Computer Architecture

Lecture 06 — Advanced Cache

Pengju Ren
Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Recap : CPU-Cache Interaction
(5-stage pipeline)

Ox4 ﬁ

bubble

:

PCenﬂ

addr

v

inst
hit?
Primary
Instruction
Cache‘

A

Decode,
Register
Fetch

E
N M
A —
vV we

— w YY" addr
B LA Primary
I Data rdata
— — Cache

o wdata ME
A _A_ A
MD1 MD2

|

To Memory Control

Cache Refill Data from Lower Levels of

Memory Hierarchy

A 4

Stall entire

CPU on data

cache miss

/| >

Agenda

Advanced Cache Optimizations

(D Pipelined Cache Write

(2 Write Buffer

@ Multilevel Caches

@ Victim/Filter/Stream Caches

(B Prefetching(hardware/software)
® Multiporting and Banking

@ Software Optimizations
Non-Blocking Cache

(9 Critical Word First/Early Restart

Five Categories of Cache techniques

___ Effect | Techniques

. . Small and simple L1 Cache
Reducing the hit time o

Way Predication
Pipelined Cache

Increasing Cache Bandwidth Multibanked Caches
Non-blocking Cache

. . Critical Word first
Reducing the miss penalty . .

Merging write Buffers

Reducing the miss rate Compiler/Program Optimization

Reducing the miss penalty or Hardware Prefetching
miss rate via Parallelism Compiler Prefetching

(D Pipelined Cache Write : Write Performance

Tag

Index

Offset

Z

Tag

HIT -

4

/

k

lines

Data Word or Byte

Parallel Cache access (Tag and Data)

data
—>

Aligner

Calculation

S4: Result Drive

Way 0 Way 1
g Data RAM Array
> é Data O Data 1 > %
2 =
2
S2:Disambiguation wayo | | way1
% Tag RAM Array | .,
=§ tag 0 tagl g
g T
<
S3:|Cache Arcess
v P (==)—
[S —
Block(Gache Line) Address | Block
Tag Index Offset
Address S1: Address Calculation

Serial Cache access (Tag and Data)

S4: Data Access

S5: Result Drive

Way 1
- Data 1
$3: Tag Access
S2:Disambiguation Way 0
% Tag RAM Array | , %
:@ tag 0 tag 1 g @—-’* D3ta 0
< <
| D4ta RAM Array
s |
_ Aligner
Block(Qache Line) Address |Block ldata
Tag Index Offset
Address S1: Address Calculation
Calculation

(DPipelined Cache Write : Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one
cycle for tag check plus one cycle for data write if hit

Solutions:

" Design data RAM that can perform read and write in one cycle,
restore old value after tag miss

» Fully-associative (CAM Tag) caches: Word line only enabled if hit

" Pipelined writes: Hold write data for store in single buffer ahead
of cache, write cache data during next store’s tag check

(D Pipelining Cache Writes

Address and Store Data From CPU
| |

Tag Index Store Data

D Delayed Write Addr. |> Delayed Write Data

' Load/Store
(=2) V
s '
Tags | L Data

N
l

Load Data to CPU

Data from a store hit is written into data portion of cache
during tag access of subsequent store

(2Write Buffer to Reduce Read Miss Penalty

— 7
CPU Unified
ttl Data Cache L2 Cache
Write
RF / g buffer)

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

Processor is not stalled on writes, and read misses can go ahead of

write to main memory
Problem: Write buffer may hold updated value of location needed by a read miss

Simple solution: on a read miss, wait for the write buffer to go empty

Faster solution: Check write buffer addresses against read miss addresses, if no
match, allow read miss to go ahead of writes, else, return value in write buffer

10

Reducing Tag Overhead with Sub-Blocks

" Problem: Tags are too large, i.e., too much overhead
— Simple solution: Larger lines, but miss penalty could be large.
= Solution: Sub-block placement (a.k.a sector cache)
— A valid bit added to units smaller than full line, called sub-blocks

— Only read a sub-block on a miss
— If a tag matches, is the word in the cache?

Tag Array V Sub-block0 V Sub-blockl V Sub-block2 V Sub-block3
110010 1 1 0 0
110011 0 1 1 0
110100 1 1 1 1
110101 0 0 0 0
N - J

Cacheline/Super-block
11

A single way of a sub-blocked cache

31 1514 65 0 31 1514 8765 0
Tag Index B_offset Tag Index B_offset
| I |
© = I |
% Tag S Tag Vv v \
g 3
o o 32KB=128*4*64B
— b
= 32KB=512*64B - J J v
5 5
© ge)
< <
64 | [[---] ||
i _ Vv vV
Hlt? v Hlt? v \T_/<
64B I*I*I I*I*I
— sub-blocked cache

Reduce the % of storage for tags (+)
Good for false-sharing in multithreaded applications (+)

(3Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

JL1S |

L2S

DRAM

Misses per instruction = misses in cache / number of instructions

13

(3Multilevel Caches: Presence of L2 influences L1 design

= Use smaller L1 if there is also L2

— Trade increased L1 miss rate for reduced L1 hit time
— Backup L2 reduces L1 miss penalty
— Reduces average access energy

" Use simpler write-through L1 with on-chip L2

— Write-back L2 cache absorbs write traffic, doesn’t go off-chip

— At most one L1 miss request per L1 access (no dirty victim
write back) simplifies pipeline control

— Simplifies coherence issues

— Simplifies error recovery in L1 (can use just parity bits in L1
and reload from L2 when parity error detected on L1 read)

14

(3Multilevel Caches: Inclusion Policy

L2 Cache

= |nclusive multilevel cache:

— Inner cache can only hold lines also present in outer cache

— External coherence snoop access need only check outer cache
= Exclusive multilevel caches:

— Inner cache may hold lines not in outer cache
— Swap lines between inner/outer caches on miss
— Used in AMD Athlon with 64KB primary and 256KB secondary cache

Why choose one type or the other?

15

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4

21.6 mm

store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

: i : ;]) e e SO D e =5
< 19.5mm >

16

IBM z15 Mainframe Caches 2020

At ISSCC 2020 in San Francisco IBM mainframe chip
details

B 715 designed in 14nm FinFET technology with
seventeen metal layers, 12.2 billion transistors/chip

B 12 cores/chip, 128KB L1 D&l cache, with 96 MB L2
cache, 256MB L3 cache, and 960MB L4 off-chip cache.

B 5.2GHz clock rate, 4-way, 10-issue per cycle, 2
threads/core

B Up to 240 (190 for user, 60 for system management)
processor chips in shared memory node

17

IBM z15 Mainframe Caches 2020

ICM: 64B/cycle

Front End : . : /
: L1 Instruction Cache : /
128 KiB 8-Way Instruction TLB |
. (4 Set x 128-entry) |
"""""""""" . T e T
: IFB : 4x 8B Chunks/cycle
+[Branch Predictor| : :*" it Ibu-
z (BPU) f : Instruction fetch & pre-decode 9
D (4 x 8B chunks, store-aligned) . —
TAGE s : N
Hashed Perceptron g'
SSCRS e —
! el Instruction Queue NN (.:n
2 (2043,’(4,‘2,(, (1024)|| ¢ : (z-instruction clumps) 3 —
: %« @t |§t ugt IEE I&t I@t == E
16x2K | @x26 || : - : T Q
arez | ehmz || 6-Way Decode . —
(4x32K) | (4x32K) || : - Group 0 Group/Crack Group T 1. O
: [pecose]pecose[ecsie] = >
' =l e
; . < o
Unified Mapper (128-entry) —— ')
Architected Mapper (128-entry) | =
| Age (]
{| Matrix

Global Completion
Table (GCT)

1| (30 x 2 x 3; 180-entry) ! : ; g
. Issue Queue 0 , S Issue Queue 1 & L
(36-entry) (36-entry) 2
rt02] [Port 03] : 5 i
....... m
P —
s =N
0
N IES:
& O
L Q
(00}
0
S o
Execution e
Engine DTLB D
LSU COP Store Load Buffer Store Buffer 4 KiB Page
: 2568 Buffer (64 entries) (32 entries) “ *ISM’:::‘:’"’-E"W)
STF$ (4 sets x lza—gentry) —
(32 x 4-wa age.
L1 Data Cache henaics MRS
128 KiB 8-Way Vi
64B/cycle

Memory Subsystem

18

(4)Victim Caches: Motivation

Cache
Way 0 Wayl
A B

Working data set

19

@Victim Caches (HP 7200)

CPU
t1l Filter Unified L2
RE : 11 Data [€] Cache [Cache
Cache >
A
Victim , to where?
FA Cache
4 blocks

Victim cache is a small associative backup cache, added to a direct-mapped
cache, which holds recently evicted lines

e First look up in direct-mapped cache

e |[f miss, look in victim cache

e If hit in victim cache, swap hit line with line now evicted from L1
e |[f miss in victim cache, L1 victim -> VC, VC victim->?

Fast hit time of direct mapped but with reduced conflict misses

BPrefetching

= Speculate on future instruction and data accesses
and fetch them into cache(s)

— Instruction accesses easier to predict than data accesses

= Varieties of prefetching
— Hardware prefetching
— Software prefetching
— Mixed schemes

»" What types of misses does prefetching affect?

21

BPrefetching: Way-Predicting Instruction Cache
(Alpha 21264-like)

Jump target

Jump
control

Store last-used way for sequential

’ path and predicted branch taken
0x4 path. Can be fetching multiple
R »

instructions per cycle.

,E

—1

addr

way

inst >

Primary
Instruction
Cache

Sequential Way

Branch Target Way

22

= Usefulness — should produce hits

(BlIssues in Prefetching

" Timeliness — not late and not too early

= Cache and bandwidth pollution

CPU
11l

RF

= | 1 |nstruction

[—> L1 Data I

Unified L2
Cache

Prefetched data

23

(5 Prefetching : Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064

— Fetch two lines on a miss; the requested line (i) and the
next consecutive line (i+1)

— Requested line placed in cache, and next line in
instruction stream buffer

— If miss in cache but hit in stream buffer, move stream
buffer line into cache and prefetch next line (i+2)

Prefetched
instruction line

Req

) Stream
line

Buffer

CPU

L1 4—-—| Unified L2
RF Instruction | Req Cache
line

24

BPrefetching : Hardware Data Prefetching

= Prefetch-on-miss:

— Prefetch b + 1 upon misson b

= One-Block Lookahead (OBL) scheme

— Initiate prefetch for block b + 1 when block b is accessed
— Why is this different from doubling block size?
— Can extend to N-block lookahead

= Strided prefetch

— If observe sequence of accesses to line b, b+N, b+2N, then prefetch
b+3N etc.

= Example: IBM Power 5 [2003] supports eight independent streams of
strided prefetch per processor, prefetching 12 lines ahead of current access

25

BPrefetching: Software Prefetching

for(1i=0; 1 < N; i++) {
prefetch(&af[i + 1]);
prefetch(&b[i + 1]);
SUM = SUM + a[i] * b[i];

26

BPrefetching : Software Prefetching Issues

= Timing is the biggest issue, not predictability

If you prefetch very close to when the data is required, you
might be too late

Prefetch too early, cause pollution

Estimate how long it will take for the data to come into L1, so

we can set P appropriately
Why is this hard to do?

for(i=0; 1 < N; 1i++) {
prefetch(&af[i + P]);
prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

Must consider cost of prefetch instructions

27

(® Increasing Cache Bandwidth with
Non-Blocking Caches(O0OO)

» Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

— requires Full/Empty bits on registers or out-of-order execution

= “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

= “hit under multiple miss” or “miss under miss” may further lower
the effective miss penalty by overlapping multiple misses

— Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses, and can get
miss to line with outstanding miss (secondary miss)

— Requires pipelined or banked memory system (otherwise cannot
support multiple misses)

— Pentium Pro allows 4 outstanding memory misses

— Cray X1E vector supercomputer allows 2,048 outstanding memory
misses

28

® Non-Blocking Cache Timeline

Cache Miss
Blocking Cache: ﬁ CPU Time

Miss Penalty

Cache Miss Hjt Stall on use

Hit Under Miss: CPU Time

Miss Penalty

Cache Miss Mjss Stall on use
- : ﬂ CPUTi
Miss Under Miss: e

Miss Penalty
Miss Penalty

Time

29

Non-blocking Caches (a.k.a OO0 Memory
System, Lockup Free Caches)

Enable subsequent cache accesses after a cache
miss has occurred

» Hit-under-miss

» Miss-under-miss (concurrent misses)
Suitable for in-order processor or OOO processors

Challenges
» Maintaining order when multiple misses that

might return OO0
» Load or Store to an already pending miss
address (need merge)

30

(® Non-Blocking Cache : Miss Status Handling/holding
Register (MSHR)/ Miss Address File (MAF)

MSHR/MAF
V Block Issued

Address

V: Valid

Block Address: Address of cache block
in memory system

Issued: Issued to Main Memory/Next
level of cache

Load/Store Entry

V MSHR Type Offset Destination

Entry

V: Valid

MSHR Entry: Entry Number
Type: {LW, SW, LH, SH, LB, SB}
Offset: Offset within the block

Destination: (Loads) Register, (Stores)
Store buffer entry

31

(6 Non-Blocking Cache Operation

On Cache Miss:
B Check MSHR for matched address
» If found: Allocate new Load/Store entry pointing to MSHR
» If not found: Allocate new MSHR entry and Load/Store
entry
» If all entries full in MSHR or Load/Store entry table, stall
or prevent new LDs/STs
On Data Return from Memory:
B Find Load or Store waiting for it
» Forward Load data to processor/Clear Store Buffer
» Could be multiple Loads and Stores
B Write Data to Cache
When Cache Lines is Completely Returned:
B De-allocate MSHR entry

32

(6 Non-Blocking Cache with In-order Pipelines

Need Scoreboard for Individual Registers

On Load Miss:
B Mark Destination Register as Busy

On Load Data Return:
B Mark Destination Register as Available

On Use of Busy Register:
B Stall Processor

33

@ Increasing Cache Bandwidth Multiporing and Banking

Branch Cond.

S

Challenges: Two stores to the same line,
or load and store to same line

34

(@ Multiport Caches

Address 1 AddressO Data 0
Data 1
Address 2 Address 1 Bank 1 Data 1
Data 2
Ture Multiport Caches: Banked Caches: Partition Address Space
B Large area increase (could into multiple banks — use portions of
be double for 2-port) address (low or high order interleaved)
B Hit time increase (can be Benefits: Higher throughput
made small) Challenges: Bank Conflicts & Extra Wiring

35

Agenda

Advanced Cache Optimizations

(D Pipelined Cache Write

(2 Write Buffer

@ Multilevel Caches

@ Victim Caches

(B Prefetching(hardware/software)
® Non-Blocking Cache

(@ Multiporting and Banking
Software Optimizations

(9 Critical Word First/Early Restart

36

Software Optimizations: Compiler Optimizations

= Restructuring code affects the data access sequence
— Group data accesses together to improve spatial locality
— Re-order data accesses to improve temporal locality

" Prevent data from entering the cache
— Useful for variables that will only be accessed once before being
replaced
— Needs mechanism for software to tell hardware not to cache
data (“no-allocate” instruction hints or page table bits)

= Kill data that will never be used again
— Streaming data exploits spatial locality but not temporal locality
— Replace into dead cache locations

37

Software Optimizations: Loop Interchange

for(j=0; j < N; j++) {
for(i=0; i < M; i++) {
x[1][3] = 2 * x[1i][]]~
}

} &

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {
x[1][3] = 2 * x[1i][]]~
}

What type of locality does this improve?

38

Software Optimizations: Loop Fusion

for(i=0; i < N; i++)
a[i] = b[i] * c[i];

for (i=0; i < N; i++)

d[i] = a[1] * c[i];

.

for(i=0; i < N; i++)

{

b[i] * c[i];
a[i] * c[1];

afi]
d[i]

}
What type of locality does this improve?

39

Software Optimizations: Matrix Multiply, Naive Code

for(i=0; 1 < N; i++)
for (3j=0; j < N; j++) {
r =0; k
for (k=0; k < N; k++)
r =r + yl[i] [k] * z[k][]]’

x[1][3] = &;
} y ok x 3
EEEEEEEES SEm
Not touched Old access B New access

40

Software Optimizations: Matrix Multiply, Naive Code
(If there is no Cache)

X I Y k A J

For each element of X, read one row of Y and one column of Z

Total Mem access = N% x (2 + N+ N) = 2N2 + 2N3

Computational intensity : 2N3/(2N? + 2N3) =~ 1

(including N3multiplies and N3addition)
41

Software Optimizations: Matrix Multiply, Naive Code
(If Cache size is 3N)

for(i=0; 1 < N; i++)
[read row i of y into fast Mem]
for(j=0; j < N; j++) {
[read x[i][j] into fast Mem]

[read column j of z into fast Mem]
r =0;

for(k=0; k < N; k++)

r =r + yl[i] [k] * z[k][]];
x[1][]J] = &;
[write x[i][j] back to fast Mem]

}
X J Y k Z

J

For each row of X, read one row of Y and every column of Z

42

Software Optimizations: Matrix Multiply, Naive Code
(If Cache size is 3N)

for(i=0; i < N; i++)
[read row i of y into fast Mem]
for(j=0; j < N; j++) {
[read x[i][j] into fast Mem]
[read column j of z into fast Mem]
r =0;
for (k=0; k < N; k++)
r =r + y[1] [k] * z[k][]]~
x[1][]J] = x;
[write x[i][j] back to fast Mem]

}

Total Mem access = N3 to read each column of z N? times (N * N?2)
+ N? to read each row of y once (N * N)
+ 2N? to read and write each element of x (N%+ N?)
= N3 + 3N?

Computational intensity : 2N3 /(N3 + 3N?) = 2

43

Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3B?)

for (ii=0; ii < N; ii=ii+B) {

. . . z
for(jj=0; jj < N; 33=33+B){
for (kk=0; kk < N; kk=kk+B) {
for (i=ii; i < min(ii+B,N); i++) {
for (j=jj; j < min(jj+B,N); j++){ k

r = 0;
for (k=kk; k < min(kk+B,N); k++){

r =r + y[i] [k] * z[k][]J]/}//end k
x[1][J] = x[1][]J] + r;}//end j

}//end i Y k X J
}//end kk
}//end 3j
}//end 11 L L
1 1

What type of locality does this improve?
44

Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3B?)

_ ii=0, jj=0, kk=0 _ ii=B, jj=0, kk=0 _
X J Yy k z Jj X J Yy k z Jj

ii=0, jj=0, kk=B ii=B, jj=0, kk=B

® DJ y k J x J v k 3
T ER HE = =
ii=0, jj=B, kk=0 ii=B, jj=B, kk=0

* J Y k J X J y k J

Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3B?)

for (ii=0; ii < N; ii=ii+B)({ The larger the block size,
for (§3=0; jj < N; jj=jj+B) { the more efficient our
[read B*B block of x into fast Mem] algorithm will be,
for (kk=0; kk < N; kk=kk+B) { however all three blocks
[read B*B block of y into fast Mem]

[read B*B block of z into fast Mem] from x,y,z must fit in Cacmf
for(i=ii; i < min (ii+B,N); i++)
for (j=jj; j < min(j3j+B,N); j++) {
r =0;
for (k=kk; k < min (kk+B,N); k++)
r =r + y[il[k] * z[k][3];
x[i][3] = x[i1[3] + ;)
}

3b? < Mfast! so b< (Mfastl3)1l2

Total Mem access = N3 /B to read each block of z (%)3 times ((%)3* B%? = N3 /B)
+ N3 /B to read each block of y (%)3 times

+ 2N? read and write each block of x once ((%)2* B% = N?)
= 2N3 /B + 2N?

Computational intensity : 2N3/(2N3 /B + 2N?) ~ B when N is big 46

Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First

= Don’t wait for full block before restarting CPU

" Farly restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue execution

" Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block

— Long blocks more popular today = Critical Word 15t Widely used

A

To CPU

Word 0
Word 1

‘ Word 3 \

— T~

To CPU

Word 3
Word 0O
Word 1

Rest of line filled in
with wrap-around on
cache line

47

(9 Critical Word First

Request the missed word from memory first
Rest of Cache line comes after “critical word”
> Commonly words come back in rotated order

m

Order offill: 0,1, 2,3,4,5,6, 7

Blocking Cache with e | m

Critical Word first:

Basic Blocking Cache:

Order of fill: 3,4,5,6,7,0, 1, 2

48

(9 Critical Word First: Early Restart

Data returns from memory in order
Processor Restarts when needed word is returned

Basic Blocking Cache: m m

Order of fill: 0, 1, 2, 3, 4,5, 6, 7
Blocking Cache with

Early Restart: 4

Order of fill: 0, 1, 2,3, 4,5, 6, 7

49

Data Block n words

A

\
l

Tag wordO | word1 | word2 | word3
Fetch lGroup
[\
InstO |inst1 |inst2 inst 3

[Address Decoder

v

v

v

v

Fetch Group in a single Cache line

Data Block n words

A

(———) Tag | wordO | wordl | word2 | word3
5 —>

S

2 Fetch ?roup

a f ‘
Y

kS InstO | inst1 Iinst2
ﬁ———) Inst3

v

v

v

v

Fetch Group in different Cache lines

One more thing: I-Cache for n-way superscalar

Cache Line

Cache Line

50

Cycle Addr
0 0Ox000
0 0x004
1 0x008
1 0x00C
2 0x100
2 0x104
3 0x204
3 0x208
0x30C
0x310
5 0x314

Recap: Fetch Logic and Alignment

Instr
OpA
OpB
OpC oxo00 O 0 1 1
J 0x100 o

0x100 2 2
—

0x200 3 3
J 0x204

0x300 4
OpE 0x310 4 5
J 0x30C

Fetching across cache

OpF lines is very expensive
e (need extra ports)
OpH

51

I-Cache for Fetch Alighment

(SRAMOY SRAM1Y SRAM2Y SRAM3)

/——> InstO0 | inst1 | inst2
5 Tag
g — Inst3
(@)
a Fetch g;roup
% [\
2 :

a
G— &

. 4 L 4 L 4 . 4
InstO | inst1 |inst2 inst 3
Y
Fetch Group

} Cache Line

52

Next Lecture .. Address Translation &
Virtual Memory

(Memory System)

53

Acknowledgements

= Some slides contain material developed and copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— David Patterson (UCB)
— David Wentzlaff (Princeton University)

= MIT material derived from course 6.823
= UCB material derived from course CS252 and CS 61C

54

A single way of a sub-blocked cache

Addr[31:10]

Address Showing Bit Positions

31 10 9 43 2 1 0
Tag Set Offset
|
Addr[9:2]
Tag Rpl Valid Valid Valid Valid
0
1, 1
2 2
— I s
>
o
Sub- Sub- Sub- Sub- /ﬁ‘
blockO | | blockl block2 | | block3 ™)
22
254 254
255 255
%1 %648 1 ’{648 %1 ‘648 %1 648
Y \i \i
4-to-1 MUX
64-byte + 1 bit Wide
g 1
i Valid bit f i64B Indexed Data

55

