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Differential Entropy for Continuous Random Variable
The differential entropy h(X) of a continuous random
variable X with density f(x) is defined as

where S is the support set of the random variable.

Discussions:
1. As differential entropy involves an integral and a

density, we should include the statement if it exists.

2. Is differential entropy also nonnegative?
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Example (Uniform Distribution)
Consider a random variable distributed uniformly from 0
to a so that its density is 1/a from 0 to a and 0 elsewhere.
Then its differential entropy is
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Example (Normal Distribution)
Let random variable X follows normal distribution, i.e.,

Then calculating differential entropy in nats, we obtain
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Relation of Differential Entropy to Discrete Entropy
 Consider a random variable X with density f(x)

 Divide the range of X into bins of length Δ
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Relation of Differential Entropy to Discrete Entropy

 The mean value theorem tells us that

 Construct the quantized random 
variable       :

 The probability that is
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Relation of Differential Entropy to Discrete Entropy

 The entropy of the quantized random variable is
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Theorem
If the density f(x) of the random variable X is Riemann
integrable, then

Thus, the entropy of an n-bit quantization of a continuous 
random variable X with Δ=2-n is approximately h(X)+n.

Differential Entropy:



Differential Entropy

11Xi’an Jiaotong University

h(X) does not give the amount of information for X

h(X) is not necessarily positive

Something not good:

 Compare the uncertainty of two continuous 
random variables (quantized to the same precision)

 Mutual information still works

Something we expect:

Theorem

Theorem
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Theorem
If we have the constraints that                  and                    , 
the Gaussian (normal) distribution have the maximum 
differential entropy.
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Definition (Joint Differential Entropy)
The differential entropy of a set X1, X2, … , Xn of random
variables with density f(x1, x2, … , xn) is defined as

Definition (Conditional Differential Entropy)
If X, Y have a joint density function f(x, y), we can define
the conditional differential entropy h(X|Y) as

Moreover, we have the following relationship:
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Theorem 
(Entropy of a Multivariate Normal Distribution)
Let X1, X2, … , Xn have a multivariate normal distribution
with mean μ and covariance matrix K. Then

where |K| denotes the determinant of K.
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Theorem (AEP for Continuous Random Variables)
Let X1, X2, … , Xn be a sequence of random variables
drawn i.i.d. according to the density f(x). Then, we have

Definition (Typical Set)
For ε>0 and any n, we define the typical set        with 
respect to f(x) as follows:

where                                           .
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The analog of the cardinality of the typical set for the
discrete case is the volume of the typical set for
continuous random variables.

Definition (Volume)
The volume Vol(A) of the set is defined as
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Theorem
The typical set has the following properties:
1. for n sufficiently large.

2. for all n.

3. for n sufficiently large.

Theorem
The set is the smallest volume set with probability
≥ 1-ε, to first order in the exponent.
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Proof for Property 2

Proof for Property 3
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Definition
(Mutual Information for Continuous R.V.)
The mutual information I(X;Y) between two random
variables with joint density f(x,y) is defined as



Mutual Information

23Xi’an Jiaotong University

Question:
What can mutual information between two random
variables be viewed as?
The limit of the mutual information between their
quantized versions.

I(X;Y) ≥ 0 with equality iff X and Y are independent.

h(X|Y) ≤ h(X) with equality iff X and Y are independent.
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The most important continuous channel is the Gaussian channel.

Zi is assumed to be independent of signal Xi

If the noise variance is zero or the input is 
unconstrained, the capacity of the channel is infinite.

How about the capacity with input power constraint?
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Definition (Information Capacity)
The information capacity of the Gaussian channel
with power constraint P is
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Why?

The information capacity of the Gaussian channel is

and the maximum is attained when .
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Definition
An (M,n) code for the Gaussian channel with power constraint P
consists of the following:

1. An index set {1, 2, … , M}.

2. An encoding function x: {1, 2, … , M} χn, yielding codewords
xn(1), xn(2), … , xn(M), satisfying the power constraint P; that is,
for every codeword

3. A decoding function
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Definition
A rate R is said to be achievable for a Gaussian channel with a
power constraint P if there exists a sequence of (2nR, n) codes with
codewords satisfying the power constraint such that the maximal
probability of error λ(n) tends to zero. The capacity of the channel is
the supremum of the achievable rates.

Theorem
The capacity of a Gaussian channel with power constraint P and
noise variance N is
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Proof:
1. Generation of the codebook.

 We wish to generate a codebook in which all the codewords 
satisfy the power constraint.

 Generate the codewords with each element i.i.d. according to a 
normal distribution with variance P-ε.

 Let Xi (w), i = 1, 2, … , n, w = 1, 2, … , 2nR be i.i.d. ~ N (0, P-ε), 
forming codewords Xn(1), Xn(2), … , Xn(2nR) ∈ Rn. 
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Proof:
2. Encoding.
 The codebook is revealed to both the sender and the receiver.

 To send the message index w, the transmitter sends the wth
codeword Xn(w) in the codebook.

3. Decoding.
 The receiver looks down the list of codewords {Xn(w)} and

searches for one that is jointly typical with the received vector.

 If there is one and only one such codeword Xn(w), the receiver 
declares                to be the transmitted codeword.

 Otherwise, the receiver declares an error. The receiver also
declares an error if the chosen codeword does not satisfy the
power constraint.
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Proof:
4. Probability of error.
 Assume that codeword 1 was sent. Thus, we have

 Define the following events:

 An error occurs if E0 occurs or       occurs or                            
occurs
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Proof:
 Let     denote the event                 .

For sufficiently large n
and
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Proof:
 Choosing a good codebook and deleting the worst half of the

codewords, we obtain a code with low maximal probability of
error.

 The power constraint is satisfied by each of the remaining
codewords.

 We have constructed a code that achieves a rate arbitrarily
close to capacity.
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For the baseband model of realistic wireless communications 
systems, we assume that the signal is bandlimited to W.

We can reconstruct the bandlimited signal from samples under the 
sampling rate 1/2W.

Consider the time interval [0, T]. The energy per signal sample is

The power spectral density of AWGN is N0/2. Then, the energy per 
noise sample is
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The capacity per sample is

The capacity of the channel is

When the bandwidth is large,

When the bandwidth is small,
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Bandwidth-limited region

Power-limited region
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