# Introduction of Processor Design for Al Applications

## L06 - Parallel Architectures (unfolding)

Pengju Ren
Institute of Artificial Intelligence and Robotics
Xi'an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

## **Parallel Processing**

- Multiple outputs are computed in parallel in a clock period
- The effective sampling speed is increased by the level of parallelism
- Can also be used to reduce the power consumption

## Parallel Architecture (Unfolding) (1)

Consider a *single-input single-output (SISO)* FIR filter:

FIR: 
$$y(n) = a * x(n) + b * x(n-1) + c * x(n-2)$$



Convert the *SISO* system into an *MIMO* (*multiple-input multiple-output*) system in order to obtain a parallel processing structure.

For example: a 3-level (unfolding factor=3) parallel MIMO implementation

$$y(3k) = a * x(3k) + b * x(3k - 1) + c * x(3k - 2)$$
  
$$y(3k + 1) = a * x(3k + 1) + b * x(3k) + c * x(3k - 1)$$
  
$$y(3k + 2) = a * x(3k + 2) + b * x(3k + 1) + c * x(3k)$$

## MIMO (multiple-input multiple-output) Architecture



T (NOTE: Clock period of MIMO is 3x of the sample period)

## Parallel Architecture (Full system, unfolding factor = 4)



## **Unfolding == Parallel Processing**

Unfolding is a transformation technique that can be applied to a data-stream program to create a new program describing *more* than one iterations (Unfolding factor J) of the original program



$$A_0 \rightarrow B_0 => A_2 \rightarrow B_2 => A_4 \rightarrow B_4 => \cdots$$
  
 $A_1 \rightarrow B_1 => A_3 \rightarrow B_3 => A_5 \rightarrow B_5 => \cdots$   
2 nodes & 2 edges  
 $T_{\infty} = 1 + 1/2 = 1$  u.t.



**Note that:** in unfolded systems, each delay is **J- slow**For each node (edge) in the original DFG, there are **J** nodes(edges)

## **Unfolding**

$$y(n) = ay(n-9) + x(n)$$

$$y(2k) = ay(2k-9) + x(2k)$$

$$y(2k+1) = ay(2k-8) + x(2k+1)$$



$$y(2k) = ay(2k - 9) + x(2k) = ay(2(k - 5) + 1) + x(2k)$$
$$y(2k + 1) = ay(2k - 8) + x(2k + 1) = ay(2(k - 4) + x(2k + 1))$$

In a 'J' unfolded system each delay is J-slow => if input to a delay element is the signal x(Jk+i), the output is x(J(k-1)+i)=x(kJ+i-J).

## Algorithm for unfolding (1)



- For each node U in the original DFG, draw J nodes  $U_0$ ,  $U_1$ ,  $U_2$ ...  $U_{J-1}$
- For each edge  $U \to V$  with w delays in the original DFG, draw the J edges  $U_i \to V_{(i+w)\%J}$  with  $\lfloor (i+w)/J \rfloor$  delays for  $i=0,1,\ldots,J-1$ .

## Algorithm for unfolding (2)

- For each node U in the original DFG, draw J nodes  $U_0, U_1, U_2 ... U_{J-1}$
- For each edge  $U \rightarrow V$  with w delays in the original DFG, draw the J edges  $U_i \rightarrow V_{(i+w)\%J}$  with  $\lfloor (i+w)/J \rfloor$  delays for  $i=0,1,\ldots,J-1$ .



- Unfolding of an edge with w delays in the original DFG produces J-w edges with no delays and w edges with 1 delay in J unfolded DFG for w<J.
- Unfolding preserves the number of delays in a DFG.

This can be stated as follows:

$$[w/J] + [(w+1)/J] + \cdots + [(w+J-1)/J] = w$$

## **Properties for unfolding (1)**



## **Properties for unfolding (2)**



If i = (i + pw) % J then form a loop in the unfolding DFG We would like to find the minimum value of P

## **Properties for unfolding (3)**



- The smallest positive integer p, q that satisfies  $pw_l = qJ$  is  $J/gcd(w_l, J)$ ,  $w_l/gcd(w_l, J)$
- I-unfolding of a loop L with  $w_l$  delays in the original DFG leads to  $gcd(w_l, J)$  loops in the unfolded DFG, and each of these loops contains  $w_l/gcd(w_l, J)$  delays and  $J/gcd(w_l, J)$  copies of each node that appears in L.
- lacktriangle Unfolding a DFG (iteration bound  $T_{\infty}$ ) results in a J-unfolded DFG (iteration bound  $JT_{\infty}$ )

## **Applications of Unfolding**

Applications of Unfolding

Sample Period Reduction

Parallel Processing

Sample Period Reduction

Case 1 : A node in the DFG having computation time greater than  $T_{\infty}$ .

Case 2 : Iteration bound is not an integer.

Case 3 (Case1+2): Longest node computation is larger than the iteration bound  $T_{\infty}$ , and  $T_{\infty}$  is not an integer.

#### Case1

The original DFG cannot have sample period equal to the iteration bound because a node computation time is more than iteration bound



- If the computation time of a node is greater than the iteration bound  $T_{\infty}$ , then  $\left[t_{U}/T_{\infty}\right]$  unfolding should be used.
- In the example,  $t_5 = 4$ , and  $T_{\infty} = 3$ , so  $\lceil 4/3 \rceil = 2$  unfolding is used.

#### Case2

The original DFG cannot have sample period equal to the iteration bound because the iteration bound is not an integer.



- If a critical loop bound is of the form  $t_I/w_I$  where  $t_I$  and  $w_I$  are mutually co-prime, then  $w_I$  -unfolding should be used.
- In the example  $t_I = 60$  and  $w_I = 45$ , then  $t_I / w_I$  should be written as 4/3 and 3-unfolding should be used.

**Case 3** (Case1+Case2): In this case the minimum unfolding factor that allows the iteration period to equal the iteration bound is the min value of J such that  $JT_{\infty}$  is an integer and is greater than the longest node computation time

## **Parallel Processing**

- Word- Level Parallel Processing
- Bit Level Parallel processing
  - Bit-serial processing
  - ☐ Bit-parallel processing
  - Digit-serial processing





## **Combining Parallel Processing and Pipelining(1)**

In some cases, pipelining can be combined with parallel processing to further increase the speed of the data-stream system

By combining parallel processing (block size: L) and pipelining (pipelining stage: M), the sample period can be reduce to:

$$T_{iteration} = T_{sample} = \frac{T_{clock}}{LM}$$

## **Combining Parallel Processing and Pipelining(2)**



## **Combining Parallel Processing and Retiming (1)**

Unfolding can be exploited to reduce the iteration period of DFG Retiming can be exploited to reduce the critical path (clock period)



## **Combining Parallel Processing and Retiming (2)**

Unfolding can be exploited to reduce the iteration period of DFG Retiming can be exploited to reduce the critical path (clock period)



## Unfolding the switch



- Assume M = M'J
- Assume all edges have *no delays*
- Write the switch instance as  $Ml + t = J(M'l + \left|\frac{t}{l}\right|) + (t\%J)$
- Draw an edge with no delays in the unfolded graph from the node  $U_{t\%J}$  to the node  $V_{t\%J}$ , which is switched at time instance  $(M'l + \left| \frac{t}{I} \right|)$

## Unfolding the switch (with delays)



## **Bit-Parallel Adder(1)**



## **Bit-Parallel Adder(2)**



### **Bit-Parallel Adder(3)**





L = lcm(M, J), Ml + u = Ll + u + mM  $m = 0, ..., \frac{L}{M} - 1$ 





Next Lecture: Folding