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Recap：CPU-Cache Interaction
(5-stage pipeline)
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Agenda

Advanced Cache Optimizations
① Pipelined Cache Write
② Write Buffer
③ Multilevel Caches
④ Victim/Filter/Stream Caches
⑤ Prefetching(hardware/software)
⑥ Multiporting and Banking
⑦ Software Optimizations
⑧ Non-Blocking Cache
⑨ Critical Word First/Early Restart
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Five Categories of Cache techniques
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TechniquesEffect
Small and simple L1 Cache

Reducing the hit time
Way Predication
Pipelined Cache 

Increasing Cache Bandwidth Multibanked Caches
Non-blocking Cache
Critical Word first

Reducing the miss penalty
Merging write Buffers
Compiler/Program OptimizationReducing the miss rate
Hardware PrefetchingReducing the miss penalty or 

miss rate via Parallelism Compiler Prefetching



① Pipelined Cache Write：Write Performance

5

Tag DataV

=

OffsetTag Index

t k
b

t

HIT Data Word or Byte

2k

lines

WE



Parallel Cache access (Tag and Data)
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Serial Cache access (Tag and Data)
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①Pipelined Cache Write：Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one 
cycle for tag check plus one cycle for data write if hit

Solutions:
 Design data RAM that can perform read and write in one cycle, 

restore old value after tag miss
 Fully-associative (CAM Tag) caches: Word line only enabled if hit
 Pipelined writes: Hold write data for store in single buffer ahead 

of cache, write cache data during next store’s tag check
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① Pipelining Cache Writes
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②Write Buffer to Reduce Read Miss Penalty
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Processor is not stalled on writes, and read misses can go ahead of 
write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss
Simple solution: on a read miss, wait for the write buffer to go empty
Faster solution: Check write buffer addresses against read miss addresses, if no 

match, allow read miss to go ahead of writes, else, return value in write buffer
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Unified 
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RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR

All writes in writethrough cache



Reducing Tag Overhead with Sub-Blocks

 Problem: Tags are too large, i.e., too much overhead
– Simple solution: Larger lines, but miss penalty could be large.

 Solution: Sub-block placement (a.k.a sector cache)
– A valid bit added to units smaller than full line, called sub-blocks
– Only read a sub-block on a miss
– If a tag matches, is the word in the cache?
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A single way of a sub-blocked cache
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③Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level
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CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions



③Multilevel Caches: Presence of L2 influences L1 design

Use smaller L1 if there is also L2
– Trade increased L1 miss rate for reduced L1 hit time
– Backup L2 reduces L1 miss penalty
– Reduces average access energy

Use simpler write-through L1 with on-chip L2
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip
– At most one L1 miss request per L1 access (no dirty victim 

write back) simplifies pipeline control
– Simplifies coherence issues
– Simplifies error recovery in L1 (can use just parity bits in L1 

and reload from L2 when parity error detected on L1 read)

14



③Multilevel Caches: Inclusion Policy

 Inclusive multilevel cache: 
– Inner cache can only hold lines also present in outer cache
– External coherence snoop access need only check outer cache

 Exclusive multilevel caches:
– Inner cache may hold lines not in outer cache
– Swap lines between inner/outer caches on miss
– Used in AMD Athlon with 64KB primary and 256KB secondary cache

Why choose one type or the other?
15
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Itanium-2 On-Chip Caches
(Intel/HP, 2002)
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Level 1: 16KB, 4-way s.a., 64B 
line,  quad-port (2 load+2 
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B 
line, quad-port (4 load or 4 
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B 
line, single 32B port, twelve 
cycle latency



IBM z15 Mainframe Caches 2020
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At ISSCC 2020 in San Francisco IBM mainframe chip
details
 z15 designed in 14nm FinFET technology with

seventeen metal layers, 12.2 billion transistors/chip
 12 cores/chip, 128KB L1 D&I cache, with 96MB L2 

cache, 256MB L3 cache, and 960MB L4 off-chip cache.
 5.2GHz clock rate, 4-way, 10-issue per cycle, 2

threads/core
 Up to 240 (190 for user, 60 for system management) 

processor chips in shared memory node 



IBM z15 Mainframe Caches 2020
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④Victim Caches: Motivation
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④Victim Caches (HP 7200)
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Victim cache is a small associative backup cache, added to a direct-mapped 
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 20
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⑤Prefetching

 Speculate on future instruction and data accesses 
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

 Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

What types of misses does prefetching affect?
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⑤Prefetching: Way-Predicting Instruction Cache 
(Alpha 21264-like)
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⑤Issues in Prefetching

 Usefulness – should produce hits
 Timeliness – not late and not too early
 Cache and bandwidth pollution
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⑤ Prefetching：Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two lines on a miss; the requested line (i) and the 

next consecutive line (i+1)
– Requested line placed in cache, and next line in 

instruction stream buffer
– If miss in cache but hit in stream buffer, move stream 

buffer line into cache and prefetch next line (i+2)
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⑤Prefetching：Hardware Data Prefetching

 Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

One-Block Lookahead (OBL) scheme 
– Initiate prefetch for block b + 1 when block b is accessed
– Why is this different from doubling block size?
– Can extend to N-block lookahead

 Strided prefetch
– If observe sequence of accesses to line b, b+N, b+2N, then prefetch

b+3N etc.
 Example: IBM Power 5 [2003] supports eight independent streams of 

strided prefetch per processor, prefetching 12 lines ahead of current access

25



⑤Prefetching： Software Prefetching
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for(i=0; i < N; i++) {
prefetch( &a[i + 1] );
prefetch( &b[i + 1] );
SUM = SUM + a[i] * b[i];

}



⑤Prefetching：Software Prefetching Issues

27

 Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you 

might be too late
– Prefetch too early, cause pollution
– Estimate how long it will take for the data to come into L1, so 

we can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {
prefetch( &a[i + P] );
prefetch( &b[i + P] );
SUM = SUM + a[i] * b[i];

}

Must consider cost of prefetch instructions
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⑥ Increasing Cache Bandwidth with
Non-Blocking Caches(OOO)

 Non-blocking cache or  lockup-free cache allow data cache to 
continue to supply cache hits during a miss

– requires Full/Empty bits on registers or out-of-order execution
 “hit under miss”  reduces the effective miss penalty by working 

during miss vs. ignoring CPU requests
 “hit under multiple miss” or “miss under miss”  may further lower 

the effective miss penalty by overlapping multiple misses
– Significantly increases the complexity of the cache controller as 

there can be multiple outstanding memory accesses, and can get 
miss to line with outstanding miss (secondary miss)

– Requires pipelined or banked memory system (otherwise cannot 
support multiple misses)

– Pentium Pro allows 4 outstanding memory misses
– Cray X1E vector supercomputer allows 2,048 outstanding memory 

misses



⑥ Non-Blocking Cache Timeline
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Non-blocking Caches (a.k.a OOO Memory 
System, Lockup Free Caches)
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Enable subsequent cache accesses after a cache 
miss has occurred
 Hit-under-miss
 Miss-under-miss (concurrent misses)

Suitable for in-order processor or OOO processors
Challenges 
 Maintaining order when multiple misses that 

might return OOO
 Load or Store to an already pending miss 

address (need merge)



⑥ Non-Blocking Cache ：Miss Status Handling/holding 
Register (MSHR)/ Miss Address File (MAF)
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Store buffer entry



⑥ Non-Blocking Cache Operation
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On Cache Miss:
 Check MSHR for matched address

 If found: Allocate new Load/Store entry pointing to MSHR
 If not found: Allocate new MSHR entry and Load/Store 

entry
 If all entries full in MSHR or Load/Store entry table, stall 

or prevent new LDs/STs
On Data Return from Memory:
 Find Load or Store waiting for it

 Forward Load data to processor/Clear Store Buffer
 Could be multiple Loads and Stores

 Write Data to Cache
When Cache Lines is Completely Returned:
 De-allocate MSHR entry



⑥ Non-Blocking Cache with In-order Pipelines
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Need Scoreboard for Individual Registers

On Load Miss:
 Mark Destination Register as Busy

On Load Data Return:
 Mark Destination Register as Available

On Use of Busy Register:
 Stall Processor



⑦ Increasing Cache Bandwidth Multiporing and Banking
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Challenges: Two stores to the same line, 
or load and store to same line



⑦Multiport Caches
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Banked Caches: Partition Address Space 
into multiple banks – use portions of 
address (low or high order interleaved)
Benefits: Higher throughput
Challenges: Bank Conflicts & Extra Wiring

Ture Multiport Caches:
 Large area increase (could 

be double for 2-port)
 Hit time increase (can be 

made small)



Agenda

Advanced Cache Optimizations
① Pipelined Cache Write
② Write Buffer
③ Multilevel Caches
④ Victim Caches
⑤ Prefetching(hardware/software)
⑥ Non-Blocking Cache
⑦ Multiporting and Banking
⑧ Software Optimizations
⑨ Critical Word First/Early Restart
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⑧ Software Optimizations: Compiler Optimizations

 Restructuring code affects the data access sequence 
– Group data accesses together to improve spatial locality
– Re-order data accesses to improve temporal locality

 Prevent data from entering the cache
– Useful for variables that will only be accessed once before being 

replaced
– Needs mechanism for software to tell hardware not to cache 

data (“no-allocate” instruction hints or page table bits)

 Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality
– Replace into dead cache locations
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⑧ Software Optimizations: Loop Interchange
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for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

x[i][j] = 2 * x[i][j];
}

}

What type of locality does this improve?



⑧ Software Optimizations: Loop Fusion
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for(i=0; i < N; i++)
a[i] = b[i] * c[i];

for(i=0; i < N; i++)

d[i] = a[i] * c[i];

for(i=0; i < N; i++)
{

a[i] = b[i] * c[i]; 
d[i] = a[i] * c[i];

}

What type of locality does this improve?



⑧ Software Optimizations: Matrix Multiply, Naïve Code
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for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)  
r = r + y[i][k] * z[k][j];

x[i][j] = r;
}

Not touched Old access New access
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y k

i
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⑧ Software Optimizations: Matrix Multiply, Naïve Code
(If there is no Cache)

Total Mem access = 𝟐 (2 + + ) = 𝟐 𝟑

Computational intensity : 𝟑 𝟐 𝟑

(including 𝟑multiplies and 𝟑addition)

For each element of X, read one row of Y and one column of Z
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for(i=0; i < N; i++)
【read row i of y into fast Mem】
for(j=0; j < N; j++) {
【read x[i][j] into fast Mem】
【read column j of z into fast Mem】
r = 0;
for(k=0; k < N; k++)  
r = r + y[i][k] * z[k][j];

x[i][j] = r;
【write x[i][j] back to fast Mem】

}

⑧ Software Optimizations: Matrix Multiply, Naïve Code
(If Cache size is 3N)

x j

i

y k

i

z j

k

For each row of X, read one row of Y and every column of Z
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for(i=0; i < N; i++)
【read row i of y into fast Mem】
for(j=0; j < N; j++) {
【read x[i][j] into fast Mem】
【read column j of z into fast Mem】
r = 0;
for(k=0; k < N; k++)  
r = r + y[i][k] * z[k][j];

x[i][j] = r;
【write x[i][j] back to fast Mem】

}

⑧ Software Optimizations: Matrix Multiply, Naïve Code
(If Cache size is 3N)

Computational intensity : 𝟑 𝟑 𝟐

Total Mem access =  𝟑 to read each column of z 𝟐 times ( 𝟐）
+   𝟐 to read each row of y  once ( ）
+  2 𝟐 to read and write each element of x ( 𝟐+ 𝟐)
=  𝟑 𝟐



⑧ Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3 )
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for(ii=0; ii < N; ii=ii+B){
for(jj=0; jj < N; jj=jj+B){

for(kk=0; kk < N; kk=kk+B){
for(i=ii; i < min(ii+B,N); i++){
for(j=jj; j < min(jj+B,N); j++){

r = 0;
for(k=kk; k < min(kk+B,N); k++){

r = r + y[i][k] * z[k][j];}//end k
x[i][j] = x[i][j] + r;}//end j

}//end i
}//end kk

}//end jj
}//end ii

What type of locality does this improve?
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⑧ Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3 )

ii=0, jj=0, kk=0 ii=B, jj=0, kk=0

ii=B, jj=0, kk=B

ii=0, jj=B, kk=0 ii=B, jj=B, kk=0

ii=0, jj=B, kk=B ii=B, jj=B, kk=B
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⑧ Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3 )

for(ii=0; ii < N; ii=ii+B){
for(jj=0; jj < N; jj=jj+B){
【read B*B block of x into fast Mem】
for(kk=0; kk < N; kk=kk+B){
【read B*B block of y into fast Mem】
【read B*B block of z into fast Mem】
for(i=ii; i < min（ii+B,N); i++) 

for(j=jj; j < min(jj+B,N); j++) {
r = 0;
for(k=kk; k < min(kk+B,N); k++) 

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;}

}
}

}
}

Total Mem access = 𝟑 /B to read each block of z  𝑵
𝑩
𝟑 times ( 𝑵

𝑩
𝟑 𝟐 𝟑 /B)

+ 𝟑 /B to read each block of y  𝑵
𝑩
𝟑 times

+ 𝟐 read and write each block of x once ( 𝑵

𝑩
𝟐 𝟐 𝟐)

=  𝟑 /B + 2

Computational intensity : 𝟑 𝟑 /B + when N is big

The larger the block size, 
the more efficient our 
algorithm will be，
however all three blocks 
from x,y,z must fit in Cache

3b2  Mfast,  so  b  (Mfast/3)1/2



Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First
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 Don’t wait for full block before restarting CPU
 Early restart—As soon as the requested word of the block 

arrives, send it to the CPU and let the CPU continue execution
 Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block

– Long blocks more popular today  Critical Word 1st Widely used 

Word 0

Word 1

Word 2

Word 3

To CPU

Word 2

Word 3

Word 0

Word 1

To CPU

Rest of line filled in 
with wrap-around on 
cache line



⑨ Critical Word First
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Request the missed word from memory first
Rest of Cache line comes after “critical word”
 Commonly words come back in rotated order



⑨ Critical Word First：Early Restart
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Data returns from memory in order
Processor Restarts when needed word is returned



One more thing: I-Cache for n-way superscalar
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Recap: Fetch Logic and Alignment
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Fetching across cache 
lines is very expensive 
(need extra ports)



I-Cache for Fetch Alignment
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Next Lecture：Address Translation & 
Virtual Memory

(Memory System)
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A single way of a sub-blocked cache
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