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Comprehensive Review
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The lecture in this review contains the most significant
studying points in this course, however, it certainly does
not mean that the review covers everything we have been
discussed. While you are reviewing the course, please
use your textbook and slides as your references to make
sure that your review is comprehensive.

Good Luck to you all on finishing this course
successfully!!!
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Chapter 2
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1. Entropy of Discrete Random Variable
H(X)=—> p(x)logp(z)
reX

If the base of the logarithm is 2 and the unit is bits;
If the base of the logarithm is e, then the unit is nats.

» The entropy is a measure of the uncertainty of a random variable.

» The entropy is only related with the distribution of the random
variable.

» If the base of the logarithm is b, we denote the entropy as H (X).

Moreover, we have
Hy(X) = (logya) Ha(X)
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Chapter 2
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2. Joint Entropy of Discrete Random Variables

Extend the definition of entropy for one discrete random variable
to multiple random variables

H(X,)Y) = =3 Y plz,y)logp(z,y)

reX ye)y
Y

H(Xy, - Xy) = — Z Z plzy, - an)logp(ey, -+, zN)

x1€X] rNEXN

» The joint entropy is a measure of the uncertainty associated
with a set of random variables.

» We treat the set of random variables as a single vector-valued
random variable.
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3. Conditional Entropy of Discrete Random Variables

The Conditional Entropy of a random variable given another
random variable is defined as the expected value of the entropies
of the conditional distributions, averaged over the conditioning
random variable.

HY|X) = Exepm{H(V]X=2)}

= Exwp(x){ > p(yle)logp(ylx) } = > > plx.y)logp(ylx)

yey reX yey

» The conditional entropy H(Y|X) measures the amount of
uncertainty remaining about Y after X is known.

» Two extreme cases: H(Y|X)=0 and H(Y|X)=H(Y)
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4. Mutual Information
Definition

The Mutual Information is defined as the relative entropy
between the joint distribution p(x,y) and the product distribution

p)p(y).

The mutual information can be viewed as the reduction in the
uncertainty of X due to the knowledge of Y.

I(X;Y) = HX) - HX|Y) =YY pla.y Jlog PEY) iy x)

I(X;Y) = H(X) — H(X]Y) = H(Y) — H(Y|X)
[(X;Y)=HX)+H(Y)—-H(X,Y)
[(X:X) = H(X)
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5. Description of Information

Self — Information Function :

I(X:aj)ZIOg(Pr{Xl:x}

) — H(X) = IEX{I(X)}

Joint Self — Information Function :

1
I(X:x’yzy):bg(Pr{X:xY:y}

) — H(X,Y) = EX,Y{J(X, Y)}

Conditional Self — Information Function :

1
I(Y:y\X:x):log<Pr{Y:y|X:x}

) — H(Y|X) = EX,Y{[(Y|X)}

Mutual Information between Two Events :

I (X =xY =y)=log (%) — I(X;Y) ZEX,Y{I(X:33§Y:Z/)}
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6. Some Properties

» Nonnegativity of entropy

» Chainrule H(X,Y)=H(X)+ H(Y|X)

> Conditioning reduces entropy H(X|Y) < H(X)
» Jensen’s inequality ]E{f(X)} > f(E{X})

» Uniform maximizes entropy

» Nonnegative of mutual information

» Concavity of entropy

» Mutual information I(X;Y) is a concave function of p(x) for
fixed p(y|x)
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1. Convergence of A Sequence of Random Variables

(1) Convergence in distribution
lim F,(x) = F(x), where F, and F' are CDFs of X,, and X
n—r 0

(2) Convergence in probability
lim Pr{|X, — X|>e} =0

n—oo

(3) Almost sure convergence (with probability 1)
Pr{ lim Xn:X} —1

n—oo

(4) Convergence in mean

lim E{\Xn — X]""} = 0, where r is the real number and r > 1

n—oo

when r = 2 = Convergence in mean square
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2. Law of Large Numbers (LLN)

Let X}, X,, ...... , X, be a sequence of independent and identically
distributed (i.i.d.) random variables with expected (mean) value:

E{X:} =E{Xo} = =E{X,} =p
Then, the LLN tells us that the sample average

1
Xn = —(Xi 4+ X+ + X))

converges to the expected value, i.e.,

X, — pu for n — o0

Weak Law and Strong Law
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3. Asymptotic Equipartition Property (AEP)

Let X}, X,, ..., X, be the sequence of i.i.d. random variables with
distribution p(x), then we have

1
——logp( Xy, X5,--+ , X,,) = H(X) in probability,
, n
l.e.,

n—oo

1
lim Pr{ ‘——lng(Xl,XQ, A 7Xn) o H(X>
n

>6}—0, Ve > 0.

4. Typical Sequence and Typical Set

1
Agn) — {(371,5172,"' ,len) c X" ‘——lng<$1,£B2,"' 7$n> _H<X)‘ < 8}
n

Weak Typical and Strong Typical
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Properties of Typical Set

LIf (21,29, ,,) € A", then we have

1
H(X> — €< ——lng(CUl,ZCQ,"' 7'5871) < H(X) + €
n

2. Pr{AS”’)} > 1 — ¢ for n sufficiently large.

3. ‘AE”) < HE)F) ywhere |A| denotes the number of

elements in the set A.

4. ‘Ag”) > (1 — 6)2”(H (X)=e) for n sufficiently large.
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1. Fixed-Length Source Coding

Theorem (Fixed-Length Source Coding Theorem)

Let a discrete memoryless source have finite entropy H(U) and
consider a coding from sequences of L source letters into sequences
of N code letters from a code alphabet of size D. Only one source
sequence can be assigned to each code sequence and we let P, be the

probability of occurrence of a source sequence for which no code
sequence has been provided.

Then, for any 0>0, if

N S HU)+§
L — logD

P, can be made arbitrarily small by making L sufficiently large.
Conversely, if

ﬁ< HU) -6
L — logD

then P, must become arbitrarily close to 1 as L is made sufficiently
large.
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Coding Efficiency
n = H(U) The number of bits for describing
Elog D —> each source symbol after source
L coding

The error probability P,
D[I(w)]
L§?

P, <e(L,6) =

Y2 1o

L 2

D[1(w)] = " P(w) [logP(w)|” — HA(U)

=1
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2. Variable-Length Source Coding

Basic Principles for Variable-Length Coding Design

1. Assign short descriptions to the most frequent outcomes of
the data source;

2. Assign longer descriptions to the less frequent outcomes.

» Expected codeword length L(C)=>" _.p(z)l(x)
» Nonsingular
» Uniquely decodable code

» Prefix code/Instantaneous code

> Kraftinequality > " D' <1
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3. Optimal Source Code

Prefix code with the minimum expected length

Minimize [ = Z pil; The optimal solution without
o considering the “integer”

_ﬁ constraint:
S.t. ZD Li <1

Z :_IOgDpw _17"°7m

l1,l5,--- ,l,, are integers
Hp(X) < L* < Hp(X) + 1

H<X17X27°”7Xn)<L*<H(X17X27'”7Xn>_|_l

n n n
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4. Huffman Code

(1) Binary Huffman Code

(2) Optimality of Huffman Code
> Huffman Reduction
> Extension
> The properties the Huffman code satisfies: from binary
case to arbitrary D-ary case

(3) Arbitrary D-ary Huffman Code

How many symbols should be combined in the first step?
D—-B=2+Rp (K —2)
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Chapter 5

1. Channel Capacity

Definition (Information Channel Capacity)
We define the “information” channel capacity of a discrete memoryless

channel as

C' =maxI(X;Y),
p(z)

Where the maximum is taken over all possible input distributions p(x).

i i Channel Coding Theorem

Operational Channel Capacity
The highest rate in bits per channel use at which information can be

sent with arbitrarily low probability of error.
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Capacity of General DMC
max I(X;Y)
Q(w1),,Q(zN)
P(y;lr)
max Z Z Q(xr)P(yj|rr)log —
Q). Qlw) 75 > im1 Qi) P(yjlx;)
s.t. ZQ(xk) =1 X P > Y
k=1 X P(yilxy) Vs
Q(xk:) > 07 k= 1727”' 7N
Convex optimization problem * v
Lagrange Method xx - yu
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Theorem

A set of necessary and sufficient conditions on an input probability
vector

Q) = [Q1), Qa2). -+ . Q)|

to achieve capacity on a discrete memoryless channel with
transition probabilities P(y;|x,) is that for some number C,

[(x,;Y)=C; all n with Q(x,) >0
[(z,;Y) < C; all n with Q(z,,) =0

in which I(x,;Y) is the mutual information for input x, averaged
over the outputs.

Furthermore, the number of C is the capacity of the channel.
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3. Capacity of Sysmetric DMC

Definition (Symmetric)

The channel is defined as symmetric if the rows of the channel
transition matrix p(y|x) are permutations of each other and the columns
are permutations of each other.

Definition (Quasi-Symmetric)

The channel is defined as quasi-symmetric if the columns of the
channel transition matrix p(y|x) can be partitioned into subsets in such
a way that in each subset, the rows are permutations of each other and
so are the columns (if more than 1).

Definition (Weakly Symmetric)

The channel is defined as weakly symmetric if every row of the channel
transition matrix p(y|x) is a permutation of every other row and the
column sums " p(y|x) are equal.
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Capacity of Quasi-Symmetric DMC

For a quasi-symmetric discrete memoryless channel (DMC), capacity is

achieved by using the inputs with equal probability.

Capacity of Symmetric DMC

As the symmetric DMC can be viewed as quasi-symmetric DMC, where

the channel transition matrix p(y|x) is only partitioned into one set,
capacity of symmetric DMC is achieved by using the inputs with equal

probability.

Capacity of Weakly Symmetric DMC

For a weakly symmetric channel, channel capacity is given by

C = log‘y‘ — H (row of transition matrix)

and it is achieved by a uniform distribution on input alphabet.

Xi’an Jiaotong University
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4. Decoding Rule

» Minimum Error Probability Decoding Rule/Maximum A
Posteriori Probability (MAP) Rule

> Maximum Likelihood Rule

5. Joint Typical Set

6. Channel Coding Theorem
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1. Differential Entropy

() = = [ fa)logf(a)do

» The differential entropy is not necessary to be nonnegative.

» The differential entropy of Gaussian random variable is only
related with the variance.

» Differential entropy v.s. Discrete entropy
H(X?) +logA — h(f)=h(X), as A — 0.

» Gaussian distribution maximizes the differential entropy over all
distributions with the same variance.

Xi’an Jiaotong University 30



Chapter 6

F I ssssa——————————————————rrrc
2. Joint Differential Entropy

hXy, Xoyoov ) X)) = _/f(fn)logf(ﬂf dz

3. Conditional Differential Entropy
BOXIY) = = [ F.)logf (ol dady
hM(X|Y)=h(X,Y)—hY)
4. Mutual Information

V= [ e oet EY)
100 = [ 1ol
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5. AEP and Typical Set

—%logf(Xl, e ,Xn) — E{ — logf(X)} = h(X) in probability

2

1
Al = {(561,--- L xn) € 8™ ‘ — —logf (X1, ,X,) — h(X)
T

6. Gaussian Channel and Capacity

1 P
C = [(X:Y)=~log| 14+ =
f(a:):%g)l(%}gP (X5 Y) ZOg( +N>’

X ~ N(0, P)
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