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Abstract

Phase transformational shakedown of a structure refers to a status that plastic strains cease
developing after a finite number of loading cycles, and subsequently the structure undergoes only
elastic deformation and alternating phase transformations with limited magnitudes. Due to the
intrinsic complexity in the constitutive relations of shape memory alloys (SMA), there is as yet
a lack of effective methods for modeling the mechanical responses of SMA structures, especially
when they develop both phase transformation and plastic deformation. This paper is devoted to
present an algorithm for analyzing shakedown of SMA structures subjected to cyclic or varying
loads within specified domains. Based on the phase transformation and plastic yield criteria of
von Mises-type and their associated flow rules, a simplified three-dimensional phenomenological
constitutive model is first formulated accounting for different regimes of elastic–plastic deforma-
tion and phase transformation. Different responses possible for SMA bodies exposed to varying
loads are discussed. The classical Melan shakedown theorem is extended to determine a lower
bound of loads for transformational shakedown of SMA bodies without necessity of a step-by-
step analysis along the loading history. Finally, a simple example is given to illustrate the appli-
cation of the present theory as well as some basic features of shakedown of SMA structures. It is
interesting to find that phase transformation may either increase or decrease the load-bearing
capacity of a structure, depending upon its constitutive relations, geometries and the loading
mode.
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1. Introduction

Shape memory alloys (SMAs) such as NiTi and CuZnAl possess the ability to recover
their original shapes upon heating or unloading even after severe deformation, i.e., the
properties of shape memory and superelasticity (or pseudoelasticity). The underlying
mechanisms of these observed phenomena are either the crystalline structural transfor-
mation from the austenite to the martensite phase and the reverse process or the reori-
entations of different martensite variants. Owing to these unique and remarkable
characteristics, SMAs have been applied in a number of different fields such as medical
engineering and smart structures (Seelecke and Müller, 2004). Some micromechanical
and phenomenological models have been developed for simulating the complex constitu-
tive responses under mechanical and/or thermal loadings (Sun and Hwang, 1993a,b;
Brinson, 1993; Shaw and Kyriakides, 1995; Birman, 1997; Qidwai and Lagoudas,
2000; Lagoudas and Entchev, 2004; Liu et al., 2006; Müller and Bruhns, in press). When
subjected to an applied stress higher than the yield stress, an SMA may also develop
plastic deformation, besides elastic and transformational deformations. Considerable
interest has been attracted to investigate theoretically and experimentally the plastic con-
stitutive relations of SMAs (Fischer et al., 1996; Levitas, 1998, 2002; Iwamoto, 2004;
Qian et al., 2005). However, there is as yet a lack of effective methods for analyzing
the coupled behavior of elasticity, plasticity and phase transformation of SMA struc-
tures, especially in the case of cyclic or complex loading.

For elastic–plastic structures or components subjected to mechanical and/or thermal
loads varying with time, shakedown presents as a necessary condition of safety assessment
(Koiter, 1960; König, 1987). A structure in a non-shakedown or inadaptation condition
under varying loads may fail by one of the two failure modes, namely alternating plasticity
(or low cycle fatigue) and incremental plastic collapse (or ratcheting). Both alternating and
incremental plastic deformations cause successive accumulation of damage associated with
nucleation, growth and coalescence of microcracks or microvoids. Therefore, of special
interest is to evaluate from the viewpoint of damage mechanics whether a structure will
shake down or not under a given load domain (Hachemi and Weichert, 1992; Feng and
Yu, 1994, 1995; Druyanov and Roman, 1998, 2004; Weichert and Hachemi, 1998; Polizz-
otto et al., 2001). The shakedown of a body indicates that the damage stops evolving after
a finite number of loading cycles.

The methods of shakedown analysis came into existence in the 1930s. Melan (1938) and
Koiter (1956) proved the two crucial shakedown theorems, namely the static shakedown
theorem (also referred to as Melan or lower bound shakedown theorem) and the kinematic
shakedown theorem (also referred to as Koiter or upper bound shakedown theorem), which
constitute the backbone of shakedown theory of elastoplastic structures. Accordingly, the
numerous methods of shakedown analysis developed thereafter can be divided into two
classes, static and kinematic. In the past decades, the shakedown theory has developed
rapidly, especially in the following aspects. Firstly, the classical shakedown theorems, orig-
inally proved under the simplifying assumptions of geometric linearity and elastic–perfectly
plastic constitutive relations obeying the associated flow law, have been extended to
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broader classes of problems accounting for the effects of high temperature, strain- or work-
hardening, nonlinear geometry, dynamics, damage and non-associated plastic constitutive
relations, among others (König and Maier, 1981; König, 1987; Polizzotto, 1982; Gross-
Weege, 1990; Pham, 1992, 2001; Pycko and Maier, 1995; Feng and Liu, 1996; Feng and
Gross, 1999; Weichert and Maier, 2000; Bousshine et al., 2003; Nguyen, 2003). Secondly,
various theoretical and numerical shakedown analysis methods have been established for
solving technologically important problems, among which finite element and boundary ele-
ment methods often play a significant role (e.g., Gross-Weege, 1997; Stein et al., 1993; Zou-
ain et al., 2002; Vu et al., 2004; Abdel-Karim, 2005; Liu et al., 2005). Recently, considerable
attention has been paid on damage and shakedown behavior of heterogeneous materials or
composites using macro/micro or multiscale numerical approaches (Derrien et al., 1999;
Zouain and Silveira, 1999; Li et al., 2003; Magoariec et al., 2004). Thirdly, the shakedown
theory has been applied with success in a number of engineering problems such as the con-
struction of nuclear reactors, highways and railways, and employed as one of the tools of
structural design and safety assessment in some design standards, rules and regulations
(Weichert and Maier, 2000; Maier, 2001). Shakedown theory also provides an effective tool
for understanding the physical mechanisms of friction and fretting wear of materials
(Anderson and Collins, 1995; Ambrico and Begley, 2000).

SMA structures used in engineering are usually subjected to loads that are cyclic or
varying within prescribed bounds. In order to prevent failure of such a structure, it is obvi-
ously necessary to judge whether it will shake down or inadapt within these bounds, or in
other words, to determine a load domain within which the structure will be safe. There-
fore, the present paper is aimed to develop a method for analyzing the behavior of
SMA bodies under varying loads with time. The static shakedown analysis method is used
here because it leads to a lower bound (a conservative estimate) of the shakedown limit
load. The outline of the paper is as follows. Presented in Section 2 is a simplified phenom-
enological constitutive model that provides a description of the most essential features for
SMAs. The associated flow rule is assumed for both phase transformation and plastic
strains. In Section 3, possible mechanical responses of SMA bodies subjected to varying
loads are discussed. In Section 4, the classical Melan static shakedown theorem is extended
to SMA structures with alternating phase transformations. Finally, an illustrative example
is given to show the application of the present theory and to examine the influence of
phase transformation on shakedown behavior.

2. Constitutive relation of SMAs

Constitutive relations of SMAs, especially those of polycrystals used in most real appli-
cations, are intrinsically complicated. Though some constitutive models of great theoret-
ical interest have been established based on micromechanics or non-equilibrium
thermodynamics (Sun and Hwang, 1993a,b; Brinson, 1993; Shaw and Kyriakides, 1995;
Birman, 1997; Qidwai and Lagoudas, 2000; Lagoudas and Entchev, 2004), they are gen-
erally difficult to be applied in analysis of actual engineering structures. Therefore, some
approximate simplifications are necessary for implementing them in simulation of
mechanical responses of SMA structures, especially for cases of complex loading. Here,
we present a simplified three-dimensional elastic-transformational–plastic constitutive
relation of SMAs, which is tractable from both analytical and computational viewpoints.
Consider an initially isotropic polycrystalline SMA material, where all the grains are
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completely randomly oriented at the initial state. The characteristic sizes of grains are so
small that a material point at the macroscopic scale can be considered as an ensemble of
many grains. The deformation process is assumed quasi-static and isothermal so the effect
of transformation induced temperature change and the dynamic effect can be neglected.
Assume further that the magnitudes of deformation and strains are relatively small, and
then we employ the symmetric Cauchy stress tensor rij and the strain tensor eij ¼
1
2
ðui;j þ uj;iÞ, where ui is the displacement vector. A comma preceding an index i stands

for the partial differentiation with respect to the coordinate xi in a Cartesian coordinate
system. Small strain formulations allow us to easily understand key ideas without unnec-
essary formal complications and to derive simpler analytical or numerical solutions with
rather good accuracy for many engineering structures. The small strain formulations
can be extended to the case of finite strains along the lines presented by, e.g., Levitas
(1998, 2002), among others.

2.1. Uniaxial stress–strain relations

To illustrate some basic features of the simplified constitutive model adopted here, the
uniaxially tensile stress–strain relation of an SMA undergoing phase transformation and
elastic–plastic deformation is first formulated. The loading–unloading curves are schema-
tized in Fig. 1(a) and (b), without and with plastic deformation, respectively. The consti-
tutive relation under monotonically proportional loading in Fig. 1(b) contains four stages,
including elasticity (OA), transformation from the austenitic to the martensitic phase
Fig. 1. Simplified stress–strain relation of SMAs under uniaxial tension: (a) without and (b) with plastic
deformation.
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(AB), post-transformational elasticity (BC), and plasticity (CD). In the case of uniaxial
tension, the stress–strain relations of these four regimes are written as

r ¼

Ee for e 6 rT=E;

rT for rT=E 6 e 6 rT=E þ êT;

Eðe� êTÞ for rT=E þ êT 6 e 6 ry=E þ êT;

ry for e P ry=E þ êT;

8>>><
>>>:

ð1Þ

where E denotes the Young’s modulus, rT the critical stress of forward phase transforma-
tion onset, ry the plastic yield stress, and êT the saturation value of the transformation
strain.

The unloading constitutive responses of an SMA include three regimes, corresponding
to DF, FG and GH in Fig. 1(b), respectively. Similarly to Eq. (1), the corresponding
stress–strain relations are expressed as

r ¼
Eðe� êT � epÞ for e P rRT=E þ ep þ êT;

rRT for rRT=E þ ep 6 e 6 rRT=E þ ep þ êT;

Eðe� epÞ for ep 6 e 6 rRT=E þ ep;

8><
>: ð2Þ

where rRT stands for the critical stress of onset of reverse phase transformation, and ep the
plastic strain developed before unloading. The critical stresses rT and rRT show more pro-
nounced dependences on temperature than ry (Shaw and Kyriakides, 1995). Without loss
of generality, it might be assumed that ry > rT > rRT P 0, that is, the SMA has the prop-
erty of superelasticity under the considered thermomechanical condition. We also assume
that an SMA cannot develop plastic deformation until the phase transformation process
has been fully completed and the transformation strain has become saturated. In the case
of isothermal or quasi-static mechanical loading, all the three parameters, ry, rT and rRT,
may be considered as material constants depending upon the service temperature of the
considered structure.

In the following subsections, the above constitutive model will be reformulated in a
three-dimensional incremental form.

2.2. Elastic and plastic strains

The total strain tensor eij of an SMA material is additively decomposed as

eij ¼ ee
ij þ ep

ij þ etr
ij ; ð3Þ

where ee
ij, ep

ij and etr
ij denote the elastic, plastic and transformation strains, respectively.

The elastic strain rates _ee
ij are related to the stress rates _rij by Hooke’s law, i.e.,

_ee
ij ¼ Se

ijkl _rkl, where Se
ijkl is the elastic compliance tensor. It is generally reasonable to

assume that neither phase transformation nor plastic deformation affects Se
ijkl and hence

Se
ijkl remain constants for the whole deformation process.

The onset of plastic deformation is determined by the von Mises yield condition defined
in terms of the equivalent stress req ¼ ð3J 2Þ1=2 ¼ 3

2
sijsij

� �1=2
as

wpðrijÞ ¼ req ¼ ð3J 2Þ1=2 ¼ ry; ð4Þ
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where ry is the plastic yield stress of Fig. 1, sij ¼ rij � 1
3
rkkdij is the deviatoric stress tensor

with dij being the Kronecker delta, and J 2 ¼ 1
2
sijsij is the second invariant of sij. The von

Mises yield surface is shown in the p-plane in Fig. 2. Assuming that the SMA is perfectly
plastic and obeys the associated flow rule, the plastic strain rate is given by

_ep
ij ¼ kp

owp

orij
¼ kp

3sij

2req

; ð5Þ

where kp is the multiplier of plastic strains (Koiter, 1960).

2.3. Phase transformation strains

A macroscopic criterion of phase transformation onset for an SMA plays the same role
as that of the plastic yield criterion for an elastoplastic material, and describes the domain
boundary of elastic deformation, within which no phase transformation occurs. For an
isotropic material, the criterion of forward phase transformation (A!M) onset is depen-
dent upon only three independent invariants of the stress tensor rij (Raniecki and Lexcel-
lent, 1998), which can be chosen, for example, as

J 1ðrijÞ ¼ rm ¼
1

3
rii; J 2ðrijÞ ¼

1

3
r2

eq ¼
1

2
sijsij; J 3ðrijÞ ¼ detðsijÞ; ð6Þ

where rm is the hydrostatic stress. Generally, the hydrostatic stress has little influence on
the occurrence of phase transformation in SMAs and plastic deformation. In addition,
some experimental observations demonstrate that J2 plays a dominant role in onset of
phase transformation in comparison with J3 (e.g., Raniecki and Lexcellent, 1998). There-
fore, a J2-based (von Mises-type) criterion of forward phase transformation is adopted
here as

wTðrijÞ ¼ req ¼ ð3J 2Þ1=2 ¼ rT; ð7Þ
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Fig. 2. Forward and reverse phase transformation surfaces and plastic yield surface in the principal stress space
(p-plane).
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where rT denotes the critical value of von Mises equivalent stress for A!M transforma-
tion to occur. The smooth transformation surface in Eq. (7), which satisfies the require-
ment of strict convexity, is schematized in the isoclinal p-plane of the principal stress
space in Fig. 2. The presented formulations can readily be extended to other types of phase
transformation surfaces such as those with corners.

No strain hardening during phase transformation is considered here for simplicity. Sim-
ilar to the classical theory of plasticity, the transformation strain rates follow the normal-
ity rule, i.e., they are normal to the transformation surface in the stress space as

_etr
ij ¼ kT

owT

orij
; ð8Þ

where the flow multiplier kT satisfies

kT ¼ 0 if ðiÞ wT < rT; or ðiiÞ wT ¼ rT and _wT ¼
owT

orij
_rij < 0;

kT P 0 if wT ¼ rT and _wT ¼ 0:

ð9Þ

In the latter case in Eq. (9), the value of kT should be determined by the consistency
condition.

Substituting Eq. (7) into (8) leads to

_etr
ij ¼ kT

3sij

2req

: ð10Þ

It is also seen from Eq. (10) that the phase transformation of an SMA is volume-invariant,
as is consistent with experiment results (see, e.g., Orgéas and Favier, 1998; Bouvet et al.,
2004).

Different from traditional plasticity, phase transformations of SMAs result from the
diffusionless change in crystallographic structures. Once the transformation process has
been completed, the transformation strains will reach its saturation value (� 5% for NiTi
SMA) though forward and reverse phase transformations can be repeated for many times.

An equivalent transformation strain and an equivalent transformation strain rate are
defined as

etr
eq ¼

2

3
etr

ije
tr
ij

� �1
2

¼ 2

3
e0trij e0trij

� �1
2

; ð11Þ

_etr
eq ¼

2

3
_etr

ij _etr
ij

� �1
2

¼ 2

3
_e0trij _e0trij

� �1
2

; ð12Þ

where e0ij ¼ eij � 1
3
ekkdij is the deviatoric strain tensor. Then the transformation strain is

limited by

etr
eq 6 êT; ð13Þ

where êT is the maximum equivalent transformation strain. êT is considered to be a mate-
rial constant (�5% for NiTi SMA) and can be obtained from experiment such as the uni-
axial tensile stress–strain curve shown in Fig. 1. Substituting Eq. (10) into (12), we
immediately see that

kT ¼ _etr
eq: ð14Þ
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In addition, it is easy to understand that analogously to the constitutive theory of perfectly
plastic materials, for an SMA with perfectly plastic type transformation behavior as we
studied in this paper, if _rij are the stress rates corresponding to the transformation strain
rates _etr

ij , one always has

_rij _e
tr
ij ¼ 0: ð15Þ

After the forward (A!M) transformation is fully completed, the material can bear a
further increase in the applied stress. In the case of proportional loading, the SMA with
saturated A!M transformation strain exhibits again a linearly elastic stress–strain
response, corresponding to the BC regime in Fig. 1 under uniaxial tension.

When non-proportional loads are applied to the SMA, however, the martensite phase
in some grains with certain orientations may deform by converting one variant to another
which is energetically more favorable under the given stress state. Such conversions among
different martensite variants result in the reorientation of transformation strains at the
macroscopic scale. Since the characteristic sizes of grains are assumed to be sufficiently
small, the reorientation process of the martensite phases in the SMA with saturated phase
transformation is considered to be continuous. The transformation strain tensor in parallel
with the deviatoric stress tensor is the most favorable energetically. Based on these consid-
erations, we assume that the components of the transformation strain tensor are propor-
tional to the deviatoric stresses, i.e.,

etr
ij ¼ e0trij ¼ a

3sij

2req

: ð16Þ

Considering the saturation value of the equivalent transformation strain etr
eq ¼ eT, the coef-

ficient a in the BC regime is determined as

a ¼ eT: ð17Þ

This relation holds for both the loading and unloading regimes provided that the forward
(A!M) phase transformation has been fully completed and the reverse (M! A) phase
transformation has not started.
2.4. Reverse phase transformation

During unloading, the material will experience first elastic deformation and, probably,
reorientations of martensite variants. The change in the transformation strains induced by
reorientations of martensite variants is still described by Eqs. (16) and (17).

When the stress is unloaded to the reverse transformation surface, the martensitic phase
will transform to the austenitic phase. Similar to Eq. (7), the reverse transformation sur-
face is assumed as

wRTðrijÞ ¼ reqðrijÞ ¼ rRT; ð18Þ

where rRT stands for the critical von Mises stress for the onset of reverse phase transfor-
mation (M! A). As a result of the hysteresis effect, the critical stress rRT of reverse trans-
formation is smaller than that of forward transformation, rT.

The reverse transformation strain rate tensor is also required by the associated flow rule
to be normal to the surface defined by Eq. (18). Different from the forward transformation



X.-Q. Feng, Q.P. Sun / International Journal of Plasticity 23 (2007) 183–206 191
and plastic strains, the reverse transformation strains are directed inward to the transfor-
mation surface. Therefore, one has

_etr
ij ¼ �kRT

owRT

orij
: ð19Þ

The flow multiplier kRT is determined from the following relations as well as the consis-
tency condition

kRT ¼ 0 if ðiÞ wRT > rRT; or ðiiÞ wRT ¼ rRT and _wRT ¼
owRT

orij
_rij > 0;

kRT P 0 if wRT ¼ rRT and _wRT ¼ 0:

ð20Þ
3. Response of SMA structures under variable loading

Consider a three-dimensional SMA structure occupying the volume V surrounded by
the surface S and subjected to quasi-static loads varying within prescribed domains.
Throughout the present paper, it is assumed that there will be no stress singularity in
the structure, which may be caused by, e.g., cracks or sharp notches. The boundary con-
ditions of the structure are expressed as

rijðx; tÞnj ¼ T iðx; tÞ for x 2 ST; ð21Þ
uiðx; tÞ ¼ �uiðx; tÞ for x 2 Su; ð22Þ

where the vector x denotes the coordinate, Ti(x, t) the tractions specified on ST, and �uiðx; tÞ
the displacements specified on Su, with ST [ Su = S.

For an SMA structure undergoing elastic, plastic and transformational deformations,
the total stress field rij(x, t) can be decomposed as

rijðx; tÞ ¼ re
ijðx; tÞ þ qp

ijðx; tÞ þ qtr
ijðx; tÞ; ð23Þ

where re
ijðx; tÞ denotes the elastic stress field induced by the applied loads in a fictitious lin-

ear elastic structure with the same geometry as the actual one, qp
ijðx; tÞ and qtr

ijðx; tÞ stands
for the stress changes (or residual stresses) due to plastic deformation and phase transfor-
mation, respectively. The total stresses rij(x, t) satisfy the equilibrium equation

rij;jðx; tÞ þ fiðx; tÞ ¼ 0; ð24Þ
throughout the structure, where fi(x, t) denote the body forces. The stress fields qp

ijðx; tÞ and
qtr

ijðx; tÞ are self-equilibrating, that is,

qp
ij;jðx; tÞ ¼ 0; qtr

ij;jðx; tÞ ¼ 0 for all x 2 V ; ð25Þ
qp

ijðx; tÞnj ¼ 0; qtr
ijðx; tÞnj ¼ 0 for all x 2 ST: ð26Þ

The varying loads are applied to the structure via the quasi-static change of fi(x, t), Ti(x, t)
and �uiðx; tÞ with time t.

The presence of phase transformation and plastic deformation makes the mechanical
responses of SMA structures more complicated than elastoplastic structures, especially
when they are subjected to cyclic or stochastically varying loads. Generally, the follow-
ing six different responses of deformation and failure are possible for an SMA
structure.
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(i) Purely elastic response. If the loads vary within sufficient small domains, the defor-
mation of the structure will be purely elastic, and neither phase transformation nor plastic
strain will occur. Such purely elastic response is the most desirable in design of most engi-
neering structures.

(ii) Elastic shakedown. If both phase transformation and plastic deformation cease
developing further after some initial loading cycles, the structure will behave as a com-
pletely elastic one in the subsequent cycles. Such constitutive response with stabilized plas-
tic deformation and phase transformation is called elastic shakedown or adaptation, as
shown in Fig. 3(a) and (b), where P and D designate a load and the corresponding dis-
placement, respectively. However, it will be shown in Section 4 that due to reverse phase
transformation, elastic shakedown seldom occurs in SMA structures with rRT P 0 as long
as the applied elastic stresses violate the criterion of forward phase transformation.

(iii) Alternating phase transformation. A typical response for SMA structures under cyc-
lic loading is that both forward and reverse phase transformations happen in every loading
cycle and they tend to cancel each other out. Thus, the total transformation strains remain
small though phase transformation does not stop evolving. Fig. 3(c) schematizes a cyclic
load–displacement curve of an alternating phase transformation process, where no plastic
deformation occurs in the structure within the given load domains.

Alternating transformation may also happen in a body if it has developed some plastic
deformation in a finite number of initial loading cycles, as shown in Fig. 3(d). The plastic
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Fig. 3. Different responses of an SMA structure under varying loads: (a) elastic shakedown without plastic
deformation, (b) elastic shakedown with plastic deformation, (c) alternating phase transformation without plastic
deformation, (d) alternating phase transformation with plastic deformation, (e) incremental plastic collapse
(ratcheting), (f) alternating plastic failure (low cycle fatigue).
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deformation induces a residual stress field qp
ijðxÞ, which will not change further during the

subsequent alternating transformation process. In this situation, the self-equilibrating field
qtr

ijðx; tÞ varies with time while qp
ijðxÞ does not. The plastic deformation makes the distribu-

tion of the total stresses more uniform such that the condition

wp½rijðx; tÞ� ¼ w½re
ijðx; tÞ þ qp

ijðxÞ þ qtr
ijðx; tÞ� 6 ry; ð27Þ

is satisfied throughout the structure and for the whole load domain specified. Thus during
the subsequent varying loading, the structure will behave as if it has an infinitely elastic-
phase transformational constitutive relation, i.e., ry!1.

It is worthy of mentioning again that in contrary to plastic strains, which can be accu-
mulated to very large values and cause incremental plastic collapse (ratcheting) of a struc-
ture, the amount of transformation strains is bounded by the saturation value, êT.
Therefore, the phase transformation strains can evolve only in an alternating manner even
if they cannot stop developing with the varying loading. Such a behavior with alternating
and limited transformation strains and stabilized plastic strains may be referred to as
phase transformational shakedown.

In the case of alternating transformation, the strains etr
ij due to forward and reverse

phase transformations over a complete loading cycle from time t0 to t0 + T always cancel
each other out. Then both the residual stress field qtr

ij and the corresponding elastic strain
field etrðeÞ

ij ¼ Se
ijklq

tr
kl return to their original distributions at the beginning of the cycle.

Therefore, it is evident that both the works of any time-independent stress field, denoted
by �rijðxÞ, to _etr

ij and _etrðeÞ
ij over a complete loading cycle must vanish. That is,Z t0þT

t0

Z
V

�rijðxÞ_etr
ijðx; tÞdV dt ¼ 0; ð28Þ

Z t0þT

t0

Z
V

�rijðxÞ_etrðeÞ
ij ðx; tÞdV dt ¼ 0: ð29Þ

For most SMAs, phase transformation does not cause evident degradation in their
mechanical properties (e.g., stiffness and strength). In other words, damage evolution with
transformation process is generally slow. SMA structures can generally bear a very large
number of phase transformation cycles without failure, as required for most engineering
designs. Therefore, both the elastic shakedown and the above defined transformational
shakedown are usually considered to be safe for SMA structures.

(iv) Incremental plastic collapse. If the plastic strain increments in each loading cycle are
of the same direction, the total plastic deformation will become larger and larger with suc-
cessive loading cycles, as shown in Fig. 3(e). The continuous increase in plastic strains will
cause excessive deformation and damage accumulation associated with nucleation, growth
and coalescence of microcracks or microvoids, and the final failure of the system. This is
called incremental plastic collapse or ratcheting (König, 1987), during which alternating
phase transformation usually happens simultaneously.

(v) Alternating plasticity. If the plastic strains change their signs and cancel each other
out in each cycle of loading (Fig. 3f), the total plastic strain increments tend to be zero.
Then after some initial loading cycles during which a residual stress field may form in
the body as a result of plastic deformation, the stress and strain fields become cyclic. In
other words, the total stresses and strains after a complete cycle of loading always return
to their values (generally not zero) at the beginning of this cycle. Although the total
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deformation increments tend to vanish, the amount of plastic work or dissipation accumu-
lates infinitely with consecutive loading cycles and leads to progressive damage of materi-
als, associated mainly with evolution of microcracks. The structure will finally fail in a
rather brittle manner after a relatively small number of loading cycles. This phenomenon
is referred to as alternating plastic failure, low cycle fatigue, or sometimes plastic shake-
down in the literature.

(vi) Instantaneous failure. This happens if the applied loads are equal to or higher than
the instantaneous loading carrying capacity (i.e., the plastic limit load) of a structure.
When the loads reach the carrying capacity of a structure made of an elastic-transforma-
tional–perfectly plastic SMA material, plastic collapse occurs in the sense that plastic
deformation may increase infinitely under constant loads and the structure cannot support
any further increase in the external loads. We will not pay much attention in this paper on
determination of plastic limit loads since the limit analysis may be considered as a special,
simplified case of shakedown analysis discussed below.

4. Lower bound shakedown theorem

4.1. Elastic shakedown

Due to the complexity in the mechanical responses of SMA structures, which
involve forward and reverse phase transformations as well as plastic deformation, an
extension of the classical shakedown theorems for elastoplastic structures to SMA
structures is not straightforward even when the simplified constitutive relation in Sec-
tion 2 is adopted.

At first, we examine the condition of elastic shakedown. As aforementioned, two
mechanisms may contribute to the residual stress field after the applied loads are com-
pletely removed. One is plastic deformation, and the other phase transformation. If an
SMA body can shake down elastically with stabilized plastic deformation and transfor-
mation strains, then of course two time-independent residual stress fields qp

ijðxÞ and
qtr

ijðxÞ, corresponding respectively to plastic deformation and phase transformation devel-
oped in the previous loading history, must have formed such that the response of the
structures becomes purely elastic in the consecutive loading cycles. Let �ep

ijðxÞ and �etr
ijðxÞ

denotes respectively the plastic strain and transformation strain fields corresponding to
qp

ijðxÞ and qtr
ijðxÞ. Clearly, the elastic shakedown requires that: (1) the criterion for plastic

deformation

wp½rijðx; tÞ� ¼ wp½re
ijðx; tÞ þ qp

ijðxÞ þ qtr
ijðxÞ� 6 ry ð30Þ

is violated nowhere in the structure for any loading within the specified load domain, (2)
the criterion for the occurrence of forward phase transformation

wT½rijðx; tÞ� ¼ wT½re
ijðx; tÞ þ qp

ijðxÞ þ qtr
ijðxÞ� 6 rT ð31Þ

is satisfied for all x where �etr
ijðxÞ ¼ 0, and (3) the criterion for reverse phase transformation

onset

wRT½rijðx; tÞ� ¼ wRT½re
ijðx; tÞ þ qp

ijðxÞ þ qtr
ijðxÞ�P rRT ð32Þ

is satisfied for all x where �etr
ijðxÞ 6¼ 0.
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However, the above necessary conditions for elastic shakedown can seldom be satisfied
for SMA bodies with rRT P 0 provided that the ‘‘elastic’’ stresses re

ijðx; tÞ are beyond the
surface of forward phase transformation, i.e.,

wT½re
ijðx; tÞ� > rT; ð33Þ

anywhere in the structure, no matter whether plastic deformation has happened.
To illustrate this statement, for instance, we consider such simple systems as bars,

beams and plane frames, which are of extensive engineering interest. The stress states at
any points in such systems are approximately uniaxial. Assume that the applied elastic
stress at a point x0 changes repeatedly, for instance, between 0 and re

max > rT > 0 under
the given changing domains of loads. To meet the forward transformation criterion
(31), there must exist a compressive residual stress q ¼ qp þ qtr

6 �ðre
max � rTÞ at this

point. Then during unloading, the stress r(x0) will decrease from re
max þ q 6 rT to

q 6 0. Thus, a necessary condition for non-occurrence of alternating phase transformation
at x0 is that the critical stress rRT of reverse phase transformation is compressive and
rRT 6 �ðre

max � rTÞ < 0. Similarly, if the maximum stress re
maxðx0Þ at x0 is higher than

ry, elastic shakedown requires that rRT 6 �ðre
max � ryÞ < 0. Therefore, for a structure

made of a superelastic SMA with rRT > 0, one cannot find two stable fields qp
ijðxÞ and

qtr
ijðxÞ such that all the three conditions in (30)–(32) are met simultaneously.

A three-dimensional demonstration can be made similarly. According to the above
analysis, therefore, a residual stress field, induced either by plastic deformation or phase
transformation, can seldom prevent the occurrence of alternating phase transformation
and make the system shake down elastically if the applied cyclic elastic stresses violate
either the criterion of phase transformation or that of plastic yielding. The occurrence
of elastic shakedown with stabilized plastic deformation and phase transformation strains
requires that the threshold value rRT of reverse phase transformation is compressive and
sufficiently low.
4.2. Extended Melan theorem for transformational shakedown

As aforementioned, both elastic shakedown and phase transformational shakedown
may be considered to be safe states for SMA structures, and the former can seldom occur
except under special thermal, mechanical and structural conditions. Therefore, our
emphasis is placed here on the condition of transformational shakedown of an SMA
structure.

The extended lower bound or Melan shakedown theorem for phase transformational
shakedown is expressed by the following two statements:

(i) An SMA structure cannot transformationally shake down if one cannot find a time-

independent residual stress field �qp
ijðxÞ induced by plastic deformation and a time-depen-

dent residual stress field �qtr
ijðx; tÞ induced by phase transformation such that

wp½rijðx; tÞ� ¼ w½re
ijðx; tÞ þ �qtr

ijðx; tÞ þ �qp
ijðxÞ� 6 ry ð34Þ

is satisfied throughout the structure and for the whole specified load domain.

(ii) If one can find a time-independent residual stress field �qp
ijðxÞ induced by plastic defor-

mation such that
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wp½rijðx; tÞ� ¼ w½re
ijðx; tÞ þ �qtr

ijðx; tÞ þ �qp
ijðxÞ� < ry ð35Þ

holds throughout the structure and for the whole specified load domain, then transfor-

mational shakedown will occur in the SMA body, where �qtr
ijðx; tÞ denotes a time-depen-

dent residual stress field induced by phase transformation on the basis of �qp
ijðxÞ and is

calculated from the infinitely elastic-phase transformational constitutive relation with

ry!1.

The truth of the necessary condition for transformational shakedown, i.e., statement (i),
is of course nearly self-evident. If there do not exist a time-independent residual stress field
�qp

ijðxÞ and a time-dependent residual stress field �qtr
ijðx; tÞ such that their summation with the

‘‘elastic’’ stress field re
ijðx; tÞ is always located in the plastic yield surface for the given load

domain, then plastic deformation cannot stop developing in the consecutive loading
cycles, and therefore the body will fail either by alternating plasticity or by incremental
plastic collapse. The first statement can also be described as: A necessary condition for
transformational shakedown of an SMA structure is that there exists a time-independent

residual stress field �qp
ijðxÞ on the basis of which the body behaves as an infinitely elastic-trans-

formational one with ry!1.
Now we prove the second statement of the lower bound theorem, i.e., the sufficient con-

dition of transformational shakedown. Assume that a time-independent �qp
ijðxÞ has been

found with the property that its summation with the ‘‘elastic’’ stress re
ijðx; tÞ and the phase

transformation-induced residual stress �qtr
ijðx; tÞ satisfies the inequality (35) throughout the

body and for the whole specified load domain. Let qp
ijðx; tÞ and qtr

ijðx; tÞ denote the actual
residual stress fields associated with plastic deformation and phase transformation, respec-
tively. Introduce a function
W ¼
Z

V

1

2
Se

ijklðq
p
ij þ qtr

ij � �qp
ij � �qtr

ijÞðq
p
kl þ qtr

kl � �qp
kl � �qtr

klÞdV ; ð36Þ
which is the elastic strain energy corresponding to the difference in the two residual
stress fields ðqp

ij þ qtr
ijÞ and ð�qp

ij þ �qtr
ijÞ over the body. Obviously, W is always non-nega-

tive, and it equals to zero only when �qp
ij þ �qtr

ij ¼ qp
ij þ qtr

ij . The derivative of W with
respect to time t is

_W ¼
Z

V
Se

ijklðq
p
ij þ qtr

ij � �qp
ij � �qtr

ijÞð _q
p
kl þ _qtr

kl � _�qtr
klÞdV : ð37Þ

The actual stresses and strains in the body can be decomposed as

rij ¼ re
ij þ qp

ij þ qtr
ij ; ð38Þ

eij ¼ ee
ij þ ep

ij þ etr
ij ¼ eðeÞij þ epðeÞ

ij þ etrðeÞ
ij þ ep

ij þ etr
ij ; ð39Þ

where ee
ij is the total elastic strain tensor, eðeÞij , epðeÞ

ij and etrðeÞ
ij are the elastic strains corre-

sponding to the stresses re
ij, qp

ij and qtr
ij , respectively. That is,

ee
ij ¼ eðeÞij þ epðeÞ

ij þ etrðeÞ
ij ¼ Se

ijklrkl; ð40Þ

eðeÞij ¼ Se
ijklr

e
kl; e

pðeÞ
ij ¼ Se

ijklq
p
kl; e

trðeÞ
ij ¼ Se

ijklq
tr
kl: ð41Þ
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Making use of Eqs. (37)–(41), one has

_W ¼
Z

V
ðqp

ij þ qtr
ij � �qp

ij � �qtr
ijÞð_e

pðeÞ
ij þ _etrðeÞ

ij � _�etrðeÞ
ij ÞdV

¼
Z

V
ðqp

ij þ qtr
ij � �qp

ij � �qtr
ijÞ½ð_eij � _eðeÞij � _ep

ij � _etr
ijÞ � ð_�eij � _eðeÞij � _�etr

ijÞ�dV

¼
Z

V
ðqp

ij þ qtr
ij � �qp

ij � �qtr
ijÞ½ð_eij � _�eijÞ � _ep

ij � ð_etr
ij � _�etr

ijÞ�dV : ð42Þ

The residual stress field qp
ij þ qtr

ij � �qp
ij � �qtr

ij is self-equilibrating. The strain rate field _eij � _�eij

is kinetically admissible since it is the difference of the two kinetically admissible strain
rates fields. Thus, the virtual work principle requires thatZ

V
ðqp

ij þ qtr
ij � �qp

ij � �qtr
ijÞð_eij � _�eijÞdV ¼ 0: ð43Þ

Then Eq. (42) is recast as

_W ¼ �
Z

V
ðqp

ij þ qtr
ij � �qp

ij � �qtr
ijÞ½_e

p
ij þ ð_etr

ij � _�etr
ijÞ�dV � _W 1 þ _W 2; ð44Þ

where

_W 1 ¼ �
Z

V
ðqp

ij þ qtr
ij � �qp

ij � �qtr
ijÞ_e

p
ij dV ; ð45Þ

_W 2 ¼ �
Z

V
ðqp

ij þ qtr
ij � �qp

ij � �qtr
ijÞð_etr

ij � _�etr
ijÞdV : ð46Þ

_W 1 and _W 2 correspond to the work rates which qp
ij þ qtr

ij � �qp
ij � �qtr

ij performs on the plastic
strain rates _ep

ij and the difference of the transformation strain rates, _etr
ij � _�etr

ij , respectively.
Using Eq. (38) and denoting �rij ¼ rðeÞij þ �qp

ij þ �qtr
ij , _W 1 can be rewritten as

_W 1 ¼ �
Z

V
ðrij � �rijÞ_ep

ij dV : ð47Þ

According to Eq. (38), �rij ¼ re
ij þ �qp

ij þ �qtr
ij is a safe stress field in the sense that it is located

in the plastic yield surface throughout the body. Then it follows from the associated flow
rule of plastic strains (or from Drucker’s postulate) that _W 1 is always negative.

However, the same conclusion is not correct for _W 2 which has two possibilities in the
case of alternating phase transformation. Firstly, _W 2 equals to zero if _etr

ij � _�etr
ij ¼ 0 or

qp
ij þ qtr

ij � �qp
ij � �qtr

ij ¼ 0. Secondly, _W 2 may change its sign in each loading cycle due to
alternating phase transformation. However, it is significant to note that the strains induced
by forward and reverse phase transformations at a material point will cancel each other
out over a loading cycle and they are limited by the same saturation value, êT. According
to the discussion in Section 3, it is clear that in spite of that _W 2 changes its sign in each
cycle, its integral over a complete loading cycle must be zero except in the initial cycles.
Therefore, the alternating change in sign of _W 2 corresponding to the alternating phase
transformation does not affect the changing tendency of W.

Because W is always non-negative, _W 1 must tend to be zero and plastic deformation
cannot evolve infinitely. That is, the structure will shake down ultimately to a stabilized
plastic strain field in the sense that only elastic deformation and alternating phase trans-
formation will happen. Once the plastic strains have stabilized, there will be a one-to-one
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correspondence relationship between the total strains and the stresses, or in other words,
both the stresses and the strains will change repeatedly during the subsequent loading
cycles. Thus, the sufficient condition for transformational shakedown in the second state-
ment has been proved for a general case.

5. Mathematical programming formulation of shakedown analysis

5.1. Mathematical programming method

Often, shakedown theory considers two classes of engineering problems. One is to judge
whether a structure can shake down or not within the prescribed load domains, and the
other to determine the possible maximum domains for the varying loads within which a
structure can shake down. The extended Melan theorem in Section 4.2 allows determination
of whether a structure will be safe in the sense that neither low cyclic fatigue nor incremental
plasticity happens. Based on the same theorem, we formulate in this subsection the mathe-
matical programming method for determining a lower bound of the shakedown load limit.

Consider an SMA structure subjected to n varying mechanical loads, Pa(t) = na(t)Pa0

with a = 1,2, . . . ,n, where Pa0 and na(t) denote the ath reference load and the correspond-
ing load factor. Assume, for instance, that the load factors na(t) vary in the ranges of

na1 6 naðtÞ 6 mna2 ða ¼ 1; 2; . . . ; nÞ; ð48Þ

where na1 and na2 are prescribed loading factors. The possible maximum value mmax of the
parameter m under which the structure can shake down defines the load limits of transfor-
mational shakedown.

To obtain a good estimate of mmax from Melan theorem, one may choose a residual
stress fields �qp

ijðxÞ containing several adjustable parameters, 1b, i.e.,

�qp
ijðxÞ ¼ �qp

ijðx; 1bÞ ðb ¼ 1; 2; . . . ;KÞ: ð49Þ

Some methods and examples for choosing residual stress fields in conventional shakedown
theory can be found in König’s (1987) monograph and the references therein. For exam-
ple, one may assume a temperature distribution in the structure and adopt the induced
thermal elastic stress field as the residual stress field, which may contain several adjustable
parameters defining the spatial positions and relative magnitudes of the temperature field.

Then the ‘‘elastic’’ stresses the loads cause in the structure are expressed as

rðeÞij ðx; t; naÞ ¼
Xn

a¼1

naðtÞra0
ij ðxÞ; ð50Þ

where ra0
ij ðxÞ denotes the elastic stress field corresponding to Pa0. The phase transforma-

tion-induced residual stress field �qtr
ijðx; tÞ can be determined from a step-by-step analysis

using the infinitely elastic-phase transformational constitutive relation, where no plastic
deformation needs to be considered. In the case of alternating phase transformation,
the field �qtr

ijðx; tÞ varies with time but returns after a complete loading cycle to its initial
value at the beginning of the cycle. �qtr

ijðx; tÞ depends both on the applied loadings and
the residual stress �qp

ijðxÞ, that is,

�qtr
ijðx; tÞ ¼ �qtr

ijðx; t; 1bÞ ðb ¼ 1; 2; . . . ;KÞ: ð51Þ
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Therefore, one cannot assume arbitrarily the phase transformation-induced residual stress
field �qtr

ijðx; tÞ without considering the field �qp
ijðxÞ. An inappropriate specification of �qtr

ijðx; tÞ
will lead to an incorrect and non-conservative estimate of the shakedown load.

Thus, the mathematical programming problem for determining the non-dimensional
shakedown load factor mmax is formulated as

mmax ¼ max
na;1b

m; ð52Þ

subject to the constraints

wp½rijðx; t; na; 1bÞ� ¼ w½re
ijðx; t; naÞ þ qtr

ijðx; t; 1bÞ þ qp
ijðx; 1bÞ� 6 ry;

rðeÞij ðx; t; naÞ ¼
Xn

a¼1

naðtÞra0
ij ðxÞ;

na1 6 naðtÞ 6 mna2;

a ¼ 1; 2; . . . ; n; b ¼ 1; 2; . . . ;K: ð53Þ

For other loading modes different from Eq. (48), the mathematical programming prob-
lem for determining the shakedown load domain can be formulated similarly. An example
will be given in Section 6 to illustrate the application of this method.

5.2. Simplifications of the method

In the preceding subsection, a general mathematical programming method has been
formulated for phase transformational shakedown of SMA bodies, which requires a
step-by-step analysis to determine rðeÞij ðx; tÞ and �qtr

ijðx; tÞ based on the assumption of
�qp

ijðxÞ. On one hand, however, such an analysis is generally cumbersome and time-consum-
ing though plastic deformation has been excluded from the analysis according to the
extended Melan theorem in Section 4.2. On the other hand, the actual future history of
the loads of an engineering structure is often very complicated or even unknown explicitly
except their changing range, X, shown in Fig. 4.
Fig. 4. A specified load domain X and two simplified loading paths, C1 and C2.
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Fortunately, some simplifications can be made resorting to some arguments in the
classical shakedown theory (König, 1987), which are valid for any convex yielding
surfaces such as the von Mises yield surface adopted here. For shakedown of SMA struc-
tures in the sense of alternating phase transformation with stabilized plastic deformation,
four conclusions, among others, are given as follows to make the shakedown analysis
simpler:

(i) Conclusion 1. If an SMA structure shakes down over any loading path within the

boundary oX of a given and bounded load domain X, then it shakes down also over

any loading path contained with X.
According to this conclusion, one may derive an estimate of shakedown load by
choosing a loading path within the boundary oX.

(ii) Conclusion 2. If an SMA structure shakes down over any loading path contained
within a specified load domain X, then it also shakes down over any loading path con-

tained within the convex hull of X (i.e., within the smallest convex set containing X).
This means that a sufficient and necessary condition for a structure to shake down
over X is that the structure shakes down over its convex hull.

(iii) Conclusion 3. If an SMA structure shakes down over a loading path within the edge

boundary oX 0 of a closed convex super-polyhedral load domain X 0 containing the given

load domain X, as shown in Fig. 4, then it also shakes down over any loading path con-

tained with X.
Thus, one may obtain a lower bound of shakedown load by specifying a rather sim-
ple loading path in which all the loads change in linear functions along oX 0.

(iv) Conclusion 4. If an SMA structure shakes down over any loading path which con-

tains all the vertices of a closed convex super-polyhedral load domain X 0 embedding

the given load domain X, then it also shakes down over any loading path contained

with X.

The proofs of these conclusions can be made easily for convex yield surfaces, analo-
gously to those in the classical shakedown theory (König, 1987). In order to judge the
shakedown or inadaptation of a structure or to determine a lower bound of the shake-
down load domain, thus, one does not need to perform a step-by-step full analysis along
the loading history. Instead, one may choose a simple loading path according to the
above arguments to calculate a conservative estimate or a lower bound of the shake-
down load.

For instance, consider a body subjected to a given load domain X of two loads, P1

and P2, as shown in Fig. 4, without knowing their concrete loading history. To obtain a
lower bound of the shakedown limit load, one may choose a closed convex polyhedral
load domain X 0 containing X. Only an analysis along a simple loading path containing
all the vertices of X 0 is necessary. Two examples of simplified loading paths are: (a) C1

along the boundary oX 0 of X 0, i.e., S1! S2! � � � ! Sa! � � � ! S1, and (b) C2 contain-
ing n proportionally loading and unloading steps from the original point to all the ver-
tices of X 0, i.e., 0! S1! 0! S2! 0 � � � ! Sa! � � � ! Sn! 0, as shown in Fig. 4.
From either the loading path C1 or C2, one can obtain a conservative estimate of
the shakedown load limit by solving the mathematical programming problem corre-
sponding to the much simplified loading path, instead of the actual complicated loading
history.
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6. Example

To illustrate the application of the above method and to reveal the effect of phase trans-
formation on shakedown of SMA structures, a three-bar structure subjected to a varying
load P, as shown in Fig. 5, is a simple and good example. Assume that the three bars are
made of the same SMA material and have the same cross-section of area A. Their lengths
are l1 = l and l2 = l3 = l/cosh, respectively, where h denotes the angle between the first and
the second (or the third) bars. To show some basic features of SMA structures under vary-
ing loads, the exact analytical solution is given below without detailed derivations.

In what follows, denote the load by p = P/A for conciseness. Since there is only one
applied force in this example, we will formulate the solution in terms of the load p directly,
instead of the non-dimensional load factor m as in Eqs. (52) and (53). Assume that p

changes randomly between pmin and pmax with jpminj 6 pmax. The elastic stresses in the
three bars are

re
1ðpÞ ¼

p
1þ 2 cos3 h

; re
2ðpÞ ¼ re

3ðpÞ ¼
p cos2 h

1þ 2 cos3 h
: ð54Þ

The critical load corresponding to the onset of forward phase transformation in the first
bar is

pSMA
T ¼ rTð1þ 2 cos3 hÞ: ð55Þ

The tensile elastic-transformational limit load, which corresponds to the beginning of
plastic deformation in the body, is derived as

pSMA
EL ¼

ryð1þ 2 cos3 hÞ þ 2EeT cos3 h for 1
2

arccos
2rT�ry�EeT

ryþEeT

� �
6 h 6 p

2

ry þ 2rT cos h for 1
2

arccos
2rT�ryþEeT

ryþEeT

� �
6 h 6 1

2
arccos

2rT�ry�EeT

ryþEeT

� �

ryð1þ 2 cos3 hÞ � 2EeT sin2 h cos h for 0 6 h 6 1
2

arccos
2rT�ry�EeT

ryþEeT

� �
:

8>>>><
>>>>:

ð56Þ
12 3

1,A l2,A l 2,A l

θ θ 

P

Fig. 5. A three-bar truss subjected to a varying load P.
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If eT = 0, the solution in Eq. (56) is identical to that of a three-bar truss made of an elastic–
perfectly plastic material with the same plastic yield stress ry.

The tensile plastic limit load, corresponding to the situation that all the three bars reach
the plastic deformation regime (i.e., r1 = r2 = r3 = ry), is

pSMA
PL ¼ ryð1þ 2 cos hÞ; ð57Þ

which is evidently not affected by the phase transformation.
A residual stress field induced by plastic deformation is chosen as

qp
1ð1Þ ¼ �1ry

2 sin2 h cos h
1þ 2 cos3 h

; qp
2ð1Þ ¼ 1ry

sin2 h
1þ 2 cos3 h

; ð58Þ

where 1 is an adjustable parameter.
Then for a given value of pmin, the shakedown limit load pSD of the SMA truss can be

obtained from the following mathematical programming problem:

pSMA
SD ðpminÞ ¼ max

1
pmax; ð59Þ

subjected to:

� ry 6 re
1ðpÞ þ qp

1ð1Þ þ qtr
1 ðp; 1Þ 6 ry;

� ry 6 re
2ðpÞ þ qp

2ð1Þ þ qtr
2 ðp; 1Þ 6 ry;

pmin 6 p 6 pmax; ð60Þ

where qtr
a ðp; 1Þ (a = 1,2) denote the residual stresses induced by the phase transformation

due to the cyclic load p on the basis of the assumed qp
að1Þ in Eq. (58). The solution of the

problem is

pSMA
SD ¼ min pmin þ 2pSMA

EL ; pSMA
PL

� 	
: ð61Þ

It is easy to find that if eT = 0, the solution in Eq. (61) reduces to that of a three-bar
system made of an elastic–perfectly plastic (EP) material with the same yield stress ry,
and reads

pEP
SD ¼ min pmin þ 2pEP

EL; p
EP
PL

� 	
; ð62Þ

where the elastic and plastic limit loads for the EP truss are

pEP
EL ¼ ryð1þ 2 cos3 hÞ; pEP

PL ¼ ryð1þ 2 cos hÞ; ð63Þ
respectively.

When p changes between 0 and pmax (i.e., pmin = 0), the shakedown limit loads in Eqs.
(61) and (62) are simplified as

pSMA
SD ¼ pEP

SD ¼ ryð1þ 2 cos hÞ: ð64Þ
Evidently, the phase transformation in the system has no impact on the shakedown limit
load in this typical case.

In another special case of pmin = �pmax, the solutions in Eqs. (61) and (62) become

pSMA
SD ¼ pSMA

EL ; pEP
SD ¼ pEP

EL; ð65Þ

which are compared schematically by the two solid lines in Fig. 6 for representative mate-
rial parameters. For h = 0, the shakedown loads are determined as pSMA

SD ¼ pEP
SD ¼ 3ry since



Fig. 6. Shakedown loads of a three-bar truss made of an SMA or an elastic- perfectly plastic (EP) material
subjected to a load P varying between �pSDA and pSDA.
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no residual stress can develop. If h = p/2, then only one bar is active, and the shakedown
loads are pSMA

SD ¼ pEP
SD ¼ ry since again no residual stress develops. It is interesting to seen

that for a larger angle h, the phase transformation may enhance the shakedown properties
of the structure while for a smaller h, the phase transformation may decrease the shake-
down limit load. To show quantitatively the influence of phase transformation, we take
the following parameter for a NiTi alloy at room temperature: rT = 400 MPa,
ry = 1400 MPa, rRT = 0 MPa, eT = eT = eRT = 6%, and E = 50 GPa. It is easily obtained
that due to the effect of phase transformation, the shakedown limit load is increased by
11.1% for h = 72� and is decreased by 35.0% for h = 30�, compared to that of an elasto-
plastic structure with the same plastic yield stress and Young’s modulus.

This illustrative example clearly demonstrates three possible influences of phase trans-
formation on the load bearing capacity of an SMA structure, namely, strengthening,
weakening, and trivial. The phase transformation effect on the mechanical response of a
structure depends upon its constitutive parameters (i.e., êT and rT), structural geometries
(i.e., h in the present example), loading mode and service condition (i.e., temperature). For
some structures with high stress concentration (i.e., the three-bar truss with a big angle h)
and subjected to alternating loadings, roughly speaking, phase transformation may lower
the magnitude of stress concentration and, therefore, serve as an enhancing mechanism of
load bearing. Another well-known example of this case is that phase transformation at a
crack tip of such ceramic materials as ZrO2 may improve significantly the fracture tough-
ness and then is considered as one of the typical toughening mechanisms. For those struc-
tures with low stress concentration, however, phase transformation may appear as a
softening mechanism of deformation and hence often lower the shakedown load limit.

7. Conclusions and remarks

Analysis of SMA structures under varying loads is complicated, especially when they
develop both elastic–plastic deformation and phase transformation. The present paper
is focused on static analysis of shakedown of SMA bodies with the assumptions of small



204 X.-Q. Feng, Q.P. Sun / International Journal of Plasticity 23 (2007) 183–206
strains and isothermal conditions. We have presented for the first time a theoretical frame-
work of shakedown analysis of SMA bodies based on a simplified phenomenological con-
stitutive model. The Melan or lower bound shakedown theorem has been extended to
account for the effect of alternating phase transformation. A lower bound of shakedown
limit load can be obtained via a mathematical programming problem without necessity of
a step-by-step full analysis following the real loading history. Phase transformation may
have different influences on the shakedown behavior and load bearing capacities of
SMA structures, depending upon the parameters of constitutive relations, structural
geometries and loading modes.

Implementations of the effects of temperature, nonlinear geometry, strain- or work-
hardening and dynamics are of interest and can be incorporated in the present theory.
In addition, Koiter dynamic shakedown theorem may also be extended to include the
effect of phase transformation in SMA structures. This has not been included here since
dynamic shakedown analysis is more difficult to be applied in engineering structures
and it leads to an upper bound (non-conservative) estimate of the shakedown load
domain.
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