# Introduction of Processor Design for Al Applications

L04 – Iteration Bound

Pengju Ren
Institute of Artificial Intelligence and Robotics
Xi'an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

#### **Why Iteration Bound Matters?**



- Only for recursive algorithms which have feedback loops
- Impose an inherent fundamental lower bound on the achievable iteration or sample period

#### **Outline**

Loop Bound and Iteration Bound
Important Definitions and Examples
Compute the Iteration Bound

Longest Path Matrix Algorithm (LPM)

Minimum Cycle Mean Method (MCM)

#### Introduction

Iteration period: the time required for execution of one iteration of algorithm (same as sample period).

Iteration rate: the number of iterations executed per second

Sample rate = the number of samples processed in the system per second (a.k.a *throughput rate*)

#### **Preliminaries (Time constrains)**





 $d_A$ ,  $d_B$ : Execution delays of A and B

 $X_A$ ,  $X_B$ : Start time of "some" iteration of A and B

T: Iteration period

$$X_B \geq X_A + d_A$$

$$X_B \geq X_A + d_A - T$$

$$\begin{array}{ccc}
d_A & & & d_B \\
A & & & & \\
X_A & & & X_B
\end{array}$$

$$X_B \geq X_A + d_A - nT$$

# **Preliminaries (Loop bound)**



 $d_{A}$ ,  $d_{B}$ ,  $d_{C}$  : Execution delays of A , B and C

 $X_A$ ,  $X_B$ ,  $X_C$ : Start time of "some" iteration of A , B and C

T: Iteration period

$$X_B \ge X_A + d_A$$
  $X_B \ge X_A + d_A$   $X_C \ge X_B + d_B$   $X_C \ge X_C + d_C$   $X_A \ge X_C + d_C$ 

$$X_A + X_B + X_C \ge X_A + X_B + X_C + d_A + d_B + d_C$$
  $X_A + X_B + X_C \ge X_A + X_B + X_C + d_A + d_B + d_C + nT$ 

$$0 \ge d_A + d_B + d_C$$
  $nT \ge d_A + d_B + d_C$ 

**Delay-free loops are non-computable** 

#### **Example: DSP Program**

$$Y(n) = a y(n-1) + x(n)$$

Adder (A): 2 cycles, Multiplier (B): 4 cycles

#### **Block Diagram**

**Data-Flow Graph** 



Intra-Iteration Period (edges with no delay elements):  $A_K \rightarrow B_K$ Inter-Iteration Period (edges with delay elements):  $B_K \Rightarrow A_{K+1}$ 

$$A_i \rightarrow B_i = A_{i+1} \rightarrow B_{i+1} = A_{i+2} \rightarrow B_{i+2} = \dots$$

#### **Example: DSP Program**



#### **Loop Bounds in DFG (Data flow Graph)**

- Critical Path: The path with the longest computation time among all paths that contain zero delays
- Loop: Directed path that begins and ends at the same node
- Loop Bound of the *i-th* loop=  $t_i / w_i$ , where  $t_i$  is the loop computation time and  $w_i$  is the number of delays in the *i-th* loop
- Critical Loop: the loops in which has maximum loop bound.
- Iteration Bound: maximum loop bound,  $T_{\infty} = \max_{i \in L} \{ \frac{t_i}{w_i} \}$ , where L is the set of loops in the DFG. i.e., a fundamental limit for recursive algorithms



Loop bounds: 4/2 u.t., 5/3 u.t., 5/4 u.t.

#### **Iteration Bound**



Loop bounds: 6/2 u.t.

Iteration bound = 3 u.t.

Loop bounds: 6/2 u.t., 11/1 u.t.

Critical loop: A->B->C->A

*Iteration bound = 11 u.t.* 

#### Longest Path Matrix (LPM) Algorithm

A series of matrices ( $L^{(1)} \sim L^{(m)}$ , m=1, 2, 3, ..., d) are constructed, and the iteration bound is found by examining the **diagonal elements** of the matrices.

d:# of delays in the DFG

 $L_{i,j}^{(m)}$ : Element of Matrix  $L^{(m)}$ , which is the longest computation time of all paths from delay element di to delay element dj that pass through exactly m-1 delays, if no path exists, then the value of  $L_{i,j}^{(m)}$  equals -1.

Usually,  $m{L_{i,j}^{(1)}}$  is computed using DFG , The higher order matrices are computed recursively:

$$L_{i,j}^{(m)} = \max_{k \in K} (-1, L_{i,k}^{(1)} + L_{k,j}^{(m-1)})$$

The **iteration bound** is given by:

$$\boldsymbol{T}_{\infty} = \max_{i,m \in \{1,2,\ldots,d\}} \left\{ \frac{L_{i,i}^{(m)}}{\boldsymbol{m}} \right\}$$





$$L_{i,j}^{(m)} = \max_{k \in K} (-1, L_{i,k}^{(1)} + L_{k,j}^{(m-1)})$$

$$L^{(3)} = \begin{bmatrix} 5 & 4 & -1 & 0 \\ 8 & 5 & 4 & -1 \\ 9 & 5 & 5 & -1 \\ 9 & -1 & 5 & -1 \end{bmatrix}$$

$$L^{(4)} = \begin{bmatrix} 8 & 5 & 4 & -1 \\ 9 & 8 & 5 & 4 \\ 10 & 9 & 5 & 5 \\ 10 & 9 & -1 & 5 \end{bmatrix}$$

$$T_{\infty} = \max_{i,m \in \{1,2,\ldots,d\}} \{\frac{L_{i,i}^{(m)}}{m}\}$$

$$T_{\infty} = \max_{i,m \in \{1,2,\ldots,4\}} \{\frac{4}{2}, \frac{4}{2}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{8}{4}, \frac{8}{4}, \frac{5}{4}, \frac{5}{4}\} = 2$$



### **A Filter Using LPM**



$$L^{(1)} = \begin{bmatrix} 4 & 4 \\ 8 & 8 \end{bmatrix} \qquad L^{(2)} = \begin{bmatrix} 12 & 12 \\ 16 & 16 \end{bmatrix}$$

$$T_{\infty} = \max\{\frac{4}{1}, \frac{8}{1}, \frac{12}{2}, \frac{16}{2}\} = 8$$

# Minimum Cycle Mean (MCM) Method

- Step 1: Construct the new graph *Gd* and *Gd* 
  - □Transform from original DFG G.
  - $\square$  Decide the # of nodes from the # of delays in G.
- Step 2: Compute the minimum cycle mean
- Step 2: Compute the minimum cycle mean

  Construct the series of d+1 vectors  $f^{(m)}$ , m=0, 1, 2, ..., d the dimension of  $f^{(m)}$  is dx1An arbitrary reference.

An arbitrary reference node is chosen in Gd (called this node s). The initial vector  $f^{(0)}$  is formed by setting  $f^{(0)}(s) = 0$  and setting the remaining nodes of  $f^{(0)}$  to infinity  $(\infty)$ .

 $\square$  The remaining vectors  $f^{(m)}$ , m=1, 2, ..., d are recursively computed:

$$f^{(m)}(j) = \min_{i \in I} (f^{(m-1)}(i) + \overline{w}(i,j))$$

I is the set of nodes such that there exists an edge from node i to node j

☐ find the min cycle mean

$$T_{\infty} = -\min_{i \in \{1,2,\dots,d\}} (\max_{m \in \{0,1,2,\dots,d-1\}} \left( \frac{f^{(d)}(i) - f^{(m)}(i)}{d - m} \right))$$

- Cycle mean = Average length of the edge in c (Cycle = Loop)
- Longest path length
  - □Path that passes through no delays
  - $\square$  Longest: two loops that contain  $\square \alpha$  and  $\square \beta$ 
    - $\rightarrow$  Max{6, 4} = 6
    - $\triangleright$  Cycle mean = 6/2 =3





- delay => node
- longest path length (computation time) =>weight w(i,j)
  - □ If no zero-delay path exists from delay di to delay dj, then the edge
     i -> j does not exist in Gd.



■ We will find d+1 vectors,  $f^{(m)}$  m = 0, 1, ..., d

$$f^{(0)} = \begin{bmatrix} 0 \\ \infty \\ \infty \\ \infty \end{bmatrix} f^{(1)} = \begin{bmatrix} \infty \\ 0 \\ \infty \\ \infty \end{bmatrix} f^{(2)} = \begin{bmatrix} -4 \\ \infty \\ 0 \\ \infty \end{bmatrix} f^{(3)} = \begin{bmatrix} -5 \\ -4 \\ \infty \\ 0 \end{bmatrix} f^{(4)} = \begin{bmatrix} -8 \\ -5 \\ -4 \\ \infty \end{bmatrix}$$
$$f^{(3)}(j) = \min_{i \in I} (f^{(m-1)}(i) + \overline{w}(i,j))$$

 $\overline{w}(i,j)$  is the weight of the edge i->j in and I is the set of nodes in such that there exists an edge from node i to node j (i->j).

$$T_{\infty} = -\min_{i \in \{1,2,...,d\}} (\max_{m \in \{0,1,2,...,d-1\}} \left( \frac{f^{(d)}(i) - f^{(m)}(i)}{d - m} \right))$$

|     | m=0 | m=1  | m=2  | m=3      | $ \max_{m \in \{0,1,2,\dots,3\}} \left( \frac{f^{(4)}(i) - f^{(m)}(i)}{4 - m} \right) $ |
|-----|-----|------|------|----------|-----------------------------------------------------------------------------------------|
| i=1 | -2  | -∞   | 75-0 | -3       | -2                                                                                      |
| i=2 | -∞  | -5/3 | -∞   | -1       | -1                                                                                      |
| i=3 | -∞  | C-∞  | -2   | -∞       | -2                                                                                      |
| i=4 | ∞-∞ | ∞-∞  | ∞-∞  | $\infty$ | $\infty$                                                                                |

$$T_{\infty} = -\min(-2, -1, -2, \infty) = 2$$

#### **A Filter Using MCM**

i=2

-∞

-8/1



$$T_{\infty} = -\min(-8, -6) = 8$$

-8

#### **Conclusion**

When the DFG is recursive, the iteration bound is the fundamental limit on the minimum sample period of a hardware implementation of the Data-stream program.

Two algorithms to compute iteration bound, *LPM* and *MCM* are explored.

Next Lecture: Retiming & Pipelining