
Introduction of Processor Design for
AI Applications

L07 – Resource Sharing (folding)

Pengju Ren
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren@XJTU 2022

Folding (Resource Sharing)

2

 Folding transform is used to systematically determine the
control circuits in data-stream architectures where multiple
algorithm operations are time-multiplexed to a single
functional unit
Trading area for time
Reducing the number of hardware functional units by a

factor of N at the expense of increasing the computation
time by a factor of N

Pengju Ren@XJTU 2022

Resource Sharing (folding)

3

Folding is a technique to reduce the silicon area by time multiplexing
many algorithm operations into single functional units (such as
adders and multipliers)

a(n)

b(n) c(n)

y(n)

2-Folding

Cycle Adder Input(left) Adder Input(top) System Output

0 𝑎 0 𝑏 0 -

1 𝑎 0 + 𝑏 0 𝑐 0 -

2 𝑎 1 𝑏 1 𝑎 0 + 𝑏 0 + 𝑐(0)

3 𝑎 1 + 𝑏(1) 𝑐(1) -

4 𝑎 2 𝑏 2 𝑎 1 + 𝑏 1 + 𝑐(1)

5 𝑎 2 + 𝑏(2) c 2 -

D
a(n)

b(n)
c(n)

y(n)
2𝑙 + 0

2𝑙 + 0

2𝑙 + 1
2𝑙 +0

2𝑙 + 1

Pengju Ren@XJTU 2022

Folding Transformation
 is the folding factor i.e., the number of operations folded to a single

functional unit.
 and are respectively the time units at which -th iteration of the

nodes and are scheduled. and are called folding orders (time partition
at which the node is scheduled to be executed) and satisfy

 ௨ and ௩ are functional units that execute and respectively. ௨ is
pipelined by ௨ stages， ௟ is available at ௨.

 Edge
௘

has delays => the output of -th iteration of (௟) is used by
iteration of node , which is executed at . So,

the result should be stored for :

4

ி

௘

௨

=> ி

௘

௨

௨

𝒖 𝒗
𝑼 𝑽

w(e)𝒍 − 𝒕𝒉 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏:

𝒍 + 𝒘 𝒕𝒉 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏:
…

… ௨

D D…

Pengju Ren@XJTU 2022

5

Folding Set : An ordered set of operations executed by the same functional
unit. The operations are ordered from to . For example, Folding set ଵ

ଵ, , ଶ} is for folding order . ଵ has a folding order of and ଶ of
and are respectively denoted by ଵ and ଶ .
Example: Folding a retimed Biquad filter by

Addition time = 1u.t., Multiplication time = 2u.t., 1 stage pipelined adder and 2
stage pipelined multiplier (i.e., ஺ and ெ)

The folding sets are ଵ and ଶ

D
D

D

DD
D

IN OUT
a b

c d

𝟏 𝟏

𝟏 𝟏

𝟐

𝟐

𝟐

𝟐

1

3

5

7 8

2

4

6

Folding set and Biquad filter

Pengju Ren@XJTU 2022

6

𝐷ி 1 → 2 = 4 1 − 1 + 1 − 3 = 1
𝐷ி 1 → 6 = 4 1 − 1 + 2 − 3 = 2
𝐷ி 1 → 8 = 4 2 − 1 + 1 − 3 = 5
𝐷ி 4 → 2 = 4 0 − 1 + 1 − 0 = 0
𝐷ி 6 → 4 = 4 1 − 2 + 0 − 0 = 0
𝐷ி 8 → 4 = 4 1 − 2 + 0 − 1 = 1

𝐷ி 1 → 5 = 4 1 − 1 + 0 − 3 = 0
𝐷ி 1 → 7 = 4 1 − 1 + 3 − 3 = 3
𝐷ி 3 → 1 = 4 0 − 1 + 3 − 2 = 0
𝐷ி 5 → 3 = 4 0 − 2 + 2 − 0 = 0
𝐷ி 7 → 3 = 4 1 − 2 + 2 − 3 = 1

ி

௘

௨

Folding Transform — Biquad filter(1)

D
D

D

DD
D

IN OUT
a b

c d

𝟏 𝟏

𝟏 𝟏

𝟐

𝟐

𝟐

𝟐

1

3

5

7 8

2

4

6

𝑁 = 4, 𝑃஺ = 1 and 𝑃ெ = 2, 𝑆ଵ = {4,2,3,1} and 𝑆ଶ = {5,8,6,7}Pengju Ren@XJTU 2022

7

a
b
c
d

[0]
[2]
[3]
[1]

[0]

D

[2][3]

D 2D

[1]

[,2]
[,3]

[,2]

D

[1][3]
IN

𝐷ி 1 → 2 = 4 1 − 1 + 1 − 3 = 1
𝐷ி 1 → 6 = 4 1 − 1 + 2 − 3 = 2
𝐷ி 1 → 8 = 4 2 − 1 + 1 − 3 = 5
𝐷ி 4 → 2 = 4 0 − 1 + 1 − 0 = 0
𝐷ி 6 → 4 = 4 1 − 2 + 0 − 0 = 0
𝐷ி 8 → 4 = 4 1 − 2 + 0 − 1 = 1

𝐷ி 1 → 5 = 4 1 − 1 + 0 − 3 = 0
𝐷ி 1 → 7 = 4 1 − 1 + 3 − 3 = 3
𝐷ி 3 → 1 = 4 0 − 1 + 3 − 2 = 0
𝐷ி 5 → 3 = 4 0 − 2 + 2 − 0 = 0
𝐷ி 7 → 3 = 4 1 − 2 + 2 − 3 = 1

[2]
OUT

Folding Transform — Biquad filter(2)

D

𝑷𝑨

2D

𝑷𝑴

𝑁 = 4, 𝑃஺ = 1 and 𝑃ெ = 2, 𝑆ଵ = {4,2,3,1} and 𝑆ଶ = {5,8,6,7}

1
0

D
0

Pengju Ren@XJTU 2022

Retiming for Folding (1)

8

For a folded system to be realizable ி for all edges.

Once valid folding sets have been assigned, retiming can be used
to either satisfy this property or determine that the folding sets
are not feasible, that is , if ி is the folded delays in the
edge for the retimed graph then ி . So,

௥ ௎ … where ௥

 ௎

 ி

 ி

Pengju Ren@XJTU 2022

Retiming for Folding (2)

9

D
D

D

DD
D

IN OUT
a b

c d

𝟏 𝟏

𝟏 𝟏

𝟐

𝟐

𝟐

𝟐

1

3

5

7 8

2

4

6

D
IN OUT

a b

c d

𝟏 𝟏

𝟏 𝟏

𝟐

𝟐

𝟐

𝟐

1

3

5

7 8

2

4

6

D

𝑪𝟏

𝑪𝟐

Cutset retiming Feedforward cutset

Pengju Ren@XJTU 2022

10

Edge Folding Equations

𝟏 → 𝟐 𝑫𝑭 𝟏 → 𝟐 = −𝟑

𝟏 → 𝟓 𝑫𝑭 𝟏 → 𝟓 = 𝟎

𝟏 → 𝟔 𝑫𝑭 𝟏 → 𝟔 = 𝟐

𝟏 → 𝟕 𝑫𝑭 𝟏 → 𝟕 = 𝟕

𝟏 → 𝟖 𝑫𝑭 𝟏 → 𝟖 = 𝟓

𝟑 → 𝟏 𝑫𝑭 𝟑 → 𝟏 = 𝟎

𝟒 → 𝟐 𝑫𝑭 𝟒 → 𝟐 = 𝟎

𝟓 → 𝟑 𝑫𝑭 𝟓 → 𝟑 = 𝟎

𝟔 → 𝟒 𝑫𝑭 𝟔 → 𝟒 = −𝟒

𝟕 → 𝟑 𝑫𝑭 𝟕 → 𝟑 = −𝟑

𝟖 → 𝟒 𝑫𝑭 𝟖 → 𝟒 = −𝟑

Retiming for Folding (3)

𝑭

Retiming for Folding Constraint

𝒓 𝟏 − 𝒓 𝟐 ≤ −𝟏

𝒓 𝟏 − 𝒓 𝟓 ≤ 𝟎

𝒓 𝟏 − 𝒓 𝟔 ≤ 𝟎

𝒓 𝟏 − 𝒓 𝟕 ≤ 𝟏

𝒓 𝟏 − 𝒓 𝟖 ≤ 𝟏

𝒓 𝟑 − 𝒓 𝟏 ≤ 𝟎

𝒓 𝟒 − 𝒓 𝟐 ≤ 𝟎

𝒓 𝟓 − 𝒓 𝟑 ≤ 𝟎

𝒓 𝟔 − 𝒓 𝟒 ≤ −𝟏

𝒓 𝟕 − 𝒓 𝟑 ≤ −𝟏

𝒓 𝟖 − 𝒓 𝟒 ≤ −𝟏

Pengju Ren@XJTU 2022

11

Retiming for Folding (4)

Retiming for
Folding Constraint

𝒓 𝟏 − 𝒓 𝟐 ≤ −𝟏

𝒓 𝟏 − 𝒓 𝟓 ≤ 𝟎

𝒓 𝟏 − 𝒓 𝟔 ≤ 𝟎

𝒓 𝟏 − 𝒓 𝟕 ≤ 𝟏

𝒓 𝟏 − 𝒓 𝟖 ≤ 𝟏

𝒓 𝟑 − 𝒓 𝟏 ≤ 𝟎

𝒓 𝟒 − 𝒓 𝟐 ≤ 𝟎

𝒓 𝟓 − 𝒓 𝟑 ≤ 𝟎

𝒓 𝟔 − 𝒓 𝟒 ≤ −𝟏

𝒓 𝟕 − 𝒓 𝟑 ≤ −𝟏

𝒓 𝟖 − 𝒓 𝟒 ≤ −𝟏

1

2

3

4

5

6

7

8

9

Pengju Ren@XJTU 2022

12

Retiming for Folding (5)
𝒓 𝟏 = −𝟏
𝒓 𝟐 = 𝟎
𝒓 𝟑 = −𝟏
𝒓 𝟒 = 𝟎
𝒓 𝟓 = −𝟏
𝒓 𝟔 = −𝟏
𝒓 𝟕 = −𝟐
𝒓 𝟖 = −𝟏

Retiming
Folding

Pengju Ren@XJTU 2022

Register Minimization Technique (1)
Lifetime analysis is used for register minimization techniques in a Data-stream
hardware. A ‘data sample or variable’ is live from the time it is produced
through the time it is consumed. After that it is dead.
Linear lifetime chart : Represents the lifetime of the variables in a linear fashion.
Example :

13

Note : Linear lifetime chart uses the convention that the variable is not live during the
clock cycle when it is produced but live during the clock cycle when it is consumed.

0
1
2
3
4
5
6
7

𝑎 𝑏 𝑐
cycle # live

0
1
2
2
2
2
2
2

0
1
2
3
4
5
6
7

𝑎଴ 𝑏଴ 𝑐଴
cycle # live

0
1
2
2
2
2
2+0=2
2+1=3

Minimum number of
required registers

3 iterations with
period N=6

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

cycle # live
0
1
2
2
2
2
2
3
2
2
2
2
2
3
2
2
2
2
2
2
0

𝑎଴ 𝑎ଵ 𝑎ଶ 𝑏଴ 𝑏ଵ 𝑏ଶ 𝑐଴ 𝑐ଵ 𝑐ଶ

𝑁(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑)=6

Pengju Ren@XJTU 2022

 Due to the periodic nature of Data-stream programs the lifetime
chart can be drawn for only one iteration to give an indication of
the # of registers that are needed. This is done as follows :
Let be the iteration period
Let the # of live variables at time partitions be the # of live variables

due to 0-th iteration at cycles for . In the example, # of live
variables at cycle is the sum of the # of live variables due to
the 0-th iteration at cycles and , which is .

14

Register Minimization Technique (2)

Pengju Ren@XJTU 2022

15

0
1
2
3
4
5
6
7
8
9

10
11
12

cycle # live

0
1
2
3
4
4
4
4
4

4+0=4
3+1=4
2+2=4
1+3=4

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

To make the system causal a latency of 4 is added to the difference
so that is the actual output time.

Example: Register Minimization Technique

Sample

a

b

c

d

e

f

g

h

i

𝑻𝒊𝒏

0

1

2

3

4

5

6

7

8

𝑻𝒛𝒍𝒐𝒖𝒕
∗

0

3

6

1

4

7

2

5

8

𝑻𝒅𝒊𝒇𝒇

0

2

4

-2

0

2

-4

-2

0

𝑻𝒐𝒖𝒕

4

7

10

5

8

11

6

9

12

Life

0 → 4

1 → 7

2 → 10

3 → 5

4 → 8

5 → 11

6 → 6

7 → 9

8 → 12

+ 𝒂𝒃𝒔(−𝟒) 𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

transpose

𝒛𝒍𝒐𝒖𝒕: zero-latency output time

Pengju Ren@XJTU 2022

Circular lifetime chart

16

 Useful to represent the periodic nature of the data-stream programs.
 In a circular lifetime chart of periodicity , the point marked

represents the time partition and all time
instances where is any non-negative integer.

 For example : If , then time partition represents time
instances ，11，19…}

Note : Variable produced during time
unit and consumed during time unit
is shown to be alive from ‘ to ‘ .
The numbers in the bracket in the
adjacent figure correspond to the # of
live variables at each time partition

Pengju Ren@XJTU 2022

Steps for Forward-Backward Register allocation

 Determine the minimum number of registers using lifetime analysis.
 Input each variable at the time step corresponding to the beginning

of its lifetime. If multiple variables are input in a given cycle, these
are allocated to multiple registers with preference given to the
variable with the longest lifetime.

 Each variable is allocated in a forward manner until it is dead or it
reaches the last register. In forward allocation, if the register holds
the variable in the current cycle, then register holds the same
variable in the next cycle. If ()-th register is not free then use
the first available forward register.

 Being periodic the allocation repeats in each iteration. So hash out
the register for the cycle if it holds a variable during cycle .

 For variables that reach the last register and are still alive, they are
allocated in a backward manner on a first come first serve basis.

 Repeat steps 4 and 5 until the allocation is complete.

17

Pengju Ren@XJTU 2022

18
Note : Hashing is done to avoid conflict during backward allocation.

Example : Forward backward Register Allocation(1)

0
1
2
3
4
5
6
7
8
9

10
11
12

cycle # live

0
1
2
3
4
4
4
4
4

4+0=4
3+1=4
2+2=4
1+3=4

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

Cycle Input R1 R2 R3 R4 output

0

1

2

3

4

5

6

7

8

9

10

11

12

Pengju Ren@XJTU 2022

Example : Forward backward Register Allocation(2)

19

Cycle Input R1 R2 R3 R4 output

0 a

1 b a

2 c b a

3 d c b a

4 e d c b a a

5 f e d c b d

6 g f e b c g

7 h c f e b b

8 i h c f e e

9 i h c f h

10 i f c c

11 i f f

12 i i

R1 R2 R3 R4

OUT

IN

9𝑙 + 6 9𝑙 + 0,5

9𝑙 + 0,5

9𝑙 + 6 9𝑙 + 1,2,3,4,7,8

Pengju Ren@XJTU 2022

20

0
1
2
3
4
5
6
7

𝑎଴ 𝑏଴ 𝑐଴
cycle # live

0
1
2
2
2
2
2+0=2
2+1=3

Cycle Input R1 R2 R3 output

0 ଴

1

2

3

4

5

6

7

଴

଴ ଴଴ ଴

଴଴

଴଴

଴଴

଴ ଴଴

଴଴

଴଴period N=6 ଵ

ଵ ଵ

R1 R2 R3IN

6𝑙 + 1,2,5

6𝑙 + 0,3,4

6𝑙 + 1,4

6𝑙 + 1

Example : Forward backward Register Allocation(3)

Pengju Ren@XJTU 2022

Register minimization in folded architectures(1)

21

1. Perform retiming for folding

2. Write the folding equations

3. Use the folding equations to construct a lifetime table

4. Draw the lifetime chart and determine the required number
of registers

5. Perform forward-backward register allocation

6. Draw the folded architecture that uses the minimum
number of registers

Pengju Ren@XJTU 2022

22

Register minimization in folded architectures(2)

𝐷ி 1 → 2 = 4 1 − 1 + 1 − 3 = 1
𝐷ி 1 → 5 = 4 1 − 1 + 0 − 3 = 0
𝐷ி 1 → 6 = 4 1 − 1 + 2 − 3 = 2
𝐷ி 1 → 7 = 4 1 − 1 + 3 − 3 = 3
𝐷ி 1 → 8 = 4 2 − 1 + 1 − 3 = 5
𝐷ி 3 → 1 = 4 0 − 1 + 3 − 2 = 0
𝐷ி 4 → 2 = 4 0 − 1 + 1 − 0 = 0
𝐷ி 5 → 3 = 4 0 − 2 + 2 − 0 = 0
𝐷ி 6 → 4 = 4 1 − 2 + 0 − 0 = 0
𝐷ி 7 → 3 = 4 1 − 2 + 2 − 3 = 1
𝐷ி 8 → 4 = 4 1 − 2 + 0 − 1 = 1

Lifetime table：
 ௜௡௣௨௧ of node is ௨

 ௢௨௧௣௨௧ of the node is ௨ ி

Node ௜௡௣௨௧ ௢௨௧௣௨௧

1

2 -

3

4

5

6

7

8

Pengju Ren@XJTU 2022

23

Register minimization in folded architectures(3)
Node 𝑇௜௡௣௨௧ → 𝑇௢௨௧௣௨௧

1 4 → 9

2 -

3 3 → 3

4 1 → 1

5 2 → 2

6 4 → 4

7 5 → 6

8 3 → 4

0
1
2
3
4
5
6
7
8
9

cycle # live

0
0
0
0

1+0=1
1+0=1
2+0=2
1+0=1
1+1=2
1+1=2

1 2 3 4 5 6 7 8

Cycle Input R1 R2 output

0

1

2

3 ଼

4 ଼ ଼ଵ

5 ଵ଻

6 ଵ଻ ଻

7 ଵ

8 ଵ

9 ଵ ଵ

Pengju Ren@XJTU 2022

24

Register minimization in folded architectures(4)

Reduce # Regs from 6 to 2OUT

4𝑙 + 0,2

D

𝑷𝑨

2D

𝑷𝑴

R1 R2
IN

𝑎 𝑏 𝑐 𝑑
[0] [2] [3] [1]

4𝑙 + 1,3

4𝑙 + 2

4𝑙 +3

4𝑙 + 0,1,2
4𝑙 + 0

4𝑙 + 1,3 4𝑙 + 0

4𝑙 + 1,2,34𝑙 + 0,2,3

4𝑙 + 1

Pengju Ren@XJTU 2022

25

Next Lecture：Systolic Array

Pengju Ren@XJTU 2022

