Introduction of Processor Design for AI Applications

L05 – Retiming and Pipelining

Pengju Ren Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

LTI Systems

Linear systems

 \Box Assume x1 (n)->y1 (n) and x2 (n)->y2 (n), where "->" denotes "lead to". If ax1 (n)+bx2 (n) -> ay1 (n)+by2 (n), then the systems is referred to as a "Linear System."

□ Homogenous and additive properties

Time-invariant (TI) systems
 \$\Box\$x(n-n0)->y(n-n0)
 LTI systems
 \$\Downline{u}y(n)=h(n)*x(n)\$

Causal systems

 \Box y(n₀) depends only on x(n), where n <= n₀

Pipelining of FIR Digital Filters (1)

Leads to a reduction in the critical path

The **critical path** (or the minimum time required for processing a new sample) is limited by 1 multiply and 2 add times. Thus, the "sample period" (or the "sample frequency") is given by:

$$T_{sample} \ge T_M + 2T_A$$
$$f_{sample} \le \frac{1}{T_M + 2T_A}$$

Pipelining of FIR Digital Filters (2)

Pipelining: reduce the effective critical path by introducing latches along the critical data path

FIR: y(n) = 1 a $\pm x_0(n)x(n) + x_0(n x(n) + 1) + x_0(n x(n) - 2)$ x(n) x(n) x(n-1) a a b b a b c c f c d f

Clock	Input	Node1	Node2	Node3	Output	
0	x(n)	ax(n) + bx(n-1)	ax(n-1) + bx(n-2)	cx(n-3)	y(n-2)	
1	x(n+1)	ax(n+1) + bx(n)	ax(n) + bx(n-1)	cx(n-2)	y(n-1)	
2	x(n+2)	ax(n+2) + bx(n+1)	ax(n+1) + bx(n)	cx(n-1)	<i>y</i> (<i>n</i>)	
3	x(n + 3)	ax(n+3) + bx(n+2)	ax(n+2) + bx(n+1)	cx(n)	y(n + 1)	

Pipelining of FIR Digital Filters (3)

Pipelining reduces the critical path, but <u>leads to a penalty in</u> terms of an increased <u>latency</u> and the number of <u>latches</u>.

This longest path or the "critical path" can be reduced by suitably placing the pipelining latches in the DSP architecture – The pipelining latches can only be placed across any *feed-forward cutset* of the graph

Cutset: a set of edges of a graph such that if these edges are removed from the graph, the graph becomes disjoint

Feed-forward cutset: data move in the forward direction on all the edge of the cutset

SFG representation of Cutset

Fine-grain Pipelining of FIR Filter

Let T_M =10 units and T_A =2 units. If the multiplier is broken into 2 smaller units (T_{M1} and T_{M2}) with processing times of 5 units, respectively (by placing the latches on the horizontal cutset across the multiplier), then the desired clock period can be achieved as 7 units

Retiming and Example (1)

A transformation technique used to **change the location of delay elements** in the circuit without affecting the input/output characteristics, changing 1) **the clock period** and 2) **the number of registers**

Retiming and Example (2)

Critical Path : $T_M + T_A = 3$ u.t Number of registers: 4 Critical Path: $2T_A = 2 \ u.t$ Number of registers: 5

Retiming Formulation (1)

Cutset retiming only affects the weights of edges in the cutset.

If the 2 disconnected subgraphs are labeled G_1 and G_2 , then cutset retiming consists of adding k delays to each edge from G_1 to G_2 , and removing k delays to each edge from G_2 to G_1 .

Retiming Formulation (2)

Map circuit $G \rightarrow G_r$ using retiming

Retiming can be presented with r(X), X is one of the nodes in the circuit

For an edge $U \xrightarrow{e} V$ (U is Source, V is the destination)

w'(e) = w(e) + r(V) - r(U)w(e): weight (delay) of the edge $U \xrightarrow{e} V$ in the origin circuit w'(e): weight of the edge $U \xrightarrow{e} V$ in the retimed circuit

A retiming solution is feasible if : $w'(e) \ge 0, \forall e \in G$

 $w(e) + r(V) - r(U) \ge 0 \Longrightarrow r(U) - r(V) \le w(e)$

One inequality per edge due to the causality of the system

Retiming Formulation: cutset contains 1 node

If cutset = {
$$x_i$$
}: we set $r(x_i) = \begin{cases} k & if \ x = x_i \\ 0, & others \end{cases}$ $x \text{ are nodes in } G$
Therefore, for an edge $U \stackrel{e}{\rightarrow} V$ in G (U is Source, V is destination)
 $P = V(V) - r(U) = \begin{cases} k, & if \ V = x_i \\ -k, & if \ U = x_i \\ 0, & others \end{cases}$
 $w'(e) = w(e) + r(V) - r(U) = \begin{cases} w(e) + k, & if \ V = x_i \\ 0, & others \end{cases}$ In-degree edges of x_i
 $w(e), & others \end{cases}$ Out-degree edges of x_i

Retiming Formulation: cutset contains one node

Feasible solution of cutset retiming: $-\min(w(e), e \in G_1 \rightarrow G_2) \le k \le \min(w(e), e \in G_2 \rightarrow G_1)$

Retiming Formulation: cutset contains many nodes

Properties of Retiming

The weight of the retimed path:

 $p = V_0 \xrightarrow{e_0} V_1 \xrightarrow{e_1} \dots \xrightarrow{e_{m-1}} V_m \text{ is given by } w'(p) = w(p) + r(V_m) - r(V_0)$ Proof: $w'(p) = \sum_{i=0}^{m-1} w'(e_i)$ $= \sum_{i=0}^{m-1} (w(e_i) + r(V_{i+1}) - r(V_i))$ $= \sum_{i=0}^{m-1} w(e_i) + (\sum_{i=0}^{m-1} r(V_{i+1}) - \sum_{i=0}^{m-1} r(V_i))$ $= w(p) + r(V_m) - r(V_0)$

- Retiming does not change the number of delays in a cycle
 Retiming does not alter the *iteration bound* in a DFG
- Adding the constant value *j* to the retiming value of each node does not change the mapping from $G to G_r$

w'(e) = w(e) + (r(V) + j) - (r(U) + j)) = w(e) + r(V) - r(U)

Solving Systems of Inequalities (1)

 Given a set of M equalities in N variables, use *shortest path algorithm* to solve the results

Step 1: draw a constraint graph

- Draw the node x_i for each of the N variables x_i , i=1,2,...,N
- Draw the node x_{N+1}
- For each inequality $r(x_i) r(x_j) \le k$, draw the edge $x_j \to x_i$ from the node x_j to node x_i with length k
- For each node x_i , i=1,2,...n, draw the edge $x_{N+1} \rightarrow x_i$ from the node x_{N+1} to the node x_i with length 0

Solving Systems of Inequalities (2)

Step 2: Solve using a shortest path algorithm 2024

- The system of inequalities has a solution if and only if the constraint graph contains no negative cycles
- If a solution exists, one solution is where $r(x_i)$ is the minimum-length path from the node x_{N+1} to the node x_i

Example

Bellman-Ford shortest path algorithm:

$$R^{(6)} = \begin{bmatrix} \infty & \infty & 5 & 4 & \infty \\ 0 & \infty & 2 & 1 & \infty \\ \infty & \infty & \infty & -1 & \infty \\ \infty & \infty & \infty & \infty & \infty \end{bmatrix}$$

$$r_1 = 0, r_2 = 0, r_3 = 0, r_4 = -1$$

Cutset Retiming and Slow-down (Lattice Filter)

Systolic Transformation

Source: L. D. Van, "A new 2-D systolic digital filter architecture **without global broadcast**," IEEE Trans. VLSI Systs., vol. 10, pp. 477-486, Aug. 2002

The Usage of Retiming Techniques

Cutset retiming and pipelining
Retiming for clock period minimization
Retiming for register minimization

Retiming for clock period minimization (1)

Minimum feasible clock period or critical path:

$$\Phi(G) = max\{t(\mathbf{p}): U \xrightarrow{\mathbf{p}} V, w(\mathbf{p}) = 0\}$$

Introduce two quantities W(U,V) and D(U,V) to determine if there is a retiming solution that can achieve a desired clock period : $\square \text{Minimum number of registers of } U \xrightarrow{P} V : W(U,V) = \min\{w(p): U \xrightarrow{P} V\}$ $\square \text{Maximum computation time of } U \xrightarrow{P} V \text{ with minimum number of registers:}$ $D(U,V) = \max\{t(p): U \xrightarrow{P} V \text{ and } w(p) = W(U,V)\}$

Retiming for clock period minimization (2)

Algorithm to compute W(U, V) and D(U, V)

- 1. Let $M = t_{max}n$, where t_{max} is the maximum computation time of the nodes in *G* and *n* is the #of nodes in *G*.
- 2. Form a new graph G' which is the same as G except the edge weights are replaced by w'(e) = Mw(e) - t(U) for all edges $U \to V$.
- 3. Solve for all pair shortest path problem on G' by using Floyd*Warshall algorithm*. Let S'_{UV} be the *shortest path* form $U \rightarrow V$.
- 4. If $U \neq V$, then $W(U, V) = [S'_{UV}/M]$ and $D(U, V) = MW(U, V) - S'_{UV} + t(V)$. If U = V, then W(U, V) = 0 and D(U, V) = t(U)

Retiming for clock period minimization (3)

Step1: $M = t_{max}n = 2 \times 4 = 8$ **Step2:** New G' with w'(e) = Mw(e) - t(U)**Step3:** pair shortest path problem on G'

Step4: If $U \neq V$, then $W(U,V) = [S'_{UV}/M]$ and $D(U,V) = MW(U,V) - S'_{UV} + t(V)$. If U = V, then W(U,V) = 0 and D(U,V) = t(U)

S'_{UV}	1	2	3	4	W(U,V)	1	2	3	4	D(U,V)	1	2	3	4
1	12	5	7	15	1	0	1	1	2	1	1	4	3	3
2	7	12	14	22	2	1	0	2	3	2	2	1	4	4
3	5	-2	12	20	3	1	0	0	3	3	4	3	2	6
4	5	-2	12	20	4	1	0	2	0	4	4	3	6	2

Retiming for clock period minimization (4)

Feasibility constraints

Retiming for clock period minimization (c=3)

Using W(U, V) and D(U, V) the feasibility and critical path constraints are formulated to give certain inequalities.

The inequalities are solved using *constraint graphs* and if a feasible solution is obtained then the circuit can be clocked with a period 'c'

Feasibility constraints

Retiming for clock period minimization (c=2)

Using W(U, V) and D(U, V) the feasibility and critical path constraints are formulated to give certain inequalities.

The inequalities are solved using *constraint graphs* and if a feasible solution is obtained then the circuit can be clocked with a period 'c'

Feasibility constraints

General Approach (Retiming for clock period minimization)

- Compute W(U, V) and D(U, V)1.
- 2. Sort the values of D(U, V)
- 120:22 Perform *binary search* on these values to find the retiming 3. solution with the minimum clock period. pengiu Rend

Retiming for Register Minimization(1)

If a node has several output edges carrying the same signal, the number of registers required to implement these edges is the maximum number of registers on any one of the edges.

 $R_U = \max_{\substack{e \\ U \to ?}} \{w_r(e)\} \qquad \qquad R_U = 7$

Retiming for Register Minimization(2)

Minimize $COST = \sum R_X$ subject to

- (fanout constraint) $R_X \ge w_r(e)$ for all X and all edges $X \xrightarrow{e} ?$ 1.
- 2.
- (feasibility constraint) $r(U) r(V) \le w(e)$ for every edge $U \xrightarrow{e} V$ (clock period constraint) $r(U) r(V) \le W(U,V) 1$ for all 3. vertices U, V such that D(U, V) > c.

Retiming and Pipelining

Pipelining is a special case of cutset retiming where there are no edges in the cutset from G2 to G1, i.e., pipelining applies to graphs without loops

Pipelining is Equivalent to Introducing Many delays at the Input (or output) followed by Retiming

Next Lecture : Parallel Architecture & Resource Sharing