
Introduction of Processor Design for
AI Applications

L06 – Parallel Architectures (unfolding)

Pengju Ren
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren@XJTU 2022

Parallel Processing

Multiple outputs are computed in parallel in a clock period
 The effective sampling speed is increased by the level of

parallelism
 Can also be used to reduce the power consumption

2

Pengju Ren@XJTU 2022

Parallel Architecture (Unfolding) (1)

3

x(n) y(n)
SISO

x(3k)
x(3k+1)
x(3k+2)

y(3k)
y(3k+1)
y(3k+2)

MIMO

：

Consider a single-input single-output (SISO) FIR filter:

Convert the SISO system into an MIMO (multiple-input multiple-output) system
in order to obtain a parallel processing structure.

For example: a 3-level （unfolding factor=3） parallel MIMO implementation

Pengju Ren@XJTU 2022

MIMO (multiple-input multiple-output) Architecture

4

y(3k+2)

a b c

y(3k+1)

c a b

y(3k)

b c a

D

D

x(3k)x(3k+2) x(3k+1)

x(3k-1)

x(3k-2)

T （NOTE：Clock period of MIMO is 3x of the sample period)

D D T/3
𝑻𝒄𝒍𝒐𝒄𝒌 ≥ 𝑻𝑴 + 2𝑻𝑨

𝒔𝒂𝒎𝒑𝒍𝒆
𝑻𝒄𝒍𝒐𝒄𝒌

𝟑

𝑻𝑴 + ଶ𝑻𝑨

𝟑

D
D

T/3

3x slower

Pengju Ren@XJTU 2022

Parallel Architecture (Full system, unfolding factor = 4)

x(n)

y(n)

Serial-to-Parallel
Converter

MIMO

y(4k)
y(4k+1)
y(4k+2)
y(4k+3)

Parallel-to-Serial
Converter

x(4k)x(4k+1)x(4k+2)x(4k+3)

Clock Period=T
Sample Period=T/4

(Clock Period=T)

y(
4k

)

y(
4k

+1
)

y(
4k

+2
)

y(
4k

+3
)

D D D y(n)
T/4 T/4 T/4

T T T T

A Parallel-to-Serial Converter

D
x(n)

D D D
x(

4k
)

x(
4k

+1
)

x(
4k

+2
)

x(
4k

+3
)

Sample Period=T/4

A Serial-to-Parallel Converter

T T T TPengju Ren@XJTU 2022

6

Unfolding is a transformation technique that can be applied to a
data-stream program to create a new program describing more
than one iterations (Unfolding factor J) of the original program

A B

2D

(1) (1)

଴ ଴ ଶ ଶ ସ ସ

ଵ ଵ ଷ ଷ ହ ହ

2 nodes & 2 edges

ஶ = 1+1/2=1 u.t.

ஶ = 1+1/1=2 u.t.

ஶ = 1+1/1=2 u.t.

4 nodes & 4 edges

ஶ = 2/2=1 u.t.

A0

D

(1) (1)
B0

A0，A2，A4，A6，…

A1，A3，A5，A7，…

A1

D

(1) (1)
B1

Note that: in unfolded systems, each delay is J- slow
For each node (edge) in the original DFG, there are J nodes(edges)

Unfolding == Parallel Processing

Pengju Ren@XJTU 2022

Unfolding

7

In a ‘ ’ unfolded system each delay is J-slow => if input to a delay element is
the signal , the output is .

x(n)

y(n) a

9D

2x Unfolding (=2)

5D

4D

x(2k+1)

y(2k)

a

x(2k)

a

y(2k+1)

？

？

Pengju Ren@XJTU 2022

Algorithm for unfolding (1)

8

 For each node in the original DFG, draw nodes 𝟎 𝟏 𝟐… 𝑱ି𝟏

𝑼 𝑽w

(𝒏ା𝒘) (𝒏)
(𝑱𝒌ା𝒊ା𝒘)

 For each edge with delays in the original DFG, draw the
edges 𝒊 𝒊ା𝒘 %𝑱 with delays for .

?w=?

𝑼𝟏

𝑼𝑱ି𝟏

𝑼𝒊

𝑼𝟎

…

…

𝑽𝟎

𝑽𝟏

𝑽𝑱ି𝟏

𝑽𝒊

…

…

x Unfolding

Pengju Ren@XJTU 2022

Algorithm for unfolding (2)

9

𝑼 𝑽
37D

଴

ଵ

9D

ଵ

ଶଶ

ଷଷ

଴

9D

9D

10D

𝑖 + w %𝑱 =

1, 𝑖 = 0
2, 𝑖 = 1
3, 𝑖 = 2
0, 𝑖 = 3

 Unfolding of an edge with delays in the original DFG produces edges with
no delays and edges with delay in unfolded DFG for < .

 Unfolding preserves the number of delays in a DFG.
This can be stated as follows:

（ ） =

 𝑼𝟎

𝟗
→ 𝑽𝟏

 𝑼𝟏

𝟗
→ 𝑽𝟐

 𝑼𝟐

𝟗
→ 𝑽𝟑

 𝑼𝟑
𝟏𝟎

𝑽𝟎

 For each node in the original DFG, draw nodes 𝟎 𝟏 𝟐… 𝑱ି𝟏

 For each edge with delays in the original DFG, draw the
edges 𝒊 𝒊ା𝒘 %𝑱 with delays for .

4x Unfolding (=4)

(𝑖 + w)/𝑱 = ቊ
9, 𝑖 = 0,1,2

10, 𝑖 = 3

Pengju Ren@XJTU 2022

10

𝑼 𝑽
D

𝑻

6D5D

଴ ଴ ଴

ଵ ଵ ଵ

ଶ ଶ ଶ

2D

2D

2D

2D 2D

D

D

𝑼 𝑽
D

𝑻

2D3D

଴ ଴ ଴

ଵ ଵ ଵ

ଶ ଶ ଶ

D

D

D

D

D

D

Properties for unfolding (1)

3x Unfolding (=3)

3x Unfolding (=3)Pengju Ren@XJTU 2022

11

Properties for unfolding (2)

𝑼 𝑼

𝒘𝒍 = ∑ 𝒘(𝒆)𝒆∈𝒑𝒂𝒕𝒉

…

𝒍
𝒍

𝒍

(𝒏ା𝒘𝒍) (𝒏)
𝑼𝟏

𝑼𝑱ି𝟏

𝑼𝒊

𝑼𝟎

…

…
?

(𝑱𝒌ା𝒊ା𝒘𝒍)

 If then form a loop in the unfolding DFG

x Unfolding

𝒍
𝒍

𝒍

(𝒏ା𝒑𝒘𝒍)
(𝑱𝒌ା𝒊ା𝒑𝒘𝒍)

𝒍𝒍

We would like to find the minimum value of

Pengju Ren@XJTU 2022

12

Properties for unfolding (3)

 The smallest positive integer that satisfies 𝒍 is 𝒍 𝒍 𝒍

 -unfolding of a loop with 𝒍 delays in the original DFG leads to 𝒍 loops in the
unfolded DFG, and each of these loops contains 𝒍 𝒍 delays and 𝒍

copies of each node that appears in .
 Unfolding a DFG (iteration bound ஶ) results in a -unfolded DFG (iteration bound ஶ)

𝑼 𝑽
D

𝑻

2D3D

଴ ଴ ଴

ଵ ଵ ଵ

ଶ ଶ ଶ

D

D

D

D

D

D

଴ ଴ ଴

ଵ ଵ ଵ

ଶ ଶ ଶ

D

DD

ଷ ଷ ଷ

D

D
D

𝒍

𝒍

Pengju Ren@XJTU 2022

Applications of Unfolding

13

Applications of Unfolding
 Sample Period Reduction
 Parallel Processing

Sample Period Reduction
 Case 1 : A node in the DFG having computation time

greater than .
 Case 2 : Iteration bound is not an integer.
 Case 3 （Case1+2）: Longest node computation is larger

than the iteration bound , and is not an integer.Pengju Ren@XJTU 2022

Case1

14

The original DFG cannot have sample period equal to the iteration
bound because a node computation time is more than iteration bound

 If the computation time of a node is greater than the iteration bound ஶ, then
௎ ஶ - unfolding should be used.

 In the example, ହ = 4, and ஶ = 3, so - unfolding is used.

𝟏 𝟐

𝟒 𝟓

𝟔

𝟑

(0) (1) (0)

(1)

(4)

(4)

2D

J = =2
D D

(0) (1) (0)

(1)

(4)

(4)

(0) (1) (0)

(1)

(4)

(4)

1଴ 2଴ 3଴

4଴ 5଴

6଴

6ଵ

5ଵ4ଵ

3ଵ2ଵ1ଵ

D

D

2D

Pengju Ren@XJTU 2022

Case2

15

The original DFG cannot have sample period equal to the iteration
bound because the iteration bound is not an integer.

 If a critical loop bound is of the form ூ ூ where ூ and ூ are mutually
co-prime, then ூ -unfolding should be used.

 In the example ூ = 60 and ூ = 45, then ூ / ூ should be written as 4/3
and 3-unfolding should be used.

Case 3 （Case1+Case2） : In this case the minimum unfolding factor
that allows the iteration period to equal the iteration bound is the
min value of such that is an integer and is greater than the
longest node computation time

𝟏 𝟐D 𝟑 𝟒D
D

(1) (1) (1) (1)
J =3

ஶ ஶ

(1) (1) (1) (1)

D

D
(1) (1) (1) (1)

D
(1) (1) (1) (1)

1଴ 2ଵ 3ଵ 4ଶ

1ଵ 2ଶ 3ଶ 4଴

1ଶ 2଴ 3଴ 4ଵ

Pengju Ren@XJTU 2022

Parallel Processing

16

 Word- Level Parallel Processing
 Bit Level Parallel processing
 Bit-serial processing
 Bit-parallel processing
 Digit-serial processing

𝟐 𝟑 𝟒

𝟏

𝟓 𝟔

2D
4D

1଴

2଴ 3଴ 4଴

2ଵ 3ଵ 4ଵ

2ଶ 3ଶ 4ଶ

5଴ 6଴

5ଵ 6ଵ

5ଶ 6

1ଵ

1ଶ

2D

D

D
D

D

Pengju Ren@XJTU 2022

Combining Parallel Processing and Pipelining(1)

In some cases, pipelining can be combined with parallel processing
to further increase the speed of the data-stream system
By combining parallel processing (block size: L) and pipelining
(pipelining stage: M), the sample period can be reduce to:

17

𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏
𝒄𝒍𝒐𝒄𝒌

Pengju Ren@XJTU 2022

18

y(3k+2)

a b c

y(3k+1)

c a b

y(3k)

b c a

D

D

D D

Combining Parallel Processing and Pipelining(2)

Pengju Ren@XJTU 2022

19

Combining Parallel Processing and Retiming (1)

Unfolding can be exploited to reduce the iteration period of DFG
Retiming can be exploited to reduce the critical path (clock period)

𝑨 𝑩

D

𝑪
D

（1） （2） （4）

DFG

𝑩𝟎

D

D

𝑪𝟎 𝑨𝟏

𝑨𝟎 𝑩𝟏 𝑪𝟏

2x unfolding DFG

𝑩

𝑨

𝑪

Acyclic precedence graph

𝑩𝟎 𝑪𝟎 𝑨𝟏

𝑨𝟎 𝑩𝟏 𝑪𝟏

Acyclic precedence graph

𝑩 𝑪

𝑨

2 4

Periodic schedule

𝑩𝟎 𝑪𝟎 𝑨𝟏

𝑩𝟏 𝑪𝟏𝑨𝟎

142

Periodic schedule

Pengju Ren@XJTU 2022

20

Combining Parallel Processing and Retiming (2)

Unfolding can be exploited to reduce the iteration period of DFG
Retiming can be exploited to reduce the critical path (clock period)

𝑨

𝑪

𝑩

Acyclic precedence graph

𝑨𝟎 𝑩𝟎 𝑪𝟏

𝑪𝟎 𝑨𝟏 𝑩𝟏

Acyclic precedence graph

𝑩𝟏𝑪𝟎 𝑨𝟏

𝑩𝟎 𝑪𝟏𝑨𝟎

1 42

Periodic schedule

𝑨 𝑩

D

𝑪

D

（1） （2） （4）

DFG

D
𝑩

𝑪

𝑨

2

4

Periodic schedule

1

𝑨𝟎

D

D

𝑩𝟎 𝑪𝟏

𝑨𝟏 𝑩𝟏 𝑪𝟎

2x unfolding DFG

D

Pengju Ren@XJTU 2022

Unfolding the switch

21

𝑼 𝑽

 Assume
 Assume all edges have no delays
 Write the switch instance as
 Draw an edge with no delays in the unfolded graph from

the node to the node 𝒕%𝑱, which is switched at time
instance ᇱ 𝒕

𝑱
)

ᇱ

ᇱ

𝒕%𝑱

𝑼 𝑽

𝑼𝟎 𝑽𝟎

𝑼𝟏 𝑽𝟏

𝑼𝟐 𝑽𝟐

x Unfolding

4

4

4

Pengju Ren@XJTU 2022

22

Unfolding the switch (with delays)

𝑨
𝑪

𝟔𝒍 + 𝟏, 𝟓

𝑩
𝟔𝒍 + 𝟎, 𝟐, 𝟑, 𝟒

𝟐𝑫

𝟐𝒍 + 𝟎

𝑪𝟎

𝑪𝟏

𝑪𝟐

𝑨𝟎

𝑨𝟏

𝑨𝟐

𝑫𝟎

𝑫𝟏

𝑫𝟐

𝑩𝟎

𝑩𝟐

𝑩𝟏

𝟐𝒍 + 𝟏

𝟐𝒍 + 𝟎

𝟐𝒍 + 𝟏

𝟐𝒍 + 𝟏

𝟐𝒍 + 𝟎

𝑫

𝑫

𝑪𝟎

𝑪𝟏

𝑪𝟐

𝟐𝒍 + 𝟎

𝟐𝒍 + 𝟏

𝟐𝒍 + 𝟎

𝟐𝒍 + 𝟏

𝑫

𝑩𝟎

𝑨𝟐

𝑩𝟏

𝑩𝟐

𝑨𝟎

Remove dummy
and dead nodes

𝑨

𝑪

𝟔𝒍 + 𝟏, 𝟓

𝑩
𝟔𝒍 + 𝟎, 𝟐, 𝟑, 𝟒

𝟐𝑫
𝑫Adding dummy nodes

Pengju Ren@XJTU 2022

Bit-Parallel Adder(1)

23

𝑨

𝑩

𝑿

𝑺

𝑫

𝒁

𝑫

𝟒𝒍 + 𝟏, 𝟐, 𝟑𝟒𝒍 + 𝟎

+ + + +

𝒂𝟎 𝒃𝟎 𝒂𝟏 𝒃𝟏 𝒂𝟐 𝒃𝟐 𝒂𝟑 𝒃𝟑

𝑺𝟎 𝑺𝟏 𝑺𝟐 𝑺𝟑

Carry out

𝑫𝟎

𝑨𝟎

𝑩𝟎

𝑿𝟎

𝑺𝟎

𝒁𝟎

𝑨𝟏

𝑩𝟏

𝑿𝟏

𝑺𝟏

𝑫𝟏

𝒁𝟏

𝑨𝟐

𝑩𝟐

𝑿𝟐

𝑺𝟐

𝑫𝟐

𝒁𝟐

𝑨𝟑

𝑩𝟑

𝑿𝟑

𝑺𝟑

𝑫𝟑

𝒁𝟑

𝑫

Carry in (Z)

𝟒𝒍 + 𝟎 𝟒𝒍 + 𝟏, 𝟐, 𝟑

Pengju Ren@XJTU 2022

Bit-Parallel Adder(2)

24

𝑨

𝑩

𝑿

𝑺

𝑫

𝒁

𝑫

𝟒𝒍 + 𝟏, 𝟐, 𝟑𝟒𝒍 + 𝟎

𝑨𝟎

𝑩𝟎

𝑿𝟎

𝑺𝟎

𝑫𝟎

𝒁𝟎

𝑨𝟏

𝑩𝟏

𝑿𝟏

𝑺𝟏

𝑫𝟏

𝒁𝟏

𝑫

𝟐𝒍 + 𝟎 𝟐𝒍 + 𝟏

+ +

𝒂𝟎 𝒃𝟎 𝒂𝟏 𝒃𝟏

𝒂𝟐 𝒃𝟐 𝒂𝟑 𝒃𝟑

𝑺𝟐 𝑺𝟑

Carry out

𝟐𝒍 + 𝟎

𝟐𝒍 + 𝟏

D

𝟐𝒍 + 𝟎

𝑺𝟎 𝑺𝟏

Pengju Ren@XJTU 2022

Bit-Parallel Adder(3)

25

𝑨

𝑩

𝑿

𝑺

𝑫

𝒁

𝑫

𝟒𝒍 + 𝟏, 𝟐, 𝟑𝟒𝒍 + 𝟎

𝑨

𝑩

𝑿

𝑺

𝑫

𝒁

𝑫

𝟏𝟐𝒍 + 𝟏, 𝟐, 𝟑, 𝟓,
𝟔, 𝟕, 𝟗, 𝟏𝟎, 𝟏𝟏

𝟏𝟐𝒍 + 𝟎, 𝟒, 𝟖

𝑨𝟎

𝑩𝟎

𝑿𝟎

𝑺𝟎

𝑫𝟎

𝒁𝟎

𝑨𝟏

𝑩𝟏

𝑿𝟏

𝑺𝟏

𝑫𝟏

𝑨𝟐

𝑩𝟐

𝑿𝟐

𝑺𝟐

𝑫𝟐

𝑫

𝒁𝟏 𝒁𝟐

𝟒𝒍 + 𝟎 𝟒𝒍 + 𝟏, 𝟐, 𝟑 𝟒𝒍 + 𝟏 𝟒𝒍 + 𝟎, 𝟐, 𝟑 𝟒𝒍 + 𝟐 𝟒𝒍 + 𝟎, 𝟏, 𝟑

+ +

𝒂𝟎 𝒃𝟎 𝒂𝟏 𝒃𝟏

𝒂𝟑 𝒃𝟑 𝒂𝟎 𝒃𝟎

𝑺𝟐 𝑺𝟑

𝟒𝒍 + 𝟎

𝟒𝒍 + 𝟏, 𝟐, 𝟑

D

𝑺𝟎 𝑺𝟏

+

𝒂𝟐 𝒃𝟐

𝒂𝟏 𝒃𝟏

𝑺𝟑

𝑺𝟏

𝟒𝒍 + 𝟏 𝟒𝒍 + 𝟐

𝟒𝒍 + 𝟎, 𝟐, 𝟑 𝟒𝒍 + 𝟎, 𝟏, 𝟑

𝒂𝟐 𝒃𝟐 𝒂𝟑 𝒃𝟑 𝒂𝟎 𝒃𝟎

𝒂𝟏 𝒃𝟏 𝒂𝟐 𝒃𝟐 𝒂𝟑 𝒃𝟑

𝑳 = 𝒍𝒄𝒎 𝑴, 𝑱 , 𝑴𝒍 + 𝒖 = 𝑳𝒍 + 𝒖 + 𝒎𝑴 𝒎 = 𝟎, … ,
𝑳

𝑴
− 𝟏

Pengju Ren@XJTU 2022

26

Next Lecture：Folding

Pengju Ren@XJTU 2022

