
Computer Architecture

Lecture 06 – Advanced Cache

Pengju Ren
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Recap：CPU-Cache Interaction
(5-stage pipeline)

2

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

bubble

hit?

PCen

Decode,
Register

Fetch
wdata

R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

YYALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

Agenda

Advanced Cache Optimizations
① Pipelined Cache Write
② Write Buffer
③ Multilevel Caches
④ Victim/Filter/Stream Caches
⑤ Prefetching(hardware/software)
⑥ Multiporting and Banking
⑦ Software Optimizations
⑧ Non-Blocking Cache
⑨ Critical Word First/Early Restart

3

Five Categories of Cache techniques

4

TechniquesEffect
Small and simple L1 Cache

Reducing the hit time
Way Predication
Pipelined Cache

Increasing Cache Bandwidth Multibanked Caches
Non-blocking Cache
Critical Word first

Reducing the miss penalty
Merging write Buffers
Compiler/Program OptimizationReducing the miss rate
Hardware PrefetchingReducing the miss penalty or

miss rate via Parallelism Compiler Prefetching

① Pipelined Cache Write：Write Performance

5

Tag DataV

=

OffsetTag Index

t k
b

t

HIT Data Word or Byte

2k

lines

WE

Parallel Cache access (Tag and Data)

6

Block(Cache Line) Address

Tag Index

Block
Offset

tag 0

Way 0

tag 1

Way 1

Data 0

Way 0

Data 1

Way 1

A
d

dr
es

s
D

e
co

de
r

A
d

dr
es

s
D

e
co

de
r

W
ay

 M
ux

==

==

Al
ig

ne
r

H
it/

m
is

s

data

Address
Calculation

S1: Address Calculation

S2:Disambiguation

S3:Cache Access S4: Result Drive

Tag RAM Array

Data RAM Array

Serial Cache access (Tag and Data)

7

Block(Cache Line) Address

Tag Index

Block
Offset

tag 0 tag 1 Data 0

Way 0

Data 1

Way 1

A
d

dr
es

s
D

e
co

de
r

A
d

dr
es

s
D

e
co

de
r

==

==

Aligner

H
it/

m
is

s

data

Address
Calculation

S1: Address Calculation

S2:Disambiguation

S3: Tag Access

S5: Result Drive

Tag RAM Array

Data RAM Array

S4: Data Access

①Pipelined Cache Write：Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one
cycle for tag check plus one cycle for data write if hit

Solutions:
 Design data RAM that can perform read and write in one cycle,

restore old value after tag miss
 Fully-associative (CAM Tag) caches: Word line only enabled if hit
 Pipelined writes: Hold write data for store in single buffer ahead

of cache, write cache data during next store’s tag check

8

① Pipelining Cache Writes

9

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write DataDelayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L
S

1 0

Hit?

Data from a store hit is written into data portion of cache
during tag access of subsequent store

②Write Buffer to Reduce Read Miss Penalty

10

Processor is not stalled on writes, and read misses can go ahead of
write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss
Simple solution: on a read miss, wait for the write buffer to go empty
Faster solution: Check write buffer addresses against read miss addresses, if no

match, allow read miss to go ahead of writes, else, return value in write buffer

Data Cache
Unified

L2 Cache
RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR

All writes in writethrough cache

Reducing Tag Overhead with Sub-Blocks

 Problem: Tags are too large, i.e., too much overhead
– Simple solution: Larger lines, but miss penalty could be large.

 Solution: Sub-block placement (a.k.a sector cache)
– A valid bit added to units smaller than full line, called sub-blocks
– Only read a sub-block on a miss
– If a tag matches, is the word in the cache?

11

A single way of a sub-blocked cache

12

31 14 05615
Tag Index B_offset

Tag

32KB=512*64B

Hit？

Ad
dr

[1
4:

6]

Ad
dr

[3
1:

15
]

…64B

31 14 0765815
Tag Index B_offset

Tag

32KB=128*4*64B

Hit？
Ad

dr
[1

4:
8]

Ad
dr

[3
1:

15
]

…64B

vvvv

sub-blocked cache

Reduce the % of storage for tags (+)
Good for false-sharing in multithreaded applications (+)

③Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

13

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

③Multilevel Caches: Presence of L2 influences L1 design

Use smaller L1 if there is also L2
– Trade increased L1 miss rate for reduced L1 hit time
– Backup L2 reduces L1 miss penalty
– Reduces average access energy

Use simpler write-through L1 with on-chip L2
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip
– At most one L1 miss request per L1 access (no dirty victim

write back) simplifies pipeline control
– Simplifies coherence issues
– Simplifies error recovery in L1 (can use just parity bits in L1

and reload from L2 when parity error detected on L1 read)

14

③Multilevel Caches: Inclusion Policy

 Inclusive multilevel cache:
– Inner cache can only hold lines also present in outer cache
– External coherence snoop access need only check outer cache

 Exclusive multilevel caches:
– Inner cache may hold lines not in outer cache
– Swap lines between inner/outer caches on miss
– Used in AMD Athlon with 64KB primary and 256KB secondary cache

Why choose one type or the other?
15

L1 Cache

L2 Cache

L1 Cache

L2 Cache

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

16

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

IBM z15 Mainframe Caches 2020

17

At ISSCC 2020 in San Francisco IBM mainframe chip
details
 z15 designed in 14nm FinFET technology with

seventeen metal layers, 12.2 billion transistors/chip
 12 cores/chip, 128KB L1 D&I cache, with 96MB L2

cache, 256MB L3 cache, and 960MB L4 off-chip cache.
 5.2GHz clock rate, 4-way, 10-issue per cycle, 2

threads/core
 Up to 240 (190 for user, 60 for system management)

processor chips in shared memory node

IBM z15 Mainframe Caches 2020

18

④Victim Caches: Motivation

19

Cache

A B

Way 0 Way 1

A B C

Working data set

④Victim Caches (HP 7200)

L1 Data
Cache

Unified L2
CacheRF

CPU

Victim
FA Cache
4 blocks

Evicted data

from L1

Evicted data
from VC

to where?
Hit data from VC
(miss in L1)

Victim cache is a small associative backup cache, added to a direct-mapped
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 20

Filter
Cache

⑤Prefetching

 Speculate on future instruction and data accesses
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

 Varieties of prefetching
– Hardware prefetching
– Software prefetching
– Mixed schemes

What types of misses does prefetching affect?

21

⑤Prefetching: Way-Predicting Instruction Cache
(Alpha 21264-like)

22

PC addr inst

Primary
Instruction
Cache

0x4
Add

Sequential Way

Branch Target Way

way

Jump target

Jump
control

Store last-used way for sequential
path and predicted branch taken
path. Can be fetching multiple
instructions per cycle.

⑤Issues in Prefetching

 Usefulness – should produce hits
 Timeliness – not late and not too early
 Cache and bandwidth pollution

23

L1 Data

L1 Instruction

Unified L2
Cache

RF

CPU

Prefetched data

⑤ Prefetching：Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two lines on a miss; the requested line (i) and the

next consecutive line (i+1)
– Requested line placed in cache, and next line in

instruction stream buffer
– If miss in cache but hit in stream buffer, move stream

buffer line into cache and prefetch next line (i+2)

24

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction lineReq

line

Req
line

⑤Prefetching：Hardware Data Prefetching

 Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

One-Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when block b is accessed
– Why is this different from doubling block size?
– Can extend to N-block lookahead

 Strided prefetch
– If observe sequence of accesses to line b, b+N, b+2N, then prefetch

b+3N etc.
 Example: IBM Power 5 [2003] supports eight independent streams of

strided prefetch per processor, prefetching 12 lines ahead of current access

25

⑤Prefetching： Software Prefetching

26

for(i=0; i < N; i++) {
prefetch(&a[i + 1]);
prefetch(&b[i + 1]);
SUM = SUM + a[i] * b[i];

}

⑤Prefetching：Software Prefetching Issues

27

 Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you

might be too late
– Prefetch too early, cause pollution
– Estimate how long it will take for the data to come into L1, so

we can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {
prefetch(&a[i + P]);
prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

}

Must consider cost of prefetch instructions

28

⑥ Increasing Cache Bandwidth with
Non-Blocking Caches(OOO)

 Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

– requires Full/Empty bits on registers or out-of-order execution
 “hit under miss” reduces the effective miss penalty by working

during miss vs. ignoring CPU requests
 “hit under multiple miss” or “miss under miss” may further lower

the effective miss penalty by overlapping multiple misses
– Significantly increases the complexity of the cache controller as

there can be multiple outstanding memory accesses, and can get
miss to line with outstanding miss (secondary miss)

– Requires pipelined or banked memory system (otherwise cannot
support multiple misses)

– Pentium Pro allows 4 outstanding memory misses
– Cray X1E vector supercomputer allows 2,048 outstanding memory

misses

⑥ Non-Blocking Cache Timeline

29

Non-blocking Caches (a.k.a OOO Memory
System, Lockup Free Caches)

30

Enable subsequent cache accesses after a cache
miss has occurred
 Hit-under-miss
 Miss-under-miss (concurrent misses)

Suitable for in-order processor or OOO processors
Challenges
 Maintaining order when multiple misses that

might return OOO
 Load or Store to an already pending miss

address (need merge)

⑥ Non-Blocking Cache ：Miss Status Handling/holding
Register (MSHR)/ Miss Address File (MAF)

31
Store buffer entry

⑥ Non-Blocking Cache Operation

32

On Cache Miss:
 Check MSHR for matched address

 If found: Allocate new Load/Store entry pointing to MSHR
 If not found: Allocate new MSHR entry and Load/Store

entry
 If all entries full in MSHR or Load/Store entry table, stall

or prevent new LDs/STs
On Data Return from Memory:
 Find Load or Store waiting for it

 Forward Load data to processor/Clear Store Buffer
 Could be multiple Loads and Stores

 Write Data to Cache
When Cache Lines is Completely Returned:
 De-allocate MSHR entry

⑥ Non-Blocking Cache with In-order Pipelines

33

Need Scoreboard for Individual Registers

On Load Miss:
 Mark Destination Register as Busy

On Load Data Return:
 Mark Destination Register as Available

On Use of Busy Register:
 Stall Processor

⑦ Increasing Cache Bandwidth Multiporing and Banking

34

Challenges: Two stores to the same line,
or load and store to same line

⑦Multiport Caches

35

Banked Caches: Partition Address Space
into multiple banks – use portions of
address (low or high order interleaved)
Benefits: Higher throughput
Challenges: Bank Conflicts & Extra Wiring

Ture Multiport Caches:
 Large area increase (could

be double for 2-port)
 Hit time increase (can be

made small)

Agenda

Advanced Cache Optimizations
① Pipelined Cache Write
② Write Buffer
③ Multilevel Caches
④ Victim Caches
⑤ Prefetching(hardware/software)
⑥ Non-Blocking Cache
⑦ Multiporting and Banking
⑧ Software Optimizations
⑨ Critical Word First/Early Restart

36

⑧ Software Optimizations: Compiler Optimizations

 Restructuring code affects the data access sequence
– Group data accesses together to improve spatial locality
– Re-order data accesses to improve temporal locality

 Prevent data from entering the cache
– Useful for variables that will only be accessed once before being

replaced
– Needs mechanism for software to tell hardware not to cache

data (“no-allocate” instruction hints or page table bits)

 Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality
– Replace into dead cache locations

37

⑧ Software Optimizations: Loop Interchange

38

for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

x[i][j] = 2 * x[i][j];
}

}

What type of locality does this improve?

⑧ Software Optimizations: Loop Fusion

39

for(i=0; i < N; i++)
a[i] = b[i] * c[i];

for(i=0; i < N; i++)

d[i] = a[i] * c[i];

for(i=0; i < N; i++)
{

a[i] = b[i] * c[i];
d[i] = a[i] * c[i];

}

What type of locality does this improve?

⑧ Software Optimizations: Matrix Multiply, Naïve Code

40

for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)
r = r + y[i][k] * z[k][j];

x[i][j] = r;
}

Not touched Old access New access

x j

i

y k

i

z j

k

41

x j

i

y k

i

z j

k

⑧ Software Optimizations: Matrix Multiply, Naïve Code
(If there is no Cache)

Total Mem access = 𝟐 (2 + +) = 𝟐 𝟑

Computational intensity : 𝟑 𝟐 𝟑

(including 𝟑multiplies and 𝟑addition)

For each element of X, read one row of Y and one column of Z

42

for(i=0; i < N; i++)
【read row i of y into fast Mem】
for(j=0; j < N; j++) {
【read x[i][j] into fast Mem】
【read column j of z into fast Mem】
r = 0;
for(k=0; k < N; k++)
r = r + y[i][k] * z[k][j];

x[i][j] = r;
【write x[i][j] back to fast Mem】

}

⑧ Software Optimizations: Matrix Multiply, Naïve Code
(If Cache size is 3N)

x j

i

y k

i

z j

k

For each row of X, read one row of Y and every column of Z

43

for(i=0; i < N; i++)
【read row i of y into fast Mem】
for(j=0; j < N; j++) {
【read x[i][j] into fast Mem】
【read column j of z into fast Mem】
r = 0;
for(k=0; k < N; k++)
r = r + y[i][k] * z[k][j];

x[i][j] = r;
【write x[i][j] back to fast Mem】

}

⑧ Software Optimizations: Matrix Multiply, Naïve Code
(If Cache size is 3N)

Computational intensity : 𝟑 𝟑 𝟐

Total Mem access = 𝟑 to read each column of z 𝟐 times (𝟐）
+ 𝟐 to read each row of y once (）
+ 2 𝟐 to read and write each element of x (𝟐+ 𝟐)
= 𝟑 𝟐

⑧ Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3)

44

for(ii=0; ii < N; ii=ii+B){
for(jj=0; jj < N; jj=jj+B){

for(kk=0; kk < N; kk=kk+B){
for(i=ii; i < min(ii+B,N); i++){
for(j=jj; j < min(jj+B,N); j++){

r = 0;
for(k=kk; k < min(kk+B,N); k++){

r = r + y[i][k] * z[k][j];}//end k
x[i][j] = x[i][j] + r;}//end j

}//end i
}//end kk

}//end jj
}//end ii

What type of locality does this improve?

y k

i

z j

k

x j

i

45

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x x Total Mem access =

⑧ Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3)

ii=0, jj=0, kk=0 ii=B, jj=0, kk=0

ii=B, jj=0, kk=B

ii=0, jj=B, kk=0 ii=B, jj=B, kk=0

ii=0, jj=B, kk=B ii=B, jj=B, kk=B

x j

i

y k

i

z j

k

ii=0, jj=0, kk=B

46

⑧ Software Optimizations: Matrix Multiply with Cache Tiling
(If Cache size is bigger than 3)

for(ii=0; ii < N; ii=ii+B){
for(jj=0; jj < N; jj=jj+B){
【read B*B block of x into fast Mem】
for(kk=0; kk < N; kk=kk+B){
【read B*B block of y into fast Mem】
【read B*B block of z into fast Mem】
for(i=ii; i < min（ii+B,N); i++)

for(j=jj; j < min(jj+B,N); j++) {
r = 0;
for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;}

}
}

}
}

Total Mem access = 𝟑 /B to read each block of z 𝑵
𝑩
𝟑 times (𝑵

𝑩
𝟑 𝟐 𝟑 /B)

+ 𝟑 /B to read each block of y 𝑵
𝑩
𝟑 times

+ 𝟐 read and write each block of x once (𝑵

𝑩
𝟐 𝟐 𝟐)

= 𝟑 /B + 2

Computational intensity : 𝟑 𝟑 /B + when N is big

The larger the block size,
the more efficient our
algorithm will be，
however all three blocks
from x,y,z must fit in Cache

3b2 Mfast, so b (Mfast/3)1/2

Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First

47

 Don’t wait for full block before restarting CPU
 Early restart—As soon as the requested word of the block

arrives, send it to the CPU and let the CPU continue execution
 Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block

– Long blocks more popular today Critical Word 1st Widely used

Word 0

Word 1

Word 2

Word 3

To CPU

Word 2

Word 3

Word 0

Word 1

To CPU

Rest of line filled in
with wrap-around on
cache line

⑨ Critical Word First

48

Request the missed word from memory first
Rest of Cache line comes after “critical word”
 Commonly words come back in rotated order

⑨ Critical Word First：Early Restart

49

Data returns from memory in order
Processor Restarts when needed word is returned

One more thing: I-Cache for n-way superscalar

50

Tag word0 word1 word2 word3

Ad
dr

es
s

D
ec

od
er

Data Block n words

Cache Line

Inst0 inst1 inst2 inst 3

Fetch Group

Tag word0 word1 word2 word3

Ad
dr

es
s

D
ec

od
er

Data Block n words

Cache Line

Inst0 inst1 inst2

Fetch Group

Inst3

Fetch Group in a single Cache line

Fetch Group in different Cache lines

Recap: Fetch Logic and Alignment

51

InstrAddrCycle

OpA0x0000

OpB0x0040

OpC0x0081

J 0x1000x00C1

…

OpD0x1002

J 0x2040x1042

…

OpE0x2043

J 0x30C0x2083

…

OpF0x30C4

OpG0x3104

OpH0x3145

1100

22

33

4

54

0x000

…

0x100

…

0x200

…

0x300

0x310

Fetching across cache
lines is very expensive
(need extra ports)

I-Cache for Fetch Alignment

52

Tag
Ad

dr
es

s
D

ec
od

er Cache Line

Fetch Group

Inst0 inst1 inst2
Inst3

Tag

SRAM0 SRAM1 SRAM2 SRAM3

Inst0 inst1 inst2 inst 3

Fetch Group

53

Next Lecture：Address Translation &
Virtual Memory

(Memory System)

54

Acknowledgements

 Some slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– David Patterson (UCB)
– David Wentzlaff (Princeton University)

 MIT material derived from course 6.823
 UCB material derived from course CS252 and CS 61C

A single way of a sub-blocked cache

55

