Introduction of Processor Design for AI Applications

L06 - Parallel Architectures (unfolding)

Pengju Ren

Institute of Artificial Intelligence and Robotics
Xi'an Jiaotong University
http://gr.xjtu.edu.cn/web/pengjuren

Parallel Processing

- Multiple outputs are computed in parallèl in a clock period
- The effective sampling speed is increased by the level of parallelism
- Can also be used to reduce the power consumption

Parallel Architecture (Unfolding) (1)

Consider a single-input single-output (SISO) FIR filter:

$$
\text { FIR: } \quad y(n)=a * x(n)+b * x(n-1)+c * x(n-2)
$$

Convert the SISO system into an NIMO (multiple-input multiple-output) system in order to obtain a parallel processing structure.

For example: a 3-level (ynfolding factor=3) parallel MIMO implementation

$$
\begin{aligned}
& y(3 k)=a * x(3 k)+b * x(3 k-1)+c * x(3 k-2) \\
& y(3 k+1)=a * x(3 k+1)+b * x(3 k)+c * x(3 k-1) \\
& y(3 k+2)=a * x(3 k+2)+b * x(3 k+1)+c * x(3 k)
\end{aligned}
$$

MIMO (multiple-input multiple-output) Architecture

T (NOTE: Clock period of MIMO is $3 x$ of the sample period)

Parallel Architecture (Full system, unfolding factor = 4)

Sample Period=T/4

A Serial-to-Parallel Converter

A Parallel-to-Serial Converter

Unfolding == Parallel Processing

Unfolding is a transformation technique that can be applied to a data-stream program to create a new program describing more than one iterations (Unfolding factor J) of the original program
$A_{0} \rightarrow B_{0}=>A_{2} \rightarrow B_{2}=>A_{4} \rightarrow B_{4}=>\cdots$
$A_{1} \rightarrow B_{1}=>A_{3} \rightarrow B_{3} \rightarrow>A_{5} \rightarrow B_{5}=>\cdots$

2 nodes \& 2 edges

$$
T_{\infty}=1+1 / 2=1 \text { u.t. }
$$

A0, A2, A4, A6, $T_{\infty}^{\prime}=1+1 / 1=2$ u.t.

Note that: in unfolded systems, each delay is \boldsymbol{J} - slow For each node (edge) in the original DFG, there are \boldsymbol{J} nodes(edges)

Unfolding

$$
y(n)=a y(n-9)+x(n) \stackrel{2 x \text { Unfolding }(J=2)}{\rightleftarrows} \begin{aligned}
& y(2 k)=\operatorname{ay}(2 k-9)+x(2 k) \\
& y(2 k+1)=\operatorname{ay}(2 k-8)+x(2 k+1)
\end{aligned}
$$

$$
\begin{gathered}
y(2 k)=a y(2 k-9)+x(2 k)=a y(2(k-5)+1)+x(2 k) \\
y(2 k+1)=\operatorname{ay}(2 k-8)+x(2 k+1)=\operatorname{ay}(2(k-4)+x(2 k+1)
\end{gathered}
$$

In a ' J ' unfolded system each delay is J-slow $=>$ if input to a delay element is the signal $x(J k+i)$, the output is $x(J(k-1)+i)=x(k J+i-J)$.

Algorithm for unfolding (1)

- For each node U in the original DFG, draw J nodes $U_{0}, U_{1}, U_{2} \ldots U_{J-1}$
- For each edge $U \rightarrow V$ with w delays in the original DFG, draw the J edges $U_{i} \rightarrow V_{(i+w) \% J}$ with $\lfloor(i+w) / J\rfloor$ delays for $i=0,1, \ldots, J-1$.

Algorithm for unfolding (2)

■ For each node U in the original DFG, draw J nodes $U_{0}, U_{1}, U_{2} \ldots U_{J-1}$
■ For each edge $U \rightarrow V$ with w delays in the original DFG, draw the J edges $U_{i} \rightarrow V_{(i+w) \% J}$ with $\lfloor(i+w) / J\rfloor$ delays for $i=0,1, \ldots, 1-1$.

■ Unfolding of an edge with w delays in the original DFG produces $J-w$ edges with no delays and w edges with 1 delay in J unfolded DFG for $w<J$.
■ Unfolding preserves the number of delays in a DFG.
This can be stated as follows:

$$
\lfloor w / J\rfloor+\lfloor(w+1) / J\rfloor+\cdots+\lfloor(w+J-1) / J\rfloor=w
$$

Properties for unfolding (1)

Properties for unfolding (2)

■ If $i=(i+p w))_{0} y_{0} J J$ then form a loop in the unfolding DFG We would like to find the minimum value of P

Properties for unfolding (3)

$$
\left.i=\left(i+p w_{i}\right) \%\right)=(i+6 p) \% 3
$$

■ The smallest positive integer $\boldsymbol{p}, \boldsymbol{q}$ that satisfies $\boldsymbol{p} \boldsymbol{w}_{\boldsymbol{l}}=\boldsymbol{q} \boldsymbol{J}$ is $\boldsymbol{J} / \operatorname{gcd}\left(\boldsymbol{w}_{l} \boldsymbol{J}\right), \boldsymbol{w}_{l} / \operatorname{gcd}\left(\boldsymbol{w}_{l}, \boldsymbol{J}\right)$

- J-unfolding of a loop L with \boldsymbol{w}_{l} delays in the original DFG leads to $\operatorname{gcd}\left(\boldsymbol{w}_{l}, J\right)$ loops in the unfolded DFG, and each of these loops contains $\boldsymbol{w}_{l} / \operatorname{gcd}\left(\boldsymbol{w}_{l}, J\right)$ delays and $J / \operatorname{gcd}\left(\boldsymbol{w}_{l}, J\right)$ copies of each node that appears in L.
■ Unfolding a DFG (iteration bound T_{∞}) results in a J-unfolded DFG (iteration bound $J T_{\infty}$)

Applications of Unfolding

Applications of Unfolding
\square Sample Period Reduction
\square Parallel Processing
Sample Period Reduction
\square Case 1: A node in the DFG having computation time greater than T_{∞}
\square Case 2 : Iteration bound is not an integer.

- Case3 (Case1+2): Longest node computation is larger than the iteration bound T_{∞}, and T_{∞} is not an integer.

Case1

The original DFG cannot have sample period equal to the iteration bound because a node computation time is more than iteration bound

■ If the computation time of a node is greater than the iteration bound T_{∞}, then $\left\lceil t_{U} / T_{\infty}\right\rceil$ - unfolding should be used.
■ In the example, $t_{5}=4$, and $T_{\infty}=3$, so $[4 / 3\rceil=2$ - unfolding is used.

Case2

The original DFG cannot have sample period equal to the iteration bound because the iteration bound is not an integer.

■ If a critical loop bound is of the form t_{I} / w_{I} where t_{I} and w_{I} are mutually co-prime, then w_{I}-unfolding should be used.

- In the example $t_{I}=60$ and $w_{I}=45$, then t_{I} / w_{I} should be written as $4 / 3$ and 3 -unfolding should be used.
Case 3 (Case1+Case2) : In this case the minimum unfolding factor that allows the iteration period to equal the iteration bound is the min value of J such that $J T_{\infty}$ is an integer and is greater than the longest node computation time

Parallel Processing

■ Word- Level Parallel Processing

- Bit Level Parallel processing
\square Bit-serial processing
\square Bit-parallel processing
\square Digit-serial processing

Combining Parallel Processing and Pipelining(1)

In some cases, pipelining can be combined with parallel processing to further increase the speed of the data-stream system
By combining parallel processing (block size: L) and pipelining (pipelining stage: \boldsymbol{M}), the sample period can be reduce to:

$$
T_{\text {iteration }}=T_{\text {sample }}=\frac{T_{c l o c k}}{L M}
$$

Combining Parallel Processing and Pipelining(2)

Combining Parallel Processing and Retiming (1)

Unfolding can be exploited to reduce the iteration period of DFG Retiming can be exploited to reduce the critical path (clock period)

DFG

Acyclic precedence graph
Periodic schedule

$2 x$ unfolding DFG

Acyclic precedence graph

Periodic schedule

Combining Parallel Processing and Retiming (2)

Unfolding can be exploited to reduce the iteration period of DFG Retiming can be exploited to reduce the critical path (Clock period)

DFG

Acyclic precedence graph

Periodic schedule

$2 x$ unfolding DFG

Periodic schedule

Unfolding the switch

- Assume $M=$ Mly
- Assume-alledges have no delays
- Write the switch instance as $\boldsymbol{M} \boldsymbol{l}+\boldsymbol{t}=\boldsymbol{J}\left(\boldsymbol{M}^{\prime} \boldsymbol{l}+\left|\frac{t}{J}\right|\right)+(\boldsymbol{t} \% \boldsymbol{J})$
- Draw an edge with no delays in the unfolded graph from the node $U_{t \% J}$ to the node $V_{t \% J}$, which is switched at time instance $\left(M^{\prime} l+\left[\frac{t}{J}\right]\right)$

Unfolding the switch (with delays)

Bit-Parallel Adder(1)

Bit-Parallel Adder(2)

Bit-Parallel Adder(3)

$$
\begin{array}{cc}
12 l+0,4,8 & 12 l+1,2,3,5 \\
& 6,7,9,10,11
\end{array}
$$

25

Next Lecture: Folding

