν = 2ututν = 0, Hopf Lemma leads that the maximum

cannot occur on ∂Ω× (0, T ), then

sup
Ω×(0,T )

|ut|2 = sup
Ω×{0}

|ut|2 = sup
Ω
|∆u0|2.

Let v(x, t) = u(x, t) − u(x0, t), x0 ∈ Ω be a fixed point. In the following of this
section, we firstly give a time-independent bound for |v| via a blow-up technique.
With the help of C0 estimate of v, we then get the bound for ‖v‖C2 . Estimates for
|∇u| and |∇2u| then follow naturally. Finally we apply the Schnürer convergence
result([12], see also[6]) to obtain that the smooth solution converges to a translating
solution.

Lemma 2.2. Let Ω be a bounded domain in Rn with smooth boundary, n ≥ 2.
If u(x, t) is a smooth solution to (7), v(x, t) is defined as above, then there is a
constant A0 > 0, independent of T , such that

‖v‖C0(Ω×[0,T )) ≤ A0.

Proof. Let A = ‖v‖C0(Ω×[0,T )). Without loss of generality, we suppose A ≥ δ :=
osc(u0) > 0. (Otherwise we get a constant solution to (7).) Suppose A is un-
bounded, that is to say A→∞ as T →∞. Let

w(x, t) =
v(x, t)

A
.

It is easy to see

w(x0, t) = 0 for t ∈ [0, T ) and sup
Ω×[0,T )

|w| = 1.

And w(x, t) satisfies
wt −∆w = −ut(x0,t)

A in Ω× [0, T ),

w(x, 0) = 1
A (u0(x)− u0(x0)) on Ω× {0},

wν(x, t) = 1
Aϕ(x) on ∂Ω× [0, T ).

(8)

To complete the proof, we need the following propositions.

Proposition 1. Suppose w ∈ C3,2(Ω× [0, T )) and satisfies

wt −∆w = f(t) in Ω× [0, T ),
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for f ∈ C([0, T )), Then ∀ Ω′ ⊂⊂ Ω,

sup
Ω′×[0,T )

|∇w| ≤ C,

where C is a positive constant depending only on dist(Ω′, ∂Ω), ‖w‖L∞(Ω×[0,T )),
‖f‖L∞([0,T )).

Proof. We will prove that for 0 < T ′ < T , we can bound |∇w| in Ω′×[0, T ′] indepen-
dent of T ′ and then take a limit argument. Denoting by M = ‖w‖L∞(Ω×[0,T )), N =

‖f‖L∞([0,T )) and w0 = 1
A (u0(x)− u0(x0)). For any x1 ∈ Ω′, let η = (1− |x−x1|2

R2 )+,
where R is small such that R < dist(Ω′, ∂Ω), and

H = η2|∇w|2 +Bw2,

where B is a positive constant to be determined later. Suppose H obtains its
maximum at (x0, t0) ∈ Ω× [0, T ′].

Case 1. η(x0) = 0. Then

η2|∇w|2(x, t) ≤ H(x, t) ≤ H(x0, t0) = Bw2(x0, t0) ≤ BM2.

Case 2. t0 = 0. Then

η2|∇w|2(x, t) ≤ H(x, t) ≤ H(x0, t0) ≤ ‖∇w0‖2C0(Ω)
+BM2.

Case 3. η(x0) 6= 0 and t0 > 0. At (x0, t0), we compute

0 = Hi = (η2)i|∇w|2 + η2(|∇w|2)i +B(w2)i,

0 ≤ Ht = η2(|∇w|2)t +B(w2)t,

and

0 ≥ Hij = (2ηηij − 6ηiηj)|∇w|2 −
4Bw

η
(wiηj + wjηi) + η2(|∇w|2)ij +B(w2)ij .

Hence
0 ≥η2(∆H −Ht)

=(2η3∆η − 6η2|Dη|2)|∇w|2 − 8Bηw∇w∇η
+ η4(∆(|∇w|2)− (|∇w|2)t) +Bη2(∆(w2)− (w2)t)

:=I + II + III + IV,

where
I := (2η3∆η − 6η2|Dη|2)|∇w|2,

II := −8Bηw

n∑
i,j=1

∇w∇η,

III := η4(∆(|∇w|2)− (|∇w|2)t) = 2η4|∇2w|2,
IV := Bη2(∆(w2)− (w2)t).

By direct computation, we have

|∇η| ≤ 2

R
, |∇2η| ≤ 2

R2
. (9)

By (9), we obtain that

|I| ≤ 28

R2
η2|Dw|2,

|II| ≤ Bη2|Dw|2 +
64

R2
BM2.
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Now we deal with the fourth term.

IV =Bη2(∆(w2)− (w2)t)

=2Bη2|∇w|2 + 2Bη2w∆wij − 2Bη2wwt = 2Bη2|∇w|2 + 2Bη2wf

≥2Bη2|∇w|2 − 2Bη2MN.

Combining with these terms together, we have

0 ≥I + II + III + IV

≥(B − 28

R2
)η2|Dw|2 − 64

R2
BM2 − 2BMN.

Taking Bλ = 28
R2 + 1, we have

η2|∇w|2 ≤ C(M,R, ‖Dw0‖C0(Ω), ‖f‖C0([0,T ))).

Combining these cases above, we derive the estimate

η2|∇w|2 ≤ C(λ, µ0, µ1,M,R, ‖∇w0‖C0(Ω), ‖f‖C0([0,T ))).

Hence,

|∇w|2(x, t) ≤ C(M,R, ‖∇w0‖C0(Ω), ‖f‖C0([0,T ))), ∀ x ∈ Ω′.

Now Proposition 3 is proved.

Remark 1. If f = −ut(x0,t)
A , and ‖w‖L∞(Ω×[0,T )) we have

sup
Ω′×[0,T )

|∇w| ≤ C(dist(Ω′, ∂Ω), ‖f‖L∞([0,T )))

= C(dist(Ω′, ∂Ω), ‖u0‖C2(Ω), osc(u0)).

Suppose Ω is a bounded domain in Rn, n ≥ 2, ∂Ω ∈ C3. Set

d(x) = dist(x, ∂Ω)

and

Ωσ = {x ∈ Ω : d(x) < σ}.
Then there exists a positive constant σ1 > 0 such that ∀ σ ≤ σ1, d ∈ C3(Ωσ). As
mentioned in Lieberman [10] or Simon-Spruck [13], we can take ∇d in Ωσ which is
a C2 vector field and ν = ∇d on the boundary. As mentioned in the book [5],we
also have the following formulas

|∇ν|+|∇2ν| ≤ C̃(n,Ω), |ν| = 1,

n∑
i=1

νi∇iνj = 0, ∀ j = 1, · · · , n in Ωσ. (10)

Proposition 2. Let Ω be a bounded domain with smooth boundary in Rn and n ≥ 2.
Suppose that w ∈ C3,2(Ω × [0, T )) is a solution to (8) for u0 ∈ C2(Ω), ϕ ∈ C3(Ω)
and u ∈ C3,2(Ω× [0, T )), which is a solution to (7). Then for σ≤σ1, there holds

sup
Ωσ×[0,T )

|∇w| ≤ C,

where C is a positive constant depending only on Ω, n, ‖u0‖C2(Ω), osc(u0), ‖ϕ‖C3(Ω).

Proof. We will prove that for 0 < T ′ < T , we can bound |∇w| on ∂Ω × [0, T ′]
independent of T ′ and then take a limit argument.

Let

H = eβd|∇h|2 +Bw2,
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where h = w− 1
Aϕd,B and β are positive constants to be determined later. Denote

− 1
Aϕd by P. Suppose that H obtains its maximum at (x0, t0) ∈ Ωσ × [0, T ′] .

Case 1. x0 ∈ ∂Ω. We choose a proper coordinate around x0, such that ∂
∂xn

= ν.

Note that at (x0, t0),

dn = 1, dα = 0, for α = 1, · · · , n− 1, and dni = 0, for i = 1, · · · , n.

Then we find

hn = 0, hk = wk and hnk = 0, for k = 1, · · · , n− 1.

Denoted by bij the Weingarten matrix of ∂Ω, we then have at (x0, t0) ,

0 ≥Hn = βdn|∇h|2 + (|∇h|2)n +B(w2)n

=β|∇h|2 + 2
n−1∑
k=1

hkhkn + 2hnhnn + 2Bwwn

=β|∇h|2 + 2

n−1∑
i,k=1

hkhibik + 2Bw
ϕ

A

:=I + II + III,

where

I = β|∇h|2 = β(|∇w|2 + |∇P|2 + 2

n∑
i=1

wiPi) ≥
β

2
|∇w|2 − β|∇P|2,

|II| = |2
n−1∑
i,k=1

hkhibik| = |2
n−1∑
i,k=1

wkwibik| ≤ 2|bij ||∇w|2,

|III| = |2Bwϕ
A
| ≤ 2B

‖ϕ‖C1(Ω)

δ
.

Hence we obtain

0 ≥Hn = I + II + III

≥β
2
|∇w|2 − β|∇P|2 − 2|bij ||∇w|2 − 2B

‖ϕ‖C1(Ω)

δ
.

Taking β = 4 sup
∂Ω
|bij |+ 2, we get

|∇w|2(x0, t0) ≤ C(Ω, n, ‖u0‖L∞(Ω), ‖ϕ‖C1(Ω)).

Case 2. x0 ∈ ∂Ωσ ∩Ω. In this case, the estimate follows from the interior gradient
estimate.

Case 3. t0 = 0. We have

|∇w|2(x0, 0) ≤ C(Ω, n, ‖u0‖C1(Ω)).

Case 4. (x0, t0) ∈ Ωσ × (0, T ′]. In this case, we have

0 ≤Ht = eβd(|∇h|2)t +B(w2)t,

0 =Hi = βdie
βd|∇h|2 + eβd(|∇h|2)i+B(w2)i.

Since the Hessian of H at (x0, t0) is non-negative definite, by the equalities above
we have
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0 ≥Hij = (βdij + β2didj)e
βd|∇h|2 + βdie

βd(|∇h|2)j

+ βdje
βd(|∇h|2)i + eβd(|∇h|2)ij +B(w2)ij

=(βdij + β2didj)e
βd|∇h|2 + eβd(|∇h|2)ij

+B(w2)ij − βdiβdjeβd|∇h|2 − βdiB(w2)j − βdiβdjeβd|∇h|2 − βdjB(w2)i

=(βdij − β2didj)e
βd|∇h|2 − 2Bβw(diwj + djwi) + eβd(|∇h|2)ij +B(w2)ij .

Then

0 ≥∆H −Ht

=(β∆d− β2|∇d|2)eβd|∇h|2 − 4Bβw(∇d,∇w) + eβd∆(|∇h|2) +B∆(w2)

− eβd(|∇h|2)t −B(w2)t

=(β∆d− β2|∇d|2)eβd|∇h|2 − 4Bβw(∇d,∇w) +B
(
∆(w2)− (w2)t

)
+ eβd

(
∆(|∇h|2)− (|∇h|2)t

)
:=J1 + J2 + J3 + J4,

where

|J1| = |(β∆d− β2|∇d|2)eβd|∇h|2| ≤ (β2 + βC̃)eβdiamΩ(2|∇w|2 + 2|∇P|2),

|J2| = |4Bβw(∇d,∇w)| ≤ B|∇w|2 + 4Bβ2,

J3 = 2Bw∆w + 2B|∇w|2 − 2Bwwt = 2B|∇w|2 + 2Bw
ut(x0, t)

A
,

J4 ≥2eβd
n∑
k=1

hk(∆hk − hkt)

=2eβd
n∑
k=1

(wk + Pk)(∆wk + ∆Pk − wkt)

=2eβd
n∑
k=1

(wk∆Pk + Pk∆Pk)

≥− eβdiamΩ|∇w|2 − C(Ω, n, ‖ϕ‖C3(Ω), ‖u0‖L∞(Ω)).

Hence,

0 ≥∆H −Ht = J1 + J2 + J3 + J4

≥− (β2 + βC̃)eβdiamΩ(2|∇w|2 + 2|∇P|2)−B|∇w|2 − 4Bβ2

+ 2B|∇w|2 + 2Bw
ut(x0, t)

A
− eβdiamΩ|∇w|2 − C(Ω, n, ‖ϕ‖C3(Ω), ‖u0‖L∞(Ω)).

By taking B =
(
2(β2 + βC̃) + 1

)
eβdiamΩ + 1, we have

|∇w|2(x0, t0) ≤ C(Ω, n, ‖u0‖C2(Ω), ‖ϕ‖C3(Ω)).

Since

eβd|∇h|2(x, t) ≤ H(x, t) ≤ H(x0, t0) ≤ C(Ω, n, ‖u0‖C2(Ω), ‖ϕ‖C3(Ω)),

these four cases together with |∇h|2 ≥ 1
2 |∇w|

2 − |∇P|2 give

|∇w|(x, t) ≤ C(Ω, n, ‖u0‖C2(Ω), osc(u0), ‖ϕ‖C3(Ω)) in Ωσ × [0, T ′].

Remark that the bound is independent of T ′, we finish the proof.
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We deduce the estimate of wt from that of ut. Joint with Proposition 1 and 2
we then get the uniform Ck,α estimate for k ∈ Z+ and 0 < α < 1 by the Schauder
theory.

Proof of Lemma 2.2. We continue the proof of Lemma 2.2. For n ∈ Z+, denoted by
wn = w|Ω×[0, n] and assume that An = sup

Ω×[0, n]

|wn| is attained at the point (xn, tn).

For (x, s) ∈ Ω× [0, 1], we define that gn(x, s) = wn(x, s + tn − 1). Then gn(x, s)
satisfies that 

∂gn
∂s −∆gn = − f(s+tn−1)

An
in Ω× [0, 1],

gn(x, 0) = wn(x, tn − 1) on Ω× {0},
∂gn
∂ν = ϕ(x)

An
on ∂Ω× [0, 1].

Since we have derived the uniform spatial C1 estimate of wn independent of
t ∈ [0, n], so are gn(x, s) for s ∈ [0, 1]. Thus we can conclude that the function
sequence gn(x, 0) = wn(x, tn − 1) is uniformly bounded and the derivatives are
also uniformly bounded. Arzela-Ascoli theorem then assures that there exists a
subsequence of gn(x, 0) , without of loss of generality we assume gn(x, 0) , converges
to a continuous function g0(x) defined on Ω satisfying g0(x0) = 0 and sup

x∈Ω
|g0(x)| ≤

1.
The uniform Ck,α estimate for gn on Ω × [0, 1] can also be obtained by the

relation between gn and wn, thus we can select a subsequence of gn converges in
the sense of Ck,α for k ∈ Z+ and 0 < α < 1 to g on Ω× [0, 1]. Obviously, we have

∂g
∂s −∆g = 0 in Ω× [0, 1],

g(x, 0) = g0(x) on Ω× {0},
∂g
∂ν = 0 on ∂Ω× [0, 1].

By a simple limit argument we can conclude that g(x0, s) = 0 for s ∈ [0, 1] and
|g(x̄, 1)| = 1 for some x̄ ∈ Ω. This is a contradiction with the maximum principle
and Hopf Lemma for the parabolic differential equations. Now we finish the proof
of Lemma 2.2.

Theorem 2.3. For any T > 0, if u is a smooth solution to (7), then we have the
estimate,

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C, t ∈ [0, T ),

where C is a constant independent of t and T .

Proof. The equation for v is
vt −∆v = −ut(x0, t) in Ω× [0, T ),

vν = ϕ on ∂Ω× [0, T ),

v(x, 0) = u0(x)− u0(x0) in Ω.

By Lemma 2.2 we have |v| ≤ A0, a similar proceeding as in Proposition 1 and
Proposition 2 gives

‖∇v(·, t)‖C(Ω) ≤ C.
Schauder theory then gives

‖∇2v(·, t)‖C(Ω) ≤ C.
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Noting that v(x, t) = u(x, t)− u(x0, t), we then obtain

‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C.
Combining this with Lemma 2.1 we complete the proof of Theorem 2.3.

3. Asymptotic behavior for the uniformly parabolic equations. In this sec-
tion we deal with the general uniformly parabolic equations, here we should com-
plete the estimate of the second derivative of the solutions while only the gradient
estimate is needed for the diffusion equations. We in the following focus on

ut − F (∇2u) = 0 in Ω× [0, T ),

u(x, 0) = u0(x) on Ω× {0},
uν = ϕ on ∂Ω× [0, T ),

(11)

where Ω is a smooth bounded domain in Rn, ϕ, u0 ∈ C∞(Ω) such that u0,ν = ϕ on
∂Ω. Moreover, we suppose that F satisfies conditions (F1)-(F4).

Lemma 3.1. Let Ω be a bounded domain in Rn with smooth boundary, n ≥ 2. If
u(x, t) is a smooth solution to (11), then sup

Ω×[0,T )

|ut|2 = sup
Ω
|ut(x, 0)|2, so there is

a constant C depending only on µ0 and ‖∇2u0‖C0(Ω) such that

‖ut‖L∞(Ω×[0,T )) ≤ C.

Proof. Let us denote ∂
∂rij
|r=∇2u F (r) by F iju and let L = F iju ∂ij − ∂t. By taking

derivative of ut = F (∇2u) with respect to t, we have

utt =

n∑
i,j=1

F iju uijt.

Then

L(u2
t ) = 2

n∑
i,j=1

F iju utiutj + 2

n∑
i,j=1

F iju ututij − 2ututt = 2

n∑
i,j=1

F iju utiutj ≥ 0.

We apply the weak maximum principle to obtain

sup
Ω×(0,T )

|ut|2 = sup
(Ω×{0})∪(∂Ω×(0,T ))

|ut|2.

We explore the possibility that the maximum occurs on ∂Ω× (0, T ). Since ∂νu
2
t =

2ututν = 0, Hopf Lemma tells us this can not occur. Thus

sup
Ω×(0,T )

|ut|2 = sup
Ω×{0}

|ut|2 = sup
Ω
|F (∇2u0)|2.

Let v(x, t) = u(x, t) − u(x0, t) with x0 ∈ Ω. Similarly as in Section 2, we firstly
give a time-independent bound for |v| via a blow-up technique. With the help of
C0 estimate, we get C2 estimate for v. Hence estimates for |∇u| and |∇2u| follows.
Finally we apply the Schnürer convergence result to obtain that the smooth solution
converges to a translating solution.

Lemma 3.2. Let Ω be a bounded domain in Rn with smooth boundary, n ≥ 2.
If u(x, t) is a smooth solution to (11), v(x, t) is defined as above, then there is a
constant A0 > 0, independent of T , such that

‖v‖C0(Ω×[0,T )) ≤ A0. (12)
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Proof. Let A = ‖v‖C0(Ω×[0,T )). Without loss of generality, we suppose A ≥ δ :=
osc(u0) > 0. (Otherwise we get a constant solution to (11).) Suppose A is un-
bounded, that is A→∞ as T →∞. Let

w(x, t) =
v(x, t)

A
.

Then w satisfies
wt − 1

AF (A∇2w) = −ut(x0,t)
A in Ω× [0, T ),

w(x, 0) = 1
A (u0(x)− u0(x0)) on Ω× {0},

wν(x, t) = 1
Aϕ(x) on ∂Ω× [0, T ).

(13)

It is easy to see w(x0, t) = 0, sup
Ω×(0,T )

|w| = 1. To complete the proof, we need the

following propositions.

Proposition 3. Suppose w ∈ C3,2(Ω× [0, T )){
wt − 1

AF (A∇2w) = f(t) in Ω× [0, T ),

w(x, 0) = w0(x) in Ω,

for f ∈ C([0, T )), w0 ∈ C1(Ω). Then there holds ∀ Ω′ ⊂⊂ Ω,

sup
Ω′×[0, T )

|∇w| ≤ C,

where C is a positive constant depending only on λ, µ0, µ1, dist(Ω′, ∂Ω),
‖w‖L∞(Ω×[0,T )), ‖f‖L∞([0,T )), ‖w0‖L∞(Ω).

Proof. We will prove that for 0 < T ′ < T , we can bound |∇w| in Ω′×[0, T ′] indepen-
dent of T ′ and then take a limit argument. Denoting by M = ‖w‖L∞(Ω×[0,T )), N =

‖f‖L∞([0,T )), and w0 = 1
A (u0(x)− u0(x0)). For any x1 ∈ Ω′, let η = (1− |x−x1|2

R2 )+,
where R is small such that R < dist(Ω′, ∂Ω), and

H = η2|∇w|2 +Bw2,

where B is a positive constant to be determined later. Suppose H obtains its
maximum at (x0, t0) ∈ Ω× [0, T ′].

Case 1. η(x0) = 0. Then

η2|∇w|2(x, t) ≤ H(x, t) ≤ H(x0, t0) = Bw2(x0, t0) ≤ BM2.

Case 2. t0 = 0. Then

η2|∇w|2(x, t) ≤ H(x, t) ≤ H(x0, t0) ≤ ‖∇w0‖2C0(Ω)
+BM2.

Case 3. η(x0) 6= 0 and t0 > 0. At (x0, t0), we compute

0 = Hi = (η2)i|∇w|2 + η2(|∇w|2)i +B(w2)i,

0 ≤ Ht = η2(|∇w|2)t +B(w2)t,

and

0 ≥ Hij = (2ηηij − 6ηiηj)|∇w|2 −
4Bw

η
(wiηj + wjηi) + η2(|∇w|2)ij +B(w2)ij .

We denote ∂
∂rij
|r=A∇2w F (r) by F ij . It follows from the structure conditions

(F1) and (F2) that

λδij ≤ F ij ≤ µ1δij and |F ij | ≤ µ1. (14)



GLOBAL C2-ESTIMATES 1213

Hence

0 ≥η2(

n∑
i,j=1

F ijHij −Ht)

=

n∑
i,j=1

F ij(2η3ηij − 6η2ηiηj)|∇w|2 − 8Bηw

n∑
i,j=1

F ijwiηj

+ η4(

n∑
i,j=1

F ij(|∇w|2)ij − (|∇w|2)t) +Bη2(

n∑
i,j=1

F ij(w2)ij − (w2)t)

:=I + II + III + IV,

where

I :=

n∑
i,j=1

F ij(2η3ηij − 6η2ηiηj)|∇w|2,

II := −8Bηw

n∑
i,j=1

F ijwiηj ,

III := η4(

n∑
i,j=1

F ij(|∇w|2)ij − (|∇w|2)t),

IV := Bη2(

n∑
i,j=1

F ij(w2)ij − (w2)t).

By (14) and (9), we obtain that

|I| ≤ 28µ1

R2
η2|∇w|2,

|II| ≤ 16

R
BηMµ1|∇w| ≤ λBη2|∇w|2 +

64

λR2
BM2µ2

1.

and

III =2η4
n∑

i,j,k=1

F ijwkiwkj + 2η4
n∑

i,j,k=1

F ijwkwkij − 2η4
n∑
k=1

wkwkt

=2η4
n∑

i,j,k=1

F ijwkiwkj ≥ 2η4λ|∇2w|2.

where the second equality is due to taking derivative along the direction of xk on
both sides of the equation wt − 1

AF (A∇2w) = f(t).
Now we deal with the fourth term.

IV = 2Bη2
n∑

i,j=1

F ijwiwj + 2Bη2w

n∑
i,j=1

F ijwij − 2Bη2wwt := IV1 + IV2 + IV3.

By (14), we have

IV1 = 2Bη2
n∑

i,j=1

F ijwiwj ≥ 2Bη2λ|∇w|2,

|IV2| = |2Bη2w

n∑
i,j=1

F ijwij | ≤ 2BMη2µ1|∇2w| ≤ λη4|∇2w|2 +
1

λ
B2M2µ2

1,
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|IV3| = |2Bη2w(f(t) +
1

A
F (A∇2w))| ≤ 2BMN + 2BMη2µ0|∇2w|

≤ 2BMN + λη4|∇2w|2 +
1

λ
B2M2µ2

0.

Combining these terms together, we have

0 ≥I + II + III + IV

≥(Bλ− 28µ1

R2
)η2|∇w|2 − 64

λR2
BM2µ2

1 −
1

λ
B2M2(µ2

0 + µ2
1)− 2BMN.

Taking Bλ = 28µ1

R2 + 1, we have

η2|∇w|2 ≤ C(λ, µ0, µ1,M,R, ‖f‖C0([0,T ))).

Combining these cases above, we derive the estimate

η2|∇w|2 ≤ C(λ, µ0, µ1,M,R, ‖∇w0‖C0(Ω), ‖f‖C0([0,T ))).

Hence,

|∇w|2(x, t) ≤ C(λ, µ0, µ1,M, dist(Ω′, ∂Ω), ‖∇w0‖C0(Ω), ‖f‖C0([0,T ))), ∀ x ∈ Ω′.

Now Proposition 3 is proved.

Remark 2. Note that f = −ut(x0,t)
A ,M = 1 in (13), we have

sup
Ω′×[0,T )

|∇w| ≤ C(λ, µ0, µ1,dist(Ω′, ∂Ω), ‖u0‖C2(Ω), osc(u0)).

Proposition 4. Let Ω be a bounded domain in Rn with smooth boundary, n ≥ 2.
Suppose that w ∈ C3,2(Ω× [0, T )) is a solution to (13) for u0 ∈ C2(Ω), ϕ ∈ C3(Ω)
and u ∈ C3,2(Ω× [0, T )) is a solution to (11). Then ∀ σ ≤ σ1, there holds

sup
Ωσ×[0, T )

|∇w| ≤ C,

where σ1 is defined in Section 2, and C is a positive constant depending only on Ω,
n, λ, µ0, µ1, ‖u0‖C2(Ω), osc(u0), ‖ϕ‖C3(Ω).

Proof. We will prove that for 0 < T ′ < T , |∇w| can be bounded on Ωσ × [0, T ′]
independent of T ′ and then take a limit argument.

Denoting by M = ‖w‖L∞(Ω×[0,T )) as in Proposition 3, and N = ‖ut(x0,t)
A

‖L∞([0,T )).
Let

H = eβd|∇h|2 +Bw2,

where h = w − φd, φ = ϕ
A , B and β are positive constants to be determined later.

Denote −φd by P. Suppose H obtains its maximum at (x0, t0) ∈ Ωσ × [0, T ′].

Case 1. x0 ∈ ∂Ω. The same proceeding as the case 1 in Proposition 2 and also
taking β = 4 sup

∂Ω
|bij |+ 2, we obtain

|∇w|2(x0, t0) ≤ C(Ω, n, ‖u0‖L∞(Ω), ‖ϕ‖C1(Ω)).

Case 2. x0 ∈ ∂Ωσ∩Ω. In this case, the estimate follows from the interior gradient
estimate in Proposition 3.

Case 3. t0 = 0. We have

|∇w|2(x0, 0) ≤ C(Ω, n, u0).
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Case 4. (x0, t0) ∈ Ωσ × (0, T ′]. In this case, we compute

0 = Hi = βdie
βd|∇h|2 + eβd(|∇h|2)i+B(w2)i,

0 ≤ Ht = eβd(|∇h|2)t +B(w2)t,

and

0 ≥Hij

=(βdij − β2didj)e
βd|∇h|2 − 2Bβw(diwj + djwi) + eβd(|∇h|2)ij +B(w2)ij .

Then

0 ≥
n∑

i,j=1

F ijHij −Ht

=

n∑
i,j=1

F ij(βdij − β2didj)e
βd|∇h|2 − 2Bβw

n∑
i,j=1

F ij(diwj + djwi)

+B(

n∑
i,j=1

F ij(w2)ij − (w2)t) + eβd(

n∑
i,j=1

F ij(|∇h|2)ij − (|∇h|2)t)

:=J1 + J2 + J3 + J4.

Use (14) again, we have

|J1| = |
n∑

i,j=1

F ij(βdij−β2didj)e
βd|∇h|2|≤µ1(β2+βC̃2)eβdiam(Ω)(2|∇w|2+2|∇P|2),

|J2| = |2Bβw
n∑

i,j=1

F ij(diwj + djwi)| ≤ 4BβMµ1|∇w| ≤ Bλ|∇w|2 +
4

λ
β2M2µ2

1.

For the third term, we have

J3 = 2B

n∑
i,j=1

F ijwiwj + 2B

n∑
i,j=1

F ijwwij − 2Bwwt := J31 + J32 + J33,

where

J31 ≥2Bλ|∇w|2,

J32 ≤2Bµ1|∇2w| ≤ λ

2
|∇2w|2 +

2B2µ2
1

λ
,

J33 ≤2Bµ0M |∇2w|+ 2BNM ≤ λ

2
|∇2w|2 +

2B2µ2
0M

2

λ
+ 2BNM.

For the fourth term, we have

J4 = 2eβd
n∑

i,j,k=1

F ijhkihkj + 2eβd
n∑
k=1

hk(

n∑
i,j=1

F ijhkij − hkt) := J41 + J42,

where
J41 = 2eβdλ|∇2h|2

≥ 2eβdλ(|∇2w|2 + |∇2P|2 + 2

n∑
i,k=1

wikPik)

≥ λ|∇2w|2 − 2eβdiam(Ω)λ|∇2P|2,
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and

J42 =2eβd
n∑
k=1

hk(

n∑
i,j=1

F ijhkij − hkt)

=2eβd
n∑
k=1

(wk + Pk)(

n∑
i,j=1

F ij(wijk + Pijk)− wkt)

=2eβd
n∑

i,j,k=1

wkF
ijPijk + eβd

n∑
i,j,k=1

PkF
ijPijk

≥− eβdiam(Ω)|∇w|2 − C(λ, µ1,Ω, n, ‖u0‖L∞(Ω), ‖ϕ‖C3(Ω)).

Hence
0 ≥J1 + J2 + J3 + J4

≥
(
Bλ− 2µ1(β2 + βC̃2)eβdiam(Ω) − eβdiam(Ω)

)
|∇w|2

− C(λ, µ0, µ1,Ω, n, ‖u0‖L∞(Ω), N, ‖ϕ‖C3(Ω)).

Let Bλ = 2µ1(β2 + βC̃2)eβdiam(Ω) + eβdiam(Ω) + 1, we have

|∇w|2(x0, t0) ≤ C(λ, µ0, µ1,Ω, n, ‖u0‖L∞(Ω), N, ‖ϕ‖C3(Ω)).

Combining these cases together, we have,

|∇w|2 ≤ C(λ, µ0, µ1, ‖u0‖C2(Ω), osc(u0), ‖ϕ‖(C3(Ω)), n,Ω) in Ωσ × [0, T ′].

Since the bound is independent of the choice of T ′, we complete the proof of Propo-
sition 4.

In the following, we will give the global bound for the second derivatives. First
of all, we give the interior estimate for the second derivative of w.

Proposition 5. Suppose w ∈ C4,2(Ω× [0, T )) is a solution to{
wt − 1

AF (A∇2w) = f(t) in Ω× [0, T ),

w(x, 0) = w0(x) in Ω,

for f ∈ C([0, T )) and w0 ∈ C2(Ω). Then ∀ Ω′ ⊂⊂ Ω, then holds

sup
Ω′×[0,T )

|∇2w| ≤ C,

where C is a positive constant depending only on λ, µ0, µ1, dist(Ω′, ∂Ω), ‖w0‖C2(Ω),
‖f‖L∞([0,T )), ‖w‖C1(Ω×[0,T )).

Proof. Firstly, we remark that, to bound the second derivatives, it is sufficient to
give an upper bound for uττ ,∀ τ ∈ Sn−1, due to structure conditions (F1) and (F2)
as well as the boundedness of ‖wt‖C0(Ω×[0,T )) and ‖f‖C0([0,T )).

As before, for any 0 < T ′ < T , we will bound |∇2w| on Ω′ × [0, T ′] independent
of T ′. Denoting by M1 = ‖w‖C1(Ω×[0,T )), M,N are defined as in Proposition 4. For

any x1 ∈ Ω′, let η = (1 − |x−x1|2
R2 )+, where R is small such that R < dist(Ω′, ∂Ω),

and let
H = η2(wζζ +B|∇w|2),

where ζ ∈ Sn−1, and B is a positive constant to be determined later. Suppose H
obtains its maximum at (x0, t0) ∈ Ω× [0, T ′].

Case 1. x0 ∈ Ω ∩ {x : η(x) = 0}. Then

η2wζζ(x) ≤ H(x, t) ≤ H(x0, t0) = 0.
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Case 2. t0 = 0. Then

η2wζζ ≤ H(x, t) ≤ H(x0, 0) ≤ ‖∇2w0‖C0(Ω×(0,T )) +B‖∇w0‖2C0(Ω×(0,T )).

Case 3. x0 ∈ Ω ∩ {x : η(x) > 0}, t0 > 0. At (x0, t0), we have

0 = Hi = (η2)i(wζζ +B|∇w|2) + η2(wζζ +B|∇w|2)i,

0 ≤ Ht = η2(wζζ +B|∇w|2)t,

and
0 ≥ Hij = (2ηηij − 6ηiηj)(wζζ +B|∇w|2) + η2(wζζ +B|∇w|2)ij .

We denote ∂
∂rij
|r=A∇2w F (r) by F ij . Hence

0 ≥η2(

n∑
i,j=1

F ijHij −Ht)

=

n∑
i,j=1

F ij(2η3ηij − 6η2ηiηj)(wζζ +B|∇w|2) + η4(

n∑
i,j=1

F ijwζζij − wζζt)

+Bη4
n∑

i,j=1

F ij((|∇w|2)ij − (|∇w|2)t)

=I + II + III,

where

|I| ≤28µ1

R2
η2(|wζζ |+B|∇w|2) ≤ 14µ1

R2
η4|wζζ |2 +

28µ1

R2
BM2

1 +
14µ1

R2
,

III =2Bη4
n∑

i,j,k=1

F ij(wk(wkij − wkwkt) + wkiwkj) ≥ 2Bη4λ|∇2w|2.

Remark that from the concave structure condition (F3), we have II ≥ 0.
Therefore we have

0 ≥ I + II + III ≥ 2Bη4λ|∇2w|2 − 14µ1

R2
η4|wζζ |2 −

28µ1

R2
BM2

1 −
14µ1

R2
.

Taking B = 14µ1+R2

2λR2 , we have

η4|wζζ |2 ≤ C(λ, µ1,M1, R).

Combining these cases together, we have

η2|wζζ | ≤ C(λ, µ1,dist(Ω, ∂Ω),M1, ‖w0‖C2(Ω)).

Hence

sup
Ω′×[0,T ′]

|∇2w| ≤ C(λ, µ0, µ1,dist(Ω′, ∂Ω),M1, ‖w0‖C2(Ω), ‖f‖L∞([0, T ))).

Noting that some quantities in the bracket above are due to the process when we
bound |∇2w| by the positive part of ∇2w. Thus Proposition 5 now is proved.

Now, we are in position to estimate the second derivative of w near boundary.

Proposition 6. Let Ω be a bounded domain in Rn with smooth boundary, n ≥ 2.
Suppose w ∈ C4,2(Ω × [0, T )) is a solution to (13) for u, u0, ϕ described as in
Proposition 4. Then there is a constant C = C(Ω, n, u0, ϕ, λ, µ1) such that for
σ ≤ σ1,

sup
Ωσ×[0,T )

|∇2w| ≤ C(1 + sup
∂Ω×[0,T )

|wνν |),
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where σ1 is defined in Section 2.

Proof. We will prove that for any 0 < T ′ < T , we can bounded ∇2w on Ωσ× [0, T ′]
independent of T ′.

Let

H(x, t, ξ) = eαd(wξξ +Bw 2
ξ ),

where α and B are positive constants to be determined later and ξ ∈ Sn−1 is a fixed
unit vector. We may assume that |wξξ| ≥ 1, otherwise there is nothing needed to
do. We firstly show the following differential equality

n∑
i,j=1

F ijHij −Ht ≥ 0 mod ∇H on Ωσ × (0, T ′]. (15)

In fact,

0 = Hi = αdiH + eαd(wξξi +B(w 2
ξ )i),

Ht = eαd(wξξt +B(w 2
ξ )t),

Hij = (αdij − α2didj)H + eαd(wξξij +B(w 2
ξ )ij).

Hence
n∑

i,j=1

F ijHij −Ht

=

n∑
i,j=1

F ij(αdij − α2didj)H + eαd(

n∑
i,j=1

F ijwξξij − wξξt)

+Beαd(

n∑
i,j=1

F ij(w2
ξ)ij − (w2

ξ)t)

:=I + II + III,

where II ≥ 0 by (F3) and

|I| ≤ µ1(αC̃2 + α2)eαd|wξξ|+ C0(α, µ1, n,Ω),

III = 2Beαd
n∑

i,j=1

F ijwξiwξj + 2Beαdwξ

n∑
i,j=1

F ij(wξij − wξt)

≥ 2Beαdλ

n∑
i=1

|wξi|2.

According to Cauchy inequality that |wξξ|2 = |
n∑
i=1

wξiξ
i|2 ≤

n∑
i=1

w2
ξi, we have by the

assumption |wξξ| ≥ 1 that

III ≥ 2Beαdλ|wξξ|.

Now we take B = 1
2λ

(
µ1(αC̃ + α2) + C0

)
and then conclude that (15) is valid.

By the maximum principle, the maximum point of H, denoted by (x0, t0, ξ0),
must occur on Ωσ ×{0}×Sn−1,

(
∂Ωσ ∩Ω

)
× [0, T ′]×Sn−1 or ∂Ω× [0, T ′]×Sn−1.

In the following, we deal with these three cases one by one.

Case 1. (x0, t0, ξ0) ∈ Ω× {0} × Sn−1. In this case, we have

wξ0ξ0(x0, t0) ≤ max {H(x0, 0, ξ0), 0} ≤ C(u0, Ω).
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Case 2. (x0, t0, ξ0) ∈
(
∂Ωσ ∩ Ω

)
× [0, T ′] × Sn−1. In this case, we can get the

estimate of the second derivative of w according to the interior estimate derived in
Proposition 5.

Case 3. (x0, t0, ξ0) ∈ ∂Ω× [0, T ′]× Sn−1 . Then we have in this case

0 ≥ Hν = α(wξ0ξ0 +Bw2
ξ0) + wξ0ξ0ν + 2Bwξ0wξ0ν .

Now we firstly assume that ξ0 ⊥ ν.

We denote
n∑

i,j=1

wijτ
iµj by wτµ. Then by taking tangential derivatives of the

boundary condition wν = φ, where φ = ϕ
A , we have

n∑
p,q=1

Cpq
n∑
k=1

(wkν
k)pξ

q
0 =

n∑
p,q=1

Cpqφpξ
q
0 ,

where Cpq = δpq − νpνq = δpq − dpdq in Ωσ, as defined in [10]. Then

wξ0ν = φξ0 −
n∑
k=1

wkν
k
,qξ

q
0 , (16)

it follows that a constant Λ = Λ(ϕ, C̃, ‖∇w‖C0(Ω×[0, T ))) can be found such that

|wξ0ν | ≤ Λ. (17)

Taking double tangential derivatives of the boundary condition, we obtain
n∑

i,j,k,p,q=1

Cjq(Cip(wkν
k)p)qξ

i
0ξ
j
0 =

n∑
i,j,p,q=1

Cjq(Cipφp)qξ
i
0ξ
j
0,

then

wξ0ξ0ν =

n∑
i,j,p,q=1

CjqCip,q φpξ
i
0ξ
j
0 + φξ0ξ0 −

n∑
p,q,k=1

ξp0ξ
q
0(wkpν

k
q + wkqν

k
p + wkν

k
pq)

−
n∑

i,p,q,k=1

ξq0C
ip
,q ξ

i
0(wkν

k)p.

Hence,

|wξ0ξ0ν + 2Bwξ0wξ0ν | ≤ 2C̃|∇2w|+ C(‖φ‖C2(Ω), C̃, ‖∇w‖C0(Ω×[0, T )), B).

Since wt is bounded, F (r) is uniformly elliptic, we have for any (x, t) ∈ Ωσ ×
[0, T ′],

|∇2w(x0, t0)| ≤ C0(λ, µ1, u0)
(
1 + sup

γ∈Sn−1

w+
γγ(x0, t0)

)
.

Without loss of generality, we suppose that sup
γ∈Sn−1

w+
γγ(x0, t0) = wζζ > 0. Denoted

by ζ> the tangential part of ζ to ∂Ω and ζ⊥ the perpendicular part of ζ to ∂Ω. we
then have by (17)

|∇2w(x0, t0)| ≤ C0(1 + wζζ(x0, t0))

≤ C0(1 + wζ>ζ> + 2wζ>ζ⊥ + wζ⊥ζ⊥)

≤ C0(1 + 2Λ + wζ>ζ> + |wνν |)
≤ C0(1 + 2Λ +H(x0, t0, ξ0) + |wνν |)
≤ C0(1 + 2Λ + wξ0ξ0 +B‖∇w‖2

C0(Ω×[0, T ))
+ |wνν |).
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Therefore,

|wξ0ξ0ν + 2Bwξ0wξ0ν |

≤ 2C0C̃
(
1 + wξ0ξ0 + |wνν |

)
+ C(‖φ‖C2(Ω), C̃, ‖∇w‖C0(Ω×[0, T )), B).

Plug this inequality into (3), we then derive by taking α = 2C0C̃ + 1 that

wξ0ξ0(x0, t0) ≤ C(1 + sup
∂Ω×[0,T )

|wνν |), (18)

where C = C(λ, µ1, ‖u0‖C2(Ω), ‖φ‖C2(Ω), C̃, ‖∇w‖C0(Ω×[0, T )), B).

If ξ0 is not a tangential vector, we can also bound it now. Similar as the discussion
above, we denoted by ξ>0 the tangential part of ξ0 and ξ⊥0 the perpendicular part
of ξ0 to ∂Ω. we then have by (16) and (18) that

wξ0ξ0 =wξ>0 ξ>0 + 2wξ>0 ξ⊥0 + wξ⊥0 ξ⊥0
≤ C(1 + |wνν |)

Combining these cases together, we derive that

sup
Ωσ×[0,T ′]

|∇2w| ≤ C(1 + sup
∂Ω×[0,T )

|wνν |),

where C = C(λ, µ1,Ω, n, ϕ, u0, ‖∇w‖C0(Ω×[0, T ))), but independent of T ′. So we

have completed the proof of Proposition 6.

Proposition 7. Let Ω be a bounded domain in Rn with smooth boundary, n ≥ 2.
Suppose w ∈ C4,2(Ω × [0, T )) is a solution to (13) for u, u0, ϕ described as in
Proposition 4. Then there holds

sup
∂Ω×[0,T )

|wνν | ≤ C,

where C is a positive constant depending only on Ω, n, λ, µ0, µ1, ‖u0‖C2(Ω), osc(u0),
‖ϕ‖C2(Ω).

Proof. We will give a T ′ independent bound for |wνν | on ∂Ω × [0, T ′] for any 0 <
T ′ < T , and then take a limit argument. Now we give an estimate for wνν via
barrier function argument. Let

M2 = sup
Ω×[0,T )

|∇2w|.

As before, we consider G(x, t) =
n∑
i=1

wiν
i− ϕ

A as a function defined on Ωσ×[0, T ′].

Remark that |G| < C(‖∇w‖C0(Ω×[0,T )), u0, ‖ϕ‖C0(Ω)) := Ĉ.
Let the barrier function be

H(x, t) = 4ĈK(d−Kd2)±G,

where

K ≥ 1

2σ1
(19)

is a positive constant to be determined later.
It is obvious that

H = 0 on ∂Ω× [0, T ′]. (20)

Observing that if Kσ = 1
2 , we have

H > 0 on
(
∂Ωσ ∩ Ω

)
× [0, T ′]. (21)
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On Ωσ × {0}, remark that G(x, 0) is a function only dependent of u0(x) and we
may assume

K ≥ C̃ +

√√√√max
Ω
|∆G(x, 0)|

4Ĉ
, (22)

where C̃ is from (10).
We now compute ∆H(x, 0) on Ωσ × {0}. Since Kσ = 1

2 , we have

∆H(x, 0) = 4ĈK(∆d− 2Kd∆d− 2K)±∆G

≤ 4ĈK(C̃ − 2K)±∆G

≤ −4ĈK2 ±∆G ≤ 0.

Joint with the fact H(x, 0) ≥ 0 on ∂Ωσ by (20) and (21), we deduce that

H > 0 on Ωσ × {0}.

We now set out to consider the function H(x, t) on the domain Ωσ × (0, T ′].
Denoted by F ij = ∂

∂rij
|r=A∇2w F (r), then on Ωσ × (0, T ′],

n∑
i,j=1

F ijGij −Gt

=

n∑
i,j,k=1

F ijwijkν
k −

n∑
k=1

wktν
k +

n∑
i,j,k=1

F ij(wikν
k
j + wjkν

k
i )−

n∑
i,j=1

1

A
F ijϕij

=

n∑
i,j,k=1

F ij(wikν
k
j + wjkν

k
i )− 1

A

n∑
i,j=1

F ijϕij ,

Hence,

|
n∑

i,j=1

F ijGij −Gt| ≤ C2(µ1,Ω, n, ‖u0‖C2(Ω), ‖ϕ‖C2(Ω))(1 +M2).

It follows that on Ωσ × (0, T ′]

n∑
i,j=1

F ijHij −Ht

=4ĈK

n∑
i,j=1

F ij(dij − 2Kdidj − 2Kddij)± (

n∑
i,j=1

F ijGij −Gt)

≤4ĈK(µ1C̃ − 2Kλ) + C2(1 +M2),

≤− 4ĈλK2 + C2(1 +M2),

≤0

provided

K ≥ µ1C̃

λ
+

√
C2(1 +M2)

4λĈ
. (23)
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Combing (19), (22) and (23), we set

K =
1

2σ1
+
µ1C̃

λ
+ C̃ +

√
C2(1 +M2)

4λĈ
+

√√√√max
Ω
|∆G(x, 0)|

4Ĉ

and

σ =
1

2K
,

then

Hν ≥ 0 on ∂Ω× [0, T ′].

On the other hand, we have

Hν =4ĈK ±Gν

=4ĈK ± (wklν
kνl + wkν

k
l ν

l − 1

A
ϕlν

l).

Hence we obtain by Proposition 6 that for any (x, t) ∈ Ωσ × [0, T ′],

|wνν | ≤ C
√

1 +M2 ≤ C
√

1 + |wνν |,

Thus,

|wνν | ≤ C.
and we complete the proof of Proposition 7.

Proof of Lemma 3.2. We now can continue the proof of Lemma 3.2. Almost the
same proceeding as the final part of the proof of Lemma 2.2, we can derive by
(F1), (F2) and (F4) the following uniformly parabolic differential equation

∂g
∂s − F∞(∇2g) = 0 in Ω× [0, 1],

g(x, 0) = g0(x) on Ω× {0},
∂g
∂ν = 0 on ∂Ω× [0, 1],

(24)

where g0(x) is a continuous function defined on Ω with g0(x0) = 0 and sup
x∈Ω
|g0(x)| ≤

1.
It follows from F∞(0) = 0 which is a corollary of (F1) that (24) can also be

expressed as
∂g
∂s −

∑n
i,j=1

∫ 1

0
F ij∞(t∇2g)dt · gij = 0 in Ω× [0, 1],

g(x, 0) = g0(x) on Ω× {0},
∂g
∂ν = 0 on ∂Ω× [0, 1].

However, just as the proof of Lemma 2.2 we have that g(x0, s) = 0 for s ∈ [0, 1] and
|g(x̄, 1)| = 1 for some x̄ ∈ Ω. This also violates the maximum principle and Hopf
Lemma for the parabolic differential equations. Hence we derive (12) and complete
the proof of Lemma 3.2.

Theorem 3.3. Suppose u is a smooth solution to (11), then we have the estimate

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C,

where C is a constant independent of t and T .
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Proof. The equation for v is
vt − F (∇2v) = −ut(x0, t) in Ω× (0, T ),

vν = ϕ on ∂Ω× (0, T ),

v(x, 0) = u0(x)− u0(x0) in Ω.

By Lemma 3.2 we have |v| ≤ A0, a similar proceeding as Proposition 3 and Propo-
sition 4 gives

‖v‖C2(Ω×[0,T )) ≤ C.
Combining this with Lemma 3.1 gives that

‖ut(·, t)‖C(Ω) + ‖∇u(·, t)‖C(Ω) + ‖∇2u(·, t)‖C(Ω) ≤ C, t ∈ [0, T ).

This finishes the proof of Theorem 3.3.
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